
Sensing Techniques for Mobile Interaction

Ken Hinckley, Jeff Pierce, Mike Sinclair, Eric Horvitz
Microsoft Research, One Microsoft Way, Redmond, WA 98052
{kenh, sinclair, horvitz}@microsoft.com; jpierce@cs.cmu.edu

ABSTRACT
We describe sensing techniques motivated by unique
aspects of human-computer interaction with handheld
devices in mobile settings. Special features of mobile
interaction include changing orientation and position,
changing venues, the use of computing as auxiliary to
ongoing, real-world activities like talking to a colleague,
and the general intimacy of use for such devices. We
introduce and integrate a set of sensors into a handheld
device, and demonstrate several new functionalities
engendered by the sensors, such as recording memos when
the device is held like a cell phone, switching between
portrait and landscape display modes by holding the device
in the desired orientation, automatically powering up the
device when the user picks it up the device to start using it,
and scrolling the display using tilt. We present an informal
experiment, initial usability testing results, and user
reactions to these techniques.

Keywords
Input devices, interaction techniques, sensing, context-
awareness, mobile devices, mobile interaction, sensors
INTRODUCTION
The rapidly growing market for mobile devices such as
personal information managers (PIM’s: tablet, pocket, and
credit-card sized), cellular telephones, pagers, watches, and
wearable computers offers a tremendous opportunity to
introduce interface design innovations to the marketplace.
Compared to desktop computers, the use of PIM’s is more
intimate because users often carry or even wear PIM’s
throughout their daily routine, so they present HCI design
opportunities for a more intimate user experience.

People also use mobile devices in many different and
changing environments, so designers don’t have the luxury
of forcing the user to “assume the position”1 to work with a
device, as is the case with desktop computers. For example,
the user must accept qualities of the environment such as
light levels, sounds and conversations, and the proximity of
people or other objects, all of which taken together
comprise attributes of the context of interaction. But if
mobile devices remain unaware of important aspects of the
user’s context, then the devices cannot adapt the interaction
to suit the current task or situation. Thus an inability to

detect these important events and properties of the physical
world can be viewed as missed opportunities, rather than
the basis for leveraging deeper shared understanding
between human and computer. Indeed, Buxton has
observed that much technological complexity results from
forcing the user to explicitly maintain the context of
interaction [3].

Fig. 1 Our prototype device, a Cassiopeia E105 Palm-
sized PC. It is augmented with a proximity range sensor,
touch sensitivity, and a two-axis tilt sensor. 1

Furthermore, the set of natural and effective gestures—the
tokens that form the building blocks of the interaction
design—may be very different for mobile devices than for
desktop computers. Over the course of a day, users may
pick up, put down, look at, walk around with, and put away
(pocket/case) their mobile device many times; these are
naturally occurring “gestures” that can and perhaps should
become an integral part of interaction with the device.
Because the user may be simultaneously engaged in real-
world activities like walking along a busy street, talking to
a colleague, or driving a car, and because typical sessions
with the device may last seconds or minutes rather than
hours [21], interactions also need to be minimally
disruptive and minimally demanding of cognitive and
visual attention.

We believe that augmenting mobile devices with sensors
has the potential to address some of these issues. There is

1 George Fitzmaurice made this observation and coined this
phrase (personal communication).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’00. San Diego, CA USA
 2000 ACM 1-58113-212-3/00/11... $5.00

CHI Letters vol 2, 2 91

CHI Letters vol 2, 2 92

an explosion of inexpensive but very capable sensors
[9][18]. While these sensors may enable new interaction
modalities and new types of devices that can sense and
adapt to the user’s environment, they raise many
unresolved research issues. What interaction techniques or
services can benefit from this approach? What problems
can arise? What are the implications for end-users?

To explore some of these research issues, and work towards
our design goal of providing context-sensitive interfaces
that are responsive to the user and the environment, we
have constructed a prototype sensor-enriched mobile device
based on the Cassiopeia E-105 Palm-sized PC (fig. 1). We
add a two-axis linear accelerometer (tilt sensor), capacitive
touch sensors, and an infrared proximity range sensor.
These sensors combine low power consumption and cost
with the potential to capture natural, informative gestures.

We have sought to explore a range of interactive sensing
techniques to gain experience with general issues and to
explore issues of integrating techniques that may conflict
with one another. We implement techniques such as voice
memo recording by speaking into the device just as one
would speak into a cell phone, switching between portrait
and landscape display modes by holding the device in the
desired orientation, automatically powering up when the
user picks up the device, and scrolling the display using tilt.
We suggest new points in the design space, contribute
design and implementation issues and alternatives, and
discuss challenges such false positive and false negative
recognition. We present initial usability testing results and
user reactions to these techniques, as well as an informal
experiment that suggests our sensed gesture for voice
memo recording may be less demanding of visual attention
than traditional techniques.

RELATED WORK
Research in ubiquitous computing [27] has led to increased
interest in providing system support for background
interaction using passively sensed gestures and activity, as
opposed to the foreground interaction of traditional GUI’s.
Buxton describes this vision and contributes a general
foreground / background model of interaction [3].

An important part of enabling background interaction is to
develop the sensors and software that can detect and infer
information about the user’s physical activity. For example,
Harrison et al. [10] use pressure sensors to detect in which
hand the user is holding a mobile device. Hinckley et al.
[11] describe a touch-sensitive mouse. Zhai et al. integrate
eye tracking with traditional manual pointing [30].

