

```
> library(readxl)
> d <- read_excel("Documents/courses/2018-Spring-
IS4800-methöds/Lectures/L19/In-Class-Experiment/
anondata.xlsx")
> View(d)
> table(d$Condition)
A B C
788
> table(d$Sex,d$Condition)
A B C
F 335
M 333
> hist(d\$FVPre)
> hist(d\$FVPost)
> hist(d\$ExercisePre)
> hist(d\$ExercisePost)
> hist(d\$MeditationPost)
> hist(d\$MeditationPre)
> hist(d\$FVChange)
> hist(d\$ExerciseChange)
> hist(d\$MeditationChange)
> d\$Condition<-factor(d\$Condition)
> boxplot(d\$FVChange~d\$Condition)
> boxplot(d\$ExerciseChange~d\$Condition)
> boxplot(d\$MeditationChange~d\$Condition)

```

> \# BASELINE ANALYSIS
> summary(d$FVPre[d$Condition=='A'])
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 6.00 8.00 11.43 14.50 28.00
> IQR(d$FVPre[d$Condition=='A'])
[1] 8.5
> \# ETC

```
```

> \# BASELINE ANALYSIS
> kruskal.test(d$FVPre~d$Condition)
Kruskal-Wallis rank sum test
data: d$FVPre by d$Condition
Kruskal-Wallis chi-squared = 1.5819, df = 2, p-
value
= 0.4534
> chisq.test(table(d$Condition,d$Sex))
Pearson's Chi-squared test
data: table(d$Condition, d$Sex)
X-squared = 0.30303, df = 2, p-value = 0.8594
> \# ETC

```
```

