DS2500

Intermediate Programming With Data - Spring 2023

Schedule & Notes

Date

Focus / Materials

Assigned [Due]

“lab”

M Jan 9

Installing python

(attendance optional)

class0

T Jan 10

Admin (syllabus & policies)

Jupyter & Markdown

day0.ipynb

class1

F Jan 13

Data Types (list/tuple, dictionary)

Operators (arithmetic & logical)

Control flow (if-statements)

sec2 sec3 sec4

“lab”

M Jan 16

MLK Jr Day: no lab

class2

T Jan 17

Slicing (indexing) lists / tuples

Functions

Assert

sec2 sec3 sec4

class3

F Jan 20

String Manipulation

Sets

Loops (zip, enumerate, itertools)

sec2 sec3 sec4

hw0 [F Feb 3]

lab0

M Jan 23

lab0: hangman

lab0 [W Jan 25]

class4

T Jan 24

Imports

Numpy: Arrays (indexing)

sec2 sec3 sec4

class5

F Jan 27

Numpy wrap up

How (and why) to write beautiful software:

Program design, Documentation & Testing

sec2 sec3 sec4

lab1

M Jan 30

lab1: tic-tac-toe

lab1 [W Feb 1]

class6

T Jan 31

Pandas: Series & DataFrames

sec2 sec3 sec4

titanic.csv penguin.csv

class7

F Feb 3

Comma Separated Values

Plotting (matplotlib / seaborn)

day7_stud.ipynb data

hw1 [F Feb 10]

lab2

M Feb 6

lab2: triple-or-nothing analysis (plotting)

lab2 [W Feb 8]

class8

T Feb 7

Object Oriented Programming (OOP): Intro

sec2 sec3 sec4

class9

F Feb 10

OOP: Overloading Operators

OOP: Class Methods & Attributes

sec2 sec3 sec4

hw2 [F Feb 17]

lab3

M Feb 13

lab3: OOP Sounds

lab3 [W Feb 15]

class10

T Feb 14

OOP: Inheritance & Polymorphism

sec2 sec3 sec4

class11

F Feb 17

Describing sets of numbers (mean & variance)

Covariance

Correlation (zoom link will be here)

sec2 sec3 sec4

math.pdf video_cov_match video_correlation

hw3 [F Feb 24]

“lab”

M Feb 20

President’s day: no lab

class12

T Feb 21

k Nearest Neighbors

Meaningful Distances

sec2 sec3 sec4

class13

F Feb 24

Cross Validation

Measuring Binary Classifier Performance

sec2 sec3 sec4

hw4 [F Mar 3]

lab4

M Feb 27

lab4: K-Nearest-Noises

lab4 [W Mar 1]

project

M Feb 27

Project Proposal

Proj: Proposal [M Feb 27]

class14

T Feb 28

Decision Trees

Random Forest

sec2 sec3 sec4

class15

F Mar 3

Regression w/ single feature

Mean Squared Error & R^2

sec2 sec3 sec4 csv

hw5 [F Mar 17]

—–spring break—–

“lab”

M Mar 13

no lab

class16

T Mar 14

Regression

Polynomial Regression

Balancing simple vs complex models

zip sec2 sec3 sec4

class17

F Mar 17

K-means Clustering, PCA

day17_stud.zip sec2 sec3 sec4

hw6 [F Mar 24]

lab5

M Mar 20

lab5: NBA Player Salaries (RF Regression)

lab5 [W Mar 22]

class18

T Mar 21

Bayes Rule (math)

part1_sec2 part2_sec2

part1_sec3 part2_sec3

part1_sec4 part2_sec4

class19

F Mar 24

Bayes Net sec2 sec3 sec4 csv

hw7 [M Apr 3]

project

M Mar 27

Data and Analysis Plan

Proj: DA Plan [M Mar 27]

lab6

M Mar 27

lab6: tic-tac-take

lab6 [W Mar 29]

class20

T Mar 28

web scraping

sec2 sec3 sec4

class21

F Mar 31

APIs

Male bovine solid excretion & data visualization

sec2 sec3 sec4

“lab”

M Apr 3

Peer & TA support on hw:7 (optional)

class22

T Apr 4

Project meetings with Prof Higger

sign up here

(to allow meetings, no class will be held)

class23

F Apr 7

Project meetings with Prof Higger

sign up here

(to allow meetings, no class will be held)

“lab”

M Apr 10

no lab

class24

T Apr 11

Building something good

(and avoiding building something bad)

day24

class25

F Apr 14

Project Presentation

class26

T Apr 18

Project Presentation

project

W Apr 19

Final Report Due

Proj: Final Report [W Apr 19]