Sensors can also be used to augment or sense the
environment itself. Want et al. [26] add electronic tags to
objects and assign them unique ID’s; a mobile device with
a tag-reading sensor can then determine the identity of
nearby objects. Rekimoto’s Pick-and-Drop technique uses
the unique identifier of each user’s stylus to transfer
information between devices [17].

Context awareness has been the subject of much recent
research [5, 15, 19, 20, 22], with some ideas already
appearing in commercial products (e.g., a light sensor for
adjusting display quality [4]). Schmidt et al. [22] describe a
cell phone that combines tilt, light, heat, and other sensors
to sense contexts such as sitting on a table, in a briefcase, or
being used outdoors. These states modify the behavior of
the device, such as the tone and volume of the ring.
Schmidt et al. have explored a number of other sensing
techniques, including powering on/off a device based on
touch, portrait vs. landscape display mode selection, and
detection of walking [21][22][23], but they do not report
usability testing, and many aspects of the interactive
behavior still need to be further explored.

Horvitz et al. [13][14] describe architectures and techniques
to infer attention and location via integration of sensed
events (keyboard, mouse, and microphone). Sawhney &
Schmandt [19] explore contextual notification. Schilit et al.
[20] describe proximate selection, which uses location-
awareness to emphasize nearby objects, making them easier
for the user to select. Note that all of these techniques use
background sensing to support foreground activity.

A number of research efforts have explored the use of
sensors to provide additional input degrees-of-freedom for
navigation tasks on mobile devices. Rekimoto uses tilting
for menu selection and map browsing [16]. Harrison et al.
[10], Small & Ishii [24], and Bartlett [1] use tilt sensors to
scroll through and select information on a handheld device.
The SmartQuill digital pen [28] uses tilt sensors to digitize
the pen’s ink trail. Fitzmaurice augments a palmtop device
with a six degree-of-freedom tracker to create a virtual
window into a 3D information space [7][8]. Verplaetse [25]
reviews motion-sensing technologies.

HARDWARE CONFIGURATION AND SENSORS
All of our sensors and electronics are integrated directly
into the Cassiopeia E105, making the device totally mobile.
Digital and analog-to-digital inputs of a Microchip 16C73A
Peripheral Interface Controller (PIC) microprocessor
capture the sensor values. The PIC transmits the data to the
serial port of the Cassiopeia. Also, our PIC processor
remains powered up even when the Cassiopeia device itself
is powered off. The software for our automatic-on feature
executes in the PIC processor for this reason; all other
features are implemented as Windows CE applications on
the E105’s processor. The PIC continuously samples the
sensors and transmits packets to the host at 19200 baud
(approximately 400 samples per second).

Touch Sensors
A large touch sensor covers the back surface and sides of
the device, allowing us to detect if the user is holding the
device. The sensor detects capacitance of the user’s hand in
a manner similar to [11], except the sensor is divided into
two regions (an “active” area and a “ground” area) because
we encountered problems detecting capacitance to a single
sensor pad on a small mobile device. We placed a second
touch sensor on the left side of the screen bezel.

CHI Letters vol 2, 2 93

Tilt Sensor
Our device currently uses an Analog Devices ADXL05
two-axis linear accelerometer. This sensor detects the tilt of
our device relative to the constant acceleration of gravity.
This sensor also responds to linear accelerations, such as
those resulting from shaking the device. Figure 2 shows
some example data of one of the authors entering an
elevator, looking at the display, holding the device down at
his side, and finally walking to a meeting.

Fig. 2 Example tilt data. The top trace is forward/back tilt;
the bottom trace is left-right tilt.

The tilt sensors are most accurate when held flat, and
become increasingly insensitive to tilting as the angle
approaches 90°. They follow a response curve of the form
Angle = sin-1((T - Tc) / K), where T is the tilt sensor value, Tc

is the sensor value at 0°, and K is a gain parameter. Because
the sensor cannot detect the sign of the gravity vector, it is
unable to determine if the user is holding the device with
the display facing right side up, or upside-down. We could
augment the sensor with a simple gravity-activated switch
to work around this limitation, but we have not yet
implemented this. One other limitation of the tilt sensor is
that it cannot respond to rotation about the axis parallel to
gravity. Adding a digital magnetic compass, as found in
some mountaineering watches, may allow us to overcome
this missing degree of freedom in future work.

Proximity Sensor
The proximity sensor uses an infrared transmitter / receiver
pair positioned at the top of the device (fig. 1). A timer
drives the transmitter, an IR light-emitting diode with a 60°
beam angle, at 40 kHz. The IR receiver is same type
typically used to receive remote control signals. These
receivers have an automatic gain control output that we use
to measure the strength of the received signal. With our
emitter/detector pair placed close together on the device,
the receiver senses the reflected IR light off of the user’s
hand or other object; this signal is proportional to the
distance to the object. Fig. 3 shows the sensor response.

We calibrated this sensor by measuring the actual distance
to an author’s hand in a normally lit office environment. As
seen in the graph, the sensor response reaches a maximum
at approximately 5-7cm from the sensor, and does not
increase further if the user or an object moves closer; even
if the user is actually touching the sensor it still returns the
maximum value. Beyond about 25cm the data is noisy.
Dark objects reflect less light and appear further away;

ambient light can also affect the readings, although in
practice we have found that only direct sunlight is truly
problematic, reducing the range to only a couple of inches.

Fig. 3 Response curve for the proximity sensor. We use
the curve Z

cm
= K/((P/P

max
) – c)α to approximate the data.

Z
cm

is the distance in cm, P is the raw proximity reading, P
max

is the maximum sensor reading, c is a constant, α is the
nonlinear parameter (0.77), and K is a gain factor.