> \# OUTCOME DESCRIPTIVES
> summary(d$FVChange[d$Condition=='A'])
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.4286 0.5000 2.0000
> IQR(d$FVChange[d$Condition=='A'])
[1] 0.5
> \# ETC

```
    > \# OUTCOME INFERENTIALS
    > kruskal.test(d\$FVChange~d\$Condition)
        ...
        Kruskal-Wallis ... p-value \(=0.1813\)
    > kruskal.test(d\$ExerciseChange~d\$Condition)
        ...
        Kruskal-Wallis ... p-value \(=0.2933\)
    > kruskal.test(d\$MeditationChange~d\$Condition)
        ...
        Kruskal-Wallis ... p-value = 1



\section*{Post hoc analysis}
- Once the ANOVA indicates there is a significant difference ("omnibus" test), you do either
- Planned comparisons, or
- Post hoc tests
- to determine which pairwise comparisons are significantly different
- There are many post hoc tests (B\&A 446)
- Sheffe, Dunnett, Tukey, etc.
- Very conservative

\section*{Factorial ANOVA Designs}
- Two or more nominal independent variables, each with two or more levels, and a interval or ratio dependent variable.
- Factorial ANOVA teases apart the contribution of each IV separately, as well as every combination of IVs.
- Terminology
- For N IVs, aka "N-way" ANOVA
- For \(L_{i}\) levels per factor, " \(L_{1}\) by \(L_{2}\) by \(L_{3} \ldots\) ANOVA"
- Most common: 2 by 2 ANOVA

\section*{Factorial Designs}

- Two effects of IVs on DV can be assessed
- A MAIN EFFECT of each independent variable
- The separate effect of each independent variable
- Analogous to separate experiments involving those variables
- An INTERACTION between independent variables
- When the effect of one independent variable changes over levels of a second
- Also - when the effect of one variable depends on the level of the other variable.




\section*{Degrees of Freedom}
- df for between-group variance estimates for main effects
- Number of levels - 1
- df for between-group variance estimates for interaction effect
- Total num cells - df for both main effects - 1
- e.g. For \(2 \times 2\), it is \(4-(1+1)-1=1\)
- df for within-group variance estimate
- Sum of df for each cell = N - num cells
- Report: "F(bet-group, within-group \()=\) F, Sig."


\section*{Reporting rule}
- IF you have a significant interaction
- THEN
- In general, only report interaction, not any main effects, even if significant.
- However, you must inspect the means to determine if main effects make sense to report
- Interaction => you cannot interpret the effect of one factor without the other (in general)





\section*{Possible interpretation?}


\section*{Possible interpretation?}


\section*{Possible interpretation?}


\section*{Possible interpretation?}

http://courses.washington.edu/smartpsy/interactions.htm \# 41

\section*{Possible interpretation?}


\section*{Possible interpretation?}


\section*{Possible interpretation?}

http://courses.washington.edu/smartpsy/interactions.htm \#44


\section*{Higher-Order Factorial Designs}

- More than two independent variables are included in a higher-order factorial design
- As factors are added, the complexity of the experimental design increases
- The number of possible main effects and interactions increases
- The number of subjects required increases exponentially
- The volume of materials and amount of time needed to complete the experiment increases exponentially
- The difficulty of interpreting the results can also greatly increase.


\section*{Group Exercise}
- For each problem, write
1. Kind of study design
2. Kind of analysis
3. Research \& Aull hypotheses-(Means \& English)
4. Test criteria
5. Plot results
6. Test results
- English \& Publication format (requires df)
7. Implications

\section*{ANOVA effect size}
- There are several.
- Most common: Eta squared ( \(\eta^{2}\) )
- In R:
> library(lsr)
> etaSquared(aovResult)
- The variance explained by one IV after excluding variance explained by other IVs
- Cohen: \(0.01=\) small, \(0.06=\) medium, 0.14 = large
- Roughly: the \% variance explained by one IV

\section*{Power Analysis \& Multifactorial designs}
- ' N ' computed for your criteria for a between-subjects design is for each cell of your experimental design
- A two-factor \(x\) two-level design has four cells
- B\&A: Need at least 5 Ss per cell
- But usually need much more.

- Example: medium effect size, \(2 \times 2\), for all effects, requires \(33 \times 4=132\) Ss!


\section*{Design Examples}

- Kind of study?
- Primary outcome
- Measure?
- Statistic?

\section*{Design Example}

- You want to evaluate which of 3 games leads to greatest engagement, and whether there are gender differences. You randomly assign participants to play one of the three games for 30 minutes and record their gender. After this you let them continue playing as long as they want (noting the time), then send them home.
- Kind of study?
- Primary outcome
- Measure?
- Statistic?


\section*{Design Example}

- You want to evaluate which of 2 games leads to greatest satisfaction. You randomly assign participants to play RockBand or GuitarHero, ask them to rate satisfaction on a scale from 1 to 10 , then send them home.
- Kind of study?
- Primary outcome
- Measure?
- Statistic?


\section*{Design Example}

- You want to evaluate which of two games, played on two different consoles, leads to greatest satisfaction. You randomly assign participants to play RockBand or GuitarHero on either Wii or Xbox and then ask them to fill out a SUS questionnaire and send them home.
- Kind of study?
- Primary outcome
- Measure?
- Statistic?


\section*{Design Example}

- You want to evaluate which of 2 games leads to greatest engagement. You randomly assign participants to play RockBand or GuitarHero and keep track of how long they play. When they are done you let them play the other game for as long as they want and keep track of the time.
- Kind of study?
- Primary outcome
- Measure?
- Statistic?


\section*{Design Example}

- You want to evaluate which of 2 games leads to greatest satisfaction. You go to a community center during an after school program, where you know they have PacMan and DonkeyKong on the computers. You wait until a kid plays one of these games, then ask them to fill out a 12-item composite measure of satisfaction, before scaring them away.
- Kind of study?
- Primary outcome
- Measure?
- Statistic?

\section*{Design Example}

- You want to evaluate which of 3 games leads to greatest satisfaction. You randomly give participants BioShock, StarCraftII or TombRaider, ask them to go home and play for a week, then fill out a 12-item composite measure of satisfaction (then they are done).
- Kind of study?
- Primary outcome
- Measure?
- Statistic?
```

