

When to Use
 Non-parametric Stats

Urun U

- DV is nominal
- DV is ordinal
- DV is interval or ratio and
- Skewed
- Outliers
- Multi-modal
- Generally, non-normal
- aka "distribution-free tests"
- Note: Non-Parametric Stats still have assumptions, but much less restrictive

Non-parametric statistics

- Make few assumption about underlying population distribution.
- If your data does meet assumptions for parametric statistics (t-test etc), then non-parametric stats may be used.
- Provide less power than parametric equivalents - IF data is normal
- Generally operate on rank order-transformed or ranked data.
- A hodge-podge of techniques with no underlying theoretic framework.

Rank-Order Transform

Example

- Note For Ties: take average of ranks that would have been assigned
- DV Measure: Satisfaction
- With sign in food court: 5.8, 7.1, 6.2, 6.7
- Without sign: 2.3, 3.4, 1.7, 5.5
- Rankings:

| 1.7 | 2.3 | 3.4 | 5.5 | 5.8 | 6.2 | 6.7 | 7.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

- Resulting data for comparison:
- With sign in food court: 5, 8, 6, 7
- Without sign: 2, 3, 1, 4

Urun	Non-parametric Tests	
	Parametric Test Non-parametric Test J^{\prime}	
	Pearson correlation	Chi-square test for independence
		Spearman's rho Just compute Pearson on the ranks
	t test for independent means	Wilcoxon rank-sum test aka Mann-Whitney U test
	t test for dependent means	Wilcoxon signed rank test
	One-way ANOVA	Kruskal-Wallis H-test
	Full-factorial ANOVA	Aligned Rank Transform**
Note: Chi^^sq on nominals, others on ordinal or better		

Spearman's rho in R

> cor.test($x, y, m e t h o d=" s p e a r m a n ")$

- Hyp test: likelihood we could have obtained a correlation this large, assuming H0 (true correlation is 0).

Wilcoxon Rank Sum
 (independent samples)

> wilcox.test(nonsmokers, smokers)
Wilcoxon rank sum test with
continuity correction
data: nonsmokers and smokers
$\mathrm{W}=76.5, \mathrm{p}$-value $=0.04715$
alternative hypothesis: true
location shift is not equal to 0

Report: W=76.5, $\mathrm{p}<.05$

Sample report

from "Discovering Statistics Using R"

- Depression levels in ecstasy users $(M d n=17.50)$ did not differ significantly from alcohol users (Mdn $=16.00$) the day after the drugs were taken, $\mathrm{W}=$ 35.5, $p=0.286, r=-.25$. However, by Wednesday, ecstasy users ($\mathrm{Mdn}=33.50$) were significantly more depressed than alcohol users (Mdn = 7.50), $\mathrm{W}=4, \mathrm{p}<.001, \mathrm{r}=-.78$.

Wilcoxon signed rank

- Paired/dependent samples
- Cf. paired sample t-test
- Compute difference for each pair of measures, discarding zeros
- Rank order transform the differences
- $\mathrm{T}_{+}=$Sum of ranks from positive diffs
- $\mathrm{T}_{-}=$Sum of ranks from negative diffs
- $\mathrm{T}=$ smaller of T_{+}and $\mathrm{T}_{\text {. }}$
- Note: R calls this " V "

Wilcoxon Signed Rank Sample report

from "Discovering Statistics Using R"/rnourn

- For ecstasy users, depression levels were significantly higher on Wednesday $(M d n=33.50)$ than on Sunday (Mdn = 17.50), $\mathrm{p}=.047$, $r=-.56$. However, for alcohol users the opposite was true: depression levels were significantly lower on Wednesday ($\mathrm{Mdn}=7.50$) than on Sunday (Mdn = 16.0), $\mathrm{p}=.012, r=-.45$.

Non-parametric equivalent of multi-factor ANOVA

- J. Wobbrock, et al. 2011. The aligned rank transform for nonparametric factorial analyses using only anova procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11).

Homework

- Start T3
- Experiment
- Between or Within
- At least 8 subjects.
- Proposals due Friday.
- 2 pages.
- Include a power analysis. Should be prospective, based on a prior study.
- Read
- Advanced study designs (B\&A Ch 11).