Our proximity sensor currently consumes more power than
we would like it to, but we could reduce power
consumption by only pulsing the LED a few times a second
when the user is out of proximity, or by reducing the duty
cycle of the 40kHz IR LED output.

SOFTWARE ARCHITECTURE
We implemented a software context information server that
acts as a broker between the PIC / sensors and the
applications. The server continuously receives sensor data
packets from the PIC, converts the raw data into logical
form, and derives additional information (fig. 4).
Applications can access the context data by polling a block
of shared memory where the context server maintains the
latest context information, or alternatively, by asking the
server for notification when a specific piece of information
changes value. We implement this functionality by sending
messages between applications. We also allow applications
to share information by submitting it to the context server.

We use the names of the context variables shown in fig. 4
to help describe our interaction techniques. Names in the
Courier font represent context variables (which can also
be thought of as events). Italicized items represent
particular named values of a context variable.

INTERACTIVE SENSING TECHNIQUES
Creating smarter interfaces by giving computers sensory
apparatus to perceive the world is not a new idea, but
nonetheless there are few examples of interactive sensing
techniques. By implementing specific examples, we explore
some new points in the design space, uncover many design
and implementation issues, and reveal some preliminary
user reactions as well as specific usability problems.

Usability Testing
In the following sections, we discuss usability issues in the
context of each technique. Seven right-handed test users (2
women, 5 men) between the ages of 30 and 50, all current

CHI Letters vol 2, 2 94

users of palm-sized PIM devices, participated in our
informal usability tests. Four own Palm Pilots, and 3 own
Windows CE devices (2 Casio E100 series, 1 Philips Nino).
The occupation of most participants required significant
mobility; some used their devices to store commonly
needed files, while others claimed, “it controls my life.”

Context Variable Description
Holding & Duration Whether or not user is holding

the device, and for how long.
(direct reading of touch sensor)

T
o
u
c
h

TouchingBezel, Dur If the user is touching the
screen bezel, and for how long.
(bezel contact over 0.2 sec.)

TiltAngleLR,

TiltAngleFB

The left/right and forward/back
tilt angles, in degrees. (sensor
reading & transform per fig. 3)

DisplayOrientation

& Refresh

Flat, Portrait,
LandscapeLeft,
LandscapeRight, or
PortraitUpsideDown. A
Refresh event is posted if
apps need to update orientation.

HzLR, MagnitudeLR,

HzFB, MagnitudeFB

Dominant frequency and mag-
nitude from FFT of tilt angles
over the last few seconds.

LookingAt & Dur. If user is looking at the display.

Moving & Duration If device is moving in any way.

Shaking If the device is being shaken
vigorously.

T
i
l
t
/
A
c
c
e
l
e
r
o
m
e
t
e
r

Walking & Duration If the user is walking.

Proximity Estimated distance in cm to
proximal object, if in range.
(sensor transform per fig. 4)

P
r
o
x
i
m
i
t
y

ProximityState &

Duration

Close, InRange,
OutOfRange (see fig. 4),
AmbientLight (when out-
of-range and bright ambient
light is present).

Scrolling If the user is currently
scrolling. (posted by scroll app)

O
t
h
e
r

VoiceMemoGesture If recording a voice memo.
(posted by voice recording app)

Fig. 4 Some of the sensor data & derived events
available from the Context Server.

VOICE MEMO DETECTION
Some current PIM devices include voice recording features,
and many dedicated digital voice recorders are available on
the market. However, finding a button or activating a
control on the screen can require significant visual
attention. We allow the user to record a voice memo by
simply holding the PIM like a cell phone or microphone
and speaking into the device– a natural, implicit gesture
that requires little cognitive overhead or direct visual
attention. This gesture allows our PIM to have a very
specific sensed context of use, resulting in a combination of

a general-purpose device with many capabilities, and an
appliance-like device with a specific use.

The user’s impression is that one just speaks into the device
to make it record. Our implementation of this concept uses
all three of our hardware sensors:

• The user must be holding the device. This prevents
accidental activation when in a purse or briefcase.

• The user must hold the device in Close proximity, or
within approximately 8 cm, to speak into it.

• The user must tilt the device towards himself. This is
the natural posture that the hand makes when bringing
an object towards the head. Fig. 5 describes the exact
criteria for acceptable angles.

If these conditions hold true for 0.1 seconds, the device
makes a distinct click (to give early feedback that the
gesture has been recognized), and starts the standard
WinCE voice recorder control. The control issues a single
sharp beep just before it starts recording, after which the
user can leave a voice memo of any length. When finished
speaking, users naturally move the device away, which
automatically stops the recording. We stop recording if the
device enters the proximity OutOfRange state, if it
returns to a mostly flat orientation (±25°), or if the user
stops Holding it. The voice recorder control issues two
sharp beeps when recording stops. The audio feedback
seems crucial to the interaction, as it provides non-visual
feedback of the gesture recognition, cues the user when to
start speaking, and confirms that the memo was recorded.

Fig. 5 Acceptable angles for voice memo detection
(device in left hand). The candidate angle must fall within
±10° of the line segment shown above. We collected
candidate samples by using the device in either hand. The
same model, but with a negative slope, fits the right-handed
poses. The model is y = mx + b with m=0.925 and b=76.

Informal Experiment
To explore our hypothesis that the sensed voice memo
gesture requires less cognitive and visual attention than
traditional methods, we collected some quantitative data by
asking our test users to perform a visual tracking task. This
tracking task was used to simulate a visually intensive real-
world task, such as driving. The data are suggestive but not
conclusive. We studied three separate conditions:

Control (C): For one full minute, the subject attempted to
track a pseudo-randomly moving cross symbol, which was

CHI Letters vol 2, 2 95

displayed on a traditional computer monitor, using a
standard computer mouse. We generated the motion using
summed sinusoidal functions, as typically done in manual
tracking experiments [29], with an amplitude of 100 pixels
and a base frequency of 0.06Hz.

Sensed (S): The subject performed the tracking task with
the mouse in the right hand, while simultaneously holding
the E105 device in the left hand and recording voice memos
(“Testing, 1-2-3”) using our sensed gesture. We required
the user to put the device down on a desk, and then re-
acquire it, after recording each message. The user recorded
as many messages as possible during a 1-minute trial, while
simultaneously tracking the moving cross symbol.

Manual (M): As above, except the subject used the E105’s
built-in recording button to record the voice memo. The
button (6mm in diameter) is located on the left side of the
device, and it must be held down while recording.

All subjects performed the control condition first. We
counterbalanced the Order of the Sensed and Manual
conditions. One subject was not able to attend the study, so
as a result we have 7 users (4 Manual first, 3 Sensed first).
The user clicked at the center of the cross to start the trial.
At 100Hz, we calculated the RMS (root mean square) error
between the mouse position and the cross symbol, and then
updated the position of the tracking symbol. We used the
average RMS error (in pixels) over the course of the trial as
the outcome measure. Fig. 6 shows the results.

Fig. 6 Results of informal experiment. The tables show
the average RMS error (in pixels) and standard deviation for
each condition, as well as the RMS error by Order (whether
the subject performed the Manual condition first or second).

The Manual condition exhibited the worst average
performance, with 61% more RMS error than the Control
condition, and 25% more error than the Sensed condition.
The Sensed condition exhibited 27% worse performance
than the Control condition. Two-tailed t tests revealed that
both the Manual condition (p<0.01) and the Sensed
condition (p<0.001) differed significantly from the Control
condition. However, although the averages are suggestive,
and six out of the seven subjects reported that the Sensed
condition requires less concentration, the statistical
difference between the Manual and Sensed conditions was
marginal (p=0.097, not significant). This results from the
small number of subjects and the high variance in the
Manual condition, which we believe occurred due to

differing subject strategies and pace recording voice
memos. For a more definitive result, we would need to
devise a method of more carefully controlling the pace and
level of performance for the actual voice memo recording.
Nonetheless, although one test subject did prefer the
Manual button, the current data is quite suggestive that the
sensed technique may require less cognitive or visual
attention. Future studies will need to resolve this issue.

Usability Problems & Other Observations
The main usability problem with the sensed gesture is that
it is not easily discoverable. Current users do not expect
devices to be able to react in this way. However, the only
instruction subjects needed to use it was “talk into it like
you would talk into a cell phone.”

Several test users commented that the sensed gesture was
“Quite a bit easier, I can focus on what I’m trying to do”
and that they “would probably use the voice recorder more
if it worked that way.” Users did not think that the gesture
was necessarily any faster, but reported that it seemed to
require less concentration: “I have to think about finding
the button, pushing it, holding it,” but “with the [sensors] it
was just listen for the beep.” Figure 7 shows our analysis of
the workflow for voice recording; the sensed gesture seems
to better support the user goal Record a message by
naturally phrasing the task into a single cognitive chunk [2].

Normal Button Hold Sensor-Based Gesture
1. Pick up device
2. Find the ¼� button
3. Position hand to press
 button
4. Press & maintain tension
5. Listen for beep
6. Record message
7. Release button
8. Double-beep confirms

1. Pick up device (to face)
2. Listen for click, beep
3. Record message
4. Relax device when done
5. Double-beep confirms

completion

Fig. 7 Workflow analysis of the voice recording interfaces.
Subjects particularly felt that concentration was required to
find and acquire the button, and then remember to maintain
continuous tension on the button (steps 2, 3, and 4).

Overall, 6 out of 7 participants preferred the sensed gesture
to using the button (average 4.29 on 5-point Likert scale).
One user did not like the sensed gesture at all, commenting
that it was “disorienting to put up to my face to talk.” We
did observe two instances where false positives occurred:
one user triggered voice recording when demonstrating
how she might put the device in a sweater pocket; another
held the device with her hand on top of the display while
walking, triggering recording when she tilted it at an angle.
This latter false-positive condition could be eliminated if
we looked for a transition in the proximity from InRange
to the Close state (this currently is not required); the
previous case seems harder to eliminate, although it should
be noted that the memo turned off as soon as she dropped
the device in her pocket (since Holding is required).
Also, keep in mind that the traditional button solution itself
suffers from false positive (hitting it by mistake) and false
negative (forgetting to hold down the button) conditions.

CHI Letters vol 2, 2 96

PORTRAIT / LANDSCAPE DISPLAY MODE DETECTION
Unlike a stationary desktop monitor, users of mobile
devices can tilt or rotate their displays to look at them from
any orientation. Using the tilt sensor, we detect these
gestures and automatically reformat the display to suit the
current viewing orientation. For example, a user reading an
E-book or inspecting a spreadsheet may find a portrait or
landscape display mode more pleasant depending on the
document content.

When the user holds a palm-sized device, he will naturally
tilt it towards himself. We process these tilt angles and
format the window to the nearest 90 degree rotation. Note
that, assuming a non-rectangular display, simply rotating
the bitmap is not always sufficient, as seen in fig. 8; the
user interface must reformat itself to accommodate the
display orientation, as suggested by Fitzmaurice et al’s
work with Rotating User Interfaces [6]. Our application
also rotates the orientation of some other inputs (in this
case, the direction pad, which provides previous / next page
navigation) to maintain correspondence with the display.

Fig. 8 Portrait / Landscape display mode detection.
Top: An E-book application. The display automatically
rotates and reformats the UI to fit the new screen
orientation. Bottom: Spreadsheet application. The user can
get the most out of the small display.

As other examples, a digital camera could sense the
orientation at which a photograph was captured (we did not
implement this), or a drawing program could reformat its
screen real estate to accommodate the desired proportions
of a sketch. We did implement such a drawing program, but
it was not presented to our test users. However, if one
wishes to rotate the display to allow drawing a curve from a
comfortable angle (as experienced artists do constantly [6]),
the users must place the device flat on a desk surface, lest
the display reformat itself at an undesired time.

Fig. 9 shows how we convert the sensed tilt angles to a
display orientation. The gray zones are ±5° dead bands that
prevent jitter; to change display orientation, the tilt angles
must pass all the way through a gray region until they fall
into one of the four outside white regions, and the angles
must stay within the same white region for 0.5 seconds.
When both tilt angles fall within the center region (±3°), we
consider the device to be resting Flat and do not change
the display orientation.

Fig. 9 Plot of left-right tilt vs. forward-back tilt and the
sensed orientation.

An important implementation detail is to use the center of
the screen (Cx, Cy) as the center of rotation when rendering
the screen. Otherwise, the rotation when the user switches
display modes may not appear intuitive. The transform of a
point (x, y) in the document to a point (x’, y’) on the screen
is given by M=T*R*T-1, where T is the translation (-Cx, -Cy)
and R is the 2D rotation matrix (for 0°, 90°, 180°, or 270°).

The “put-down problem” arises when the user places the
device on a flat surface: the user may tilt the display while
setting it down, which can change the display mode
unintentionally. One solution is to simply extend the time-
out to switch display modes from our default 0.5 seconds to
2 or 3 seconds, but this introduces annoying lag into the
process when a display mode switch is desired. Instead, we
maintain a FIFO queue of recent display orientations. When
the user puts down the device (indicated by Flat and not
Holding), we search through this queue to find the most
stable recent orientation (other than Flat). A Refresh
event is sent out if the display mode needs to be changed.
The net result is that the device has a strong tendency to
maintain its current display mode when the user puts it
down. We had test users try picking up and putting down
the device several times, and users clearly felt that this was
the expected behavior: they did not expect it to revert to
Portrait mode, for example.

All users felt that it was easy to switch display modes by
turning the display (average rating of 5). One user
described the technique as being “like a snow globe” and
explained that it was “so easy to change direction I would
probably use the other [display] modes, like to show the
screen to someone else.” For comparison, we also had users
try switching the display using a traditional menu that
dropped down from the menu bar. When asked if “I prefer

CHI Letters vol 2, 2 97

to switch the display mode using the drop-down menu” the
average rating was 2 (disagree). Six of the seven users
preferred the sensed gesture, while one user disliked the
technique: “I think it would drive me nuts… I liked it better
when I had control of it.”

Several test users commented that they could easily show
information on the screen to a friend or co-worker seated
across a table by simply tilting the display towards that
person (thus switching to the PortraitUpsideDown
mode). The technology affords such quick, informal
sharing of the display because it responds quickly, has
minimal overhead, and does not interrupt the flow of the
conversation. However, one test user did express concern
that the display might change orientations if she twisted it
while showing it to someone seated next to her.

Schmidt proposes an automatic Portrait / Landscape
technique where “the screen orientation is adapted to device
orientation whenever a stable change in orientation is
sensed,” but provides no other description of the behavior
or user-level issues. Bartlett [1] switches display modes if
the user stands the device on edge for about 2 seconds. We
use a different algorithm to quickly determine the
orientation and contribute another approach to integration
with tilting for scrolling the display as described below.

TILT SCROLLING & PORTRAIT / LANDSCAPE MODES
The idea of tilting to scroll the display of a mobile device
has been well documented by previous work [1][10][16].
We contribute several issues to consider in the signal
handling, as well as some novel twists. Due to time
constraints, only 5 of our 7 users tried tilt-scrolling.

Clutching and Screen Real Estate Optimization
We use contact with the screen bezel (BezelTouching)
to initiate scrolling. Scrolling continues until the user
releases contact. An advantage of using this touch sensor to
engage scrolling is that the sensor has a large surface area
and does not require muscle tension to maintain contact.
However, inadvertent contact can be a problem, so a large,
flat traditional button or pressure sensor [10] may be
preferable. Bartlett [1] uses a tilt gesture that locks the
display, allowing scrolling without a clutch.

Several previous systems set a predefined or user-selectable
“zero orientation” relative to which the scrolling takes
place. Our system instead uses the orientation when the
user initiates scrolling, allowing use of the device in any
display mode and almost any comfortable posture.

We also observed that the application menu (at the top of
the screen) and the Start bar (at the bottom of the screen)
are not useful while scrolling. Therefore, while the user is
scrolling, we hide these widgets. They reappear when the
user releases the bezel. The user can also touch the bezel,
without tilting, to view a document in “full screen mode.”

Transfer Function
We have experimented with several transfer functions for
calculating the rate of scrolling from the tilt angles, all of

the basic form vfb= K * sgn(dAfb) ∗ max(||dAfb|| - dAmin, 0)α

where vfb is the calculated velocity for the forward-back
scrolling axis, K is the control gain, dAfb is the change in
angle from the zero orientation, dAmin is the size of the dead
band, and α is the nonlinear parameter. We currently use
K=0.2 and α=1.6, but we have not yet performed an
optimization study. We calculate the vlr velocity for left-
right tilting by substituting the left-right tilt values in the
above equation. We set the dead band dAmin to 4° to allow
the user to hold the bezel to see the full screen mode,
without causing any scrolling; without this feature, a dead
band of 2-3° would be probably be preferable.

We implemented several variations of this basic transfer
function, each of which has its own advantages:

Mixed Axis Control: In the above equation, the dead band
cutoff actually has a square shape when considered in two
dimensions, giving this input mapping a slight affinity to
move along the principle axes when moving slowly, which
aids precision adjustment.

Dual Axis Control: We adjust the dead band size by
normalizing (dAfb, dAlr) to a unit vector and multiplying the
resulting components by dAmin for each axis. This results in
a circular dead band region and thus more fluid motion
when moving across both tilting axes.

Single Axis Control: This method allows motion to occur
along only one principle axis at a time. We apply the above
equation only to the axis corresponding to the maximum of
(||dAfb||, ||dAlr||). The velocity component of the other axis is
set to 0. This allows even rapid scrolling across a long
distance to be accomplished without drifting off-axis, at the
cost of making diagonal movements more difficult.
However, we feel this approach eases the required dexterity
for tilt-scrolling, and helps prevent the user from becoming
“lost” in a large 2D space because of unintended drift. This
behavior also best fits the spreadsheet demonstration
employed in our usability study, so all users tried tilt-
scrolling with this transfer function (time did not permit
user trials of the other transfer functions). Bartlett [1]
appears to use a similar method to our single-axis control,
based on his videotape (on the web).

We felt some concern that trying to use tilt-scrolling while
walking with the device might cause problems; as seen in
fig. 2, linear accelerations can significantly affect the tilt
angles while walking. Fortunately, if the users walks while
looking at the display, the linear accelerations are nearly
perpendicular to the display and therefore the
contamination of the tilting signal is minor, and only
presents a problem if the user wants to make precise
scrolling motions (on the order of < 5-10 pixels).

Contrast Compensation
Like most LCD screens, the apparent contrast of the TFT
(Thin Film Transistor) active matrix LCD of the E105
changes with the viewing angle. As a result, the screen may
appear dim or washed-out as the user tilts the display to

CHI Letters vol 2, 2 98

scroll. We generated an approximate calibration curve for
this contrast effect (fig. 10) by viewing the screen from
different angles and manually adjusting the contrast. The
E105 provides 10 levels of contrast (0-9). We approximate
the results by the equation Contrast = m * dAfb + b with
m = -0.135 and b = 5.25.

Fig. 10 Forward-back viewing angle vs. contrast setting.

We assume the user starts scrolling from a good viewing
angle, and then apply the above model to adjust the contrast
while the user is scrolling. To prevent hysteresis, we
require the tilt angle to change more than 3° from the
previous contrast setting before readjusting it. When the
user stops scrolling, we continue to compensate for the
contrast until the tilt of the display returns to the zero
orientation of the original scrolling action (hence returning
contrast to its original value). Resetting the contrast
immediately when the user stops scrolling can cause an
undesired drastic change. Even with our current approach a
subtle flashing of the screen is occasionally visible; we
could lessen this effect if more intermediate contrast
settings were available on the hardware (although none of
our test users noticed anything). We currently compensate
the contrast along only the forward-back tilt axis, as left-
right tilting has little effect on the apparent contrast.

Integration of Portrait / Landscape Modes
Integrating of tilt-scrolling and portrait / landscape mode
detection presents some difficulties because the interaction
techniques use tilting to control two different actions.
Obviously, the screen should not change orientations during
tilt-scrolling; our scrolling application shares the
Scrolling event with the context server so that
orientation-sensitive applications can determine if the user
is currently scrolling. We also rotate the scrolling to be
consistent with the current DisplayOrientation.

When the user stops scrolling (by releasing the screen
bezel), the screen may be tilted towards a new display
orientation. The screen should not change display modes at
this point, as it would be disconcerting. Our tilting
application currently remembers the logical display mode
when scrolling ends (as opposed to the display mode
currently seen on the display, which has remained fixed
during scrolling) and only updates the display mode when it

receives an event for a new and different orientation.
However, one problem remains with this policy: if the user
wants to switch to that orientation after he stops scrolling, it
is unnatural to move the display to some other orientation
and then back to the desired one. All 5 users who tried the
combination of scrolling and portrait/landscape detection
encountered this usability problem. We believe that instead,
the display mode should switch to the orientation of the
device when scrolling completes, if the display is held there
beyond a certain time out (perhaps 1 or 2 seconds),
although this change needs to be tested.

Overall, when asked if “I felt that tilting was a good way
for me to scroll the screen” the average response was 4.8.
For comparison, we implemented scrolling on the
Cassiopeia’s built-in direction pad. When asked if “I would
rather use the direction pad to scroll a large document” the
average response was 1.8 (disagree). Most users felt that
tilting was more intuitive than the direction pad, and several
commented that it was easier to operate one-handed: “It’s
easy and it leaves my other hand free”; or, “it simplifies the
movement, I’m not trying to find the right button.” Several
users who liked it overall had at least one negative
comment, such as “nice but sometimes overshoots,” “takes
a bit to get used to… but didn’t take long” and “It helped if
I envisioned the spreadsheet with weight.”

POWER MANAGEMENT
Finding the power button on mobile devices can often be
physically awkward and demanding of attention. The power
button placement, size, and protrusion must balance the
desire to have it easily accessible against the danger of
accidentally hitting the power button or having it held down
while carrying the device in a pocket (our test users
reported several anecdotes of draining their batteries).

We observed that people typically hold their PIM in a
posture appropriate for use, and then press the power
button. We eliminate the need for this explicit button press
as follows: when the power is off, if the user is Holding
the device and LookingAt the display with a
DisplayOrientation of Portrait (but not Flat),
and this state persists for 0.5 seconds, then the PIC powers
up the device. This results in the following behavior:

• The device cannot power up when in the user’s pocket
or purse because the user is not holding it.

• The device will not turn on if the user simply touches it
or pushes it out of the way while it is resting on a desk
(resting Flat). The user must be LookingAt the
display, which we set to true whenever (1) it is not
Flat, (2) the left-right tilt is between ±15°, and (3) the
forward-back tilt is greater than -5°. At present, we
have implemented automatic power-up only for the
Portrait display orientation.

• The timeout prevents it from powering up due to
transient signals, but is short enough that the user does
not have to wait for it. Based on our usability testing,
this timeout should be slightly shorter that it is now.

CHI Letters vol 2, 2 99

All users were able to discover this feature, because as soon
as they picked up the device to try to use it, the device
would turn on. We also asked test users to “walk with the
device the way you normally would if you were carrying it
with you, but not intending to use it.” Two test users
experienced a false-positive resulting from the tilt sensor’s
inability to recognize up from down: if the user holds the
device with the back of the device facing upward, the
device powers on. We believe this problem could be
addressed by adding a gravity-activated switch to
disambiguate the orientation. The problem arose when the
subjects held the device upside-down against their lap as
they got up from a chair, although one said he “didn’t care”
because he would put the device away if he wasn’t using it.

Our device also uses the touch, proximity, and tilt sensors
to prevent undesired power-off or screen dimming due to
the default system inactivity time-outs. If the device is
already on, while the user continues Holding the device,
we assume that the user must have left the device on for a
reason. Thus we prevent the device from powering off (via
the WinCE SystemIdleTimerReset function). We also use
Proximity as a secondary indication of user activity if
the device is lying flat on a table. This is useful if the user
is still referring to the display, but not currently “using” the
device, such as when using its calculator to compute
dimensions for a woodworking project. We reset the idle
timer if proximal (Close or InRange) motion is sensed;
a proximal, but unchanging, signal is ignored after 15
seconds, which prevents an object left on or near the device
from maintaining the power indefinitely.

Overall reactions to these features were positive. One user
commented, “I love it! I’m constantly hitting the power
button,” while another said that “I prefer it to the button but
it’s not a huge thing.” When asked if “I would rather press
the button than have the device turn on for me” the average
rating was 2.14 (disagree). One user preferred the button.

Some existing devices provide functionality similar to our
automatic power-up through other means. For example, the
Nokia 6162 cell phone answers a call (and turns on the
display backlight) when the keypad cover is opened.
Beverly Harrison demonstrated a prototype Softbook at
UIST’99 that turned on when the user opened the book
cover. Our device provides similar functionality without
requiring the user to open or close anything (allowing easy
one-handed operation). Schmidt [21] describes an on/off
technique where “The user has the device in her hand. In
this case the application is switched on, if the user is putting
the device out of her hand it is switched off after a certain
time,” but does not give further details.

DISCUSSION
While integrating individual interaction techniques into a
coherent system is a hard problem in general, we believe
this can be especially true when integrating interactive
sensing techniques. Several times we found that we needed
to adapt our interaction techniques to prevent undesired

interactions (e.g. tilt-scrolling and tilt display mode
selection). While we believe that our current prototype
integrates the interaction techniques fairly well, we cannot
guarantee that our prototype will continue to scale well as
we add new interaction techniques.

Experience with our prototype leads us to believe that
sensor fusion (aggregating the data from multiple sensors)
will be essential to expand its capabilities and support
additional interactive sensing techniques. For example, an
early version of our voice memo sensor used only the
device tilt angles to recognize the gesture. It suffered from
many false positive conditions if we made the gesture
casual and easy to perform, or many false negative
conditions if we made it more difficult to perform by
reducing the parameter space of the gesture. However, by
using multiple sensors together, we can provide a gesture
that is unique enough that false-positives are uncommon,
but easy to perform so that false-negatives are also rare. Of
course, adding more sensors may increase size, weight,
cost, or power consumption, so future research will need to
determine the optimum balance between these factors.

Resonating with other work on autonomous UI decisions
[12], our work also demonstrates the need for a careful
analysis of possible false positives and negatives in the
interface design. We do not believe that sensing is
necessarily annoying if wrong, but designers need to be
careful to design for graceful failure in the event of
incorrect inferences. A method of quantifying the effects of
positive and negative failures would be invaluable for this
effort, allowing researchers to determine if, for example,
providing users with a mental model of how the sensors
work helps mitigate failure. A quantitative approach to
measure the results of failure would also help us determine
when the effects of an incorrect inference are so bad that
the system should not even try. We plan to explore
decision-theoretic approaches to these problems [12][14].

CONCLUSIONS AND FUTURE WORK
Contextual awareness via sensing may be increasingly
relied upon for future interfaces to mobile devices. Exactly
what can and cannot be accomplished with such techniques
is not yet well understood. Examples contributed here and
by other researchers suggest that simple, cheap, and
relatively dumb sensors may play an important role in the
future of mobile interaction. Nonetheless, we must also
recognize that sensing techniques cannot offer a panacea
for UI on mobile devices, and careful design and tasteful
selection of features will always be necessary. Only some
of the actions that mobile devices support seem to lend
themselves to solution via sensing techniques; other tasks
may be too complex or too ambiguous. A hybrid design
integrating sensors with traditional techniques may prove to
be the most practical approach, if only because some
unexpected cases may defeat the sensors. Yet overall, we
believe that careful use of sensors can help deliver devices
that are as simple and pleasant to use as possible while still
allowing direct control when necessary.

CHI Letters vol 2, 2 100

In future work we would like to support contextual
interaction, display, and notification services, all of which
can benefit from awareness of the user’s activity [14][19].
For example, our prototype device can detect Walking by
using a Fast Fourier Transform at 10 Hz with a window of
32 samples. Walking exhibits a dominant frequency
between approximately 1.4 Hz and 3Hz; we look for a
continuous signal of sufficient magnitude that lasts for at
least 4 seconds. Some manipulative signals can look like
walking, but shared events (Scrolling or VoiceMemo-
Gesture) eliminate most false-positives. This algorithm
correctly detected walking for all of our test users,
suggesting that we could use it to help inform activity-
sensitive notification services.

While interactive sensing techniques seem to provide many
benefits, they also increase opportunities for poor design
because the strengths and weaknesses in the design space
are not as well understood as traditional GUI design. We
need experiments to quantify user performance with these
techniques, and we need longitudinal studies to determine if
users may find sensing techniques “cool” at first, but later
become annoyed by false positives and negatives, for
example. However, we strongly believe that such research
will ultimately help deliver new and exciting software that
fulfills the promise of ubiquitous mobile devices.

ACKNOWLEGEMENTS
We wish to thank Steve Bathiche for the touch sensor used
in our prototype, and David Thiel for video production.

REFERENCES
1. Bartlett, J.F., Rock 'n' Scroll Is Here to Stay. IEEE

Computer Graphics and Applications, May/June 2000.

2. Buxton, W., Chunking and Phrasing and the Design of
Human-Computer Dialogues, IFIP'86, 475-480.

3. Buxton, W., Integrating the Periphery and Context,
Graphics Interface '95, 239-246.

4. Compaq, iPAQ Pocket PC. 2000.

5. Dey, A., et al, CyberDesk: A Framework for Providing
Self-Integrating Context-Aware Services, IUI'98,47-54.

6. Fitzmaurice, G., et al., An Exploration into Supporting
Artwork Orientation in the User Interface, CHI'99.

7. Fitzmaurice, G., Situated information spaces and
spatially aware palmtop computers,CACM 36(7), p.39.

8. Fitzmaurice, G., Zhai, S., Chignell, M., Virtual reality
for palmtop computers. ACM TOIS, 11(3), 197-218.

9. Fraden, J., Handbook of Modern Sensors. 1996:
Springer-Verlag.

10. Harrison, B., et al., Squeeze Me, Hold Me, Tilt Me! An
Exploration of Manipulative User Interfaces, CHI'98.

11. Hinckley, K., Sinclair, M., Touch-Sensing Input
Devices, CHI'99, 223-230.

12. Horvitz, E., Principles of Mixed-Initiative User
Interfaces, CHI'99, 1998, 159-166.

13. Horvitz, E., et al., The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of
Software Users, UAI'98, pp. 256-265.

14. Horvitz, E., Jacobs, A., Hovel, D., Attention-Sensitive
Alerting, UAI '99, pp. 305-313.

15. Pascoe, J., Ryan, N., Morse, D., Issues in Developing
Context-Aware Computing, HUC'99: Springer-Verlag.

16. Rekimoto, J., Tilting Operations for Small Screen
Interfaces, UIST'96, 167-168.

17. Rekimoto, J., Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments,
UIST'97, 1997, 31-39.

18. Saffo, P., Sensors: The Next Wave of Infotech
Innovation. Institute for the Future: 1997 Ten-Year
Forecast. p. 115-122.

19. Sawhney, N., Schmandt, C., Nomadic Radio:
Scaleable and Contextual Notification for Wearable
Audio Messaging, CHI'99, 96-103.

20. Schilit, B., Adams, N., Want, R., Context-Aware
Computing Applications, Proc. Mobile Computing
Systems & Applications, 1994, Santa Cruz, CA: IEEE.

21. Schmidt, A., Implicit human-computer interaction
through context, 2nd Workshop on Human Computer
Interaction with Mobile Devices, 1999, Edinburgh.

22. Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U.,
Van Laerhove, K., Van de Velde, W., Advanced
Interaction in Context, HUC'99, 89-101.

23. Schmidt, A., et al. There is more to context than
location, Proc. Int'l Wkshp. on Interactive Applications
of Mobile Computing (IMC98), Rostock, Germany.

24. Small, D., Ishii, H., Design of Spatially Aware
Graspable Displays, CHI'97 Companion, 367-368.

25. Verplaetse, C., Inertial proprioceptive devices: Self-
motion-sensing toys and tools. IBM Systems Journal,
1996. 35(3&4): p. 639-650.

26. Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.,
Bridging physical and virtual worlds with electronic
tags, CHI'99, 370 - 377.

27. Weiser, M., The Computer for the 21st Century.
Scientific American, 1991 (September): p. 94-104.

28. Williams, L., SmartQuill, British Telecom Labs, 1997.

29. Zhai, S., Buxton, W., Milgram, P., The Partial
Occlusion Effect: Utilizing Semi-transparency for
Human Computer Interaction. TOCHI 3(3), 1996.

30. Zhai, S., Morimoto, C., Ihde, S., Manual and Gaze
Input Cascaded (MAGIC) Pointing, CHI'99, 246-253.

