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pter 4, we introduced the basic logic of hypothesis testing, The studies we
“Used as examples had a sample of a single individual. As we noted, however, in
al 'practice, psychology research almost always involves a sample of many
In this chapter, we build on what you have learned so far and consider
s testing with a sample of more than one individual. For example, a social
ogist is interested in the potential effect of perceptions of people’s personality
ons of their physical atiractiveness. The researcher’s theory predicts that,
are told that a person has positive personality qualities (such as kindness,
sense of humor, and intelligence), you will rate that person as more attrac-
if no mention had been made of the person’s personality qualities. From
e‘{lous research {in which no mention was made of personality qualities),
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distribution of means  distribution of
means of samples of a given size from a
population (also called a sampling distrib-
ution of the mean); comparison distribu-
tion when testing hypotheses involving a
single sample of more than one individual.

the rescarcher has established the population mean and standard deviation o
attractiveness rating of a photo of a particular person. The researcher then recru
sample of 64 individuals to rate the atiractiveness of the person in the photogra;
- However, prior to rating the person, each individual is told that the person wh
photograph they are going to rate has many positive personality qualities. In 't
chapter, you will learn how to test hypotheses in situations such as those presentéd
this example, situations in which the population has a known mean and stand
deviation and in which a sample has more than one individual. Mainly, this requi
examining in. some detail a new kind of distribution, called a “distribution.
means.” (We will return to this example Iater in the chapter.)

‘The Distribution of Means

Hypothesis testing in the usual research situation, where you are studying a sample §
many individuals, is exactly the same as you learned in Chapter 4—with an importan ;
exception. When you have more than one person in your sample, there isa special proh her (to
lem with Step @, determining the characteristics of the comparison distribution, In ;}rel,ﬁ
each of our examples so far, the comparison distribution has been a distribution of fith .1
individual scores (such as the population of ages when individual babies start walking),
A distribution of individual scores has been the correct comparison distribution be-

cause we have used examples with a sample of one individual. That is, there has been hem, !
consistency between the type of sample score we have been dealing with (a score from ake by
one individual) and the comparison distribution (a distribution of individual Scores), :all ha
i Now, consider the situation when you have a sample of, say, 64 individuals {asin . WO ch
the attractiveness rating example). You now have a group of 64 scores (an atiractive- back, »

ness rating from each of the 64 people in the study). As you will recall from Chapter 2,

the mean is a very useful representative value of a group of scores. Thus, the score you and ?E?
care about when there is more than one individual in your sample is the mean of the . )
) o ) childre
group of scores. In this example, you would focus on the mean of the 64 individuals .

scores. If you were to compare the mean of this sample of 64 individuals’ scores to a n.gt‘lt. !
distribution of a population of individual scores, this would be a mismatch—like d1v1def
comparing apples to oranges. Instead, when you are interested in the mean of a sam- and 4.
Pple of 64 scores, you need a comparison distribution that is a distribution of means of of '3?
samples of 64 scores. We call such a comparison distribution a distribution of means. )
S0, the scores in & distribution of means are means, not scores of individuals, m‘lmb.be
A distribution of means is a distribution of the means of each of lots and lots of F1gu1el
samples of the same size, with each sample randomly taken from the same popula- 50 me;
tion of individuals. (Statisticians also call this distribution of means a sampling dis- randos
tribution of the mean. In this book, however, we use the term disfribution of means a C:;m]
to keep it clear that we are talking about populations of means, not samples or some an if

kind of distribution of samples.) _ .
The distribution of means is the correct comparison distribution when there is termir
more: than one person in a sample. Thus, in most research situations, determining the can fi
characteristics of a distribution of means is necessary for Step @ of the hypothesis- ple ru
testing procedure, determining the characteristics of the comparison distribution, Z?a;:g
acteri:
Building a Distribution of Means distrit
To help you understand the idea of a distribution of means, we consider hiow you could you %
build up such a distribution from an ordinary population distribution of individual tezrm's
scores. Suppose our population of individual scores was of the grade levels of the distrit
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ion of Figure 5-1 Diswribution of grade levels among 90,000 Figure 5-2 Distribution of the means of
schoolchildren (fictional data). three randomly taken samples of two §choolch11d-
ren’s grade levels each from a population of grade
levels of 90,000 schoolchildren (fictional data}.
mple of . Y . . s o
© 90,000 elementary and junior-high schoolchildren ina particular region. Suppose fur-
~ yortant " ther (fo keep the example simple) that there are exactly 10,000 children at each grade
.a} prob level, from first through ninth grade. This population distribution would be rectangular,
ition. In witll amean of 5, a variance of 6,67, and a standard deviation of 2.58 (see Figure 5-1).

Next, suppose that you wrote each child’s grade level on a table tennis ball and
put all 90,000 balls into a giant tub. The tub would have 10,000 balls with a 1 on
them, 10,000 with a 2 on them, and so forth. You stir up the balls in the tub and then
o two of them out. You have taken a random sample of two balls. Suppose one
1 has & 2 on it and the other has a 9 on it. The mean grade level of this sample of
o children’s grade levels is 5.5, the average of 2 and 9. Now you put the balls
ack, mix up all the balls, and select two balls again. Maybe this time you get two 4s,
aking the mean of your second sample 4, Then you try again; this time you geta 2
a7, making your mean 4.5. So far you have three means: 5.5, 4, and 4.5.

‘Rach of these three numbers is a mean of a sample of grade levels of two school
dren. And these three means can be thought of as a smatl distribution in its own
t:‘The mean of this little distribution of means is 4.67 (the sum of 5.5, 4, and 4.5,
ided by 3). The variance of this distribution of means is .39 (the variance of 55,4,
4'5). The standard deviation of this distribution of means is .62 (the square roct
), A histogram of this distribution of three means is shown in Figure 5-2.
uppose you continued selecting samples of two balls and taking the mean of the
ers on each pair of balls. The histogram of means would continue to grow.
¢ 5-3 shows examples of distributions of means varying from a sample with just
eans, up to a sample with 1,000 means (with each mean being of a sample of two
onily drawn balls). (We actually made the histograms shown in Figure 5-3 using
uter to make the random selections instead of using 90,000 table tennis balls
‘giant tub.)

you can imagine, the method we just described is not a practical way of de-
ng the characteristics of a distribution of means. Fortunately, however, you
it¢ out the characteristics of a distribution of means directly, using some sim-
ithout taking even one sample. The only information you need is (a) the
istics of the distribution of the population of individuals and (b} the aumber
each sample. (Don’t worry for now about how you could know the char-
3-of the population of individuals.) The laborious method of building up a
on of means in the way we have just considered and the concise method
arn shortly give the same result. We have had you think of the process in
le painstaking method only because it helps you understand the idea of a

cructal concept.
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mean of a distribution of means the
mean of a distribution of means of sam-
Ples of a given size from a population;
the same as the mean of the population
of individuals.
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Figure 5-3 Histograms of means of two grade levels randomly selected from a large
group of students with equal numbers of grades 1 through 9. Histograms are shown for §
such means, 200 such means, 400 such means, 600 such means, 800 such means, and 1,000

- such means. Notice that the histograms become increasingly like a normal curve as the nu
ber of means increases.
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Determining the Characteristics of a Distribution of Means

Recall that Step @ of hypothesis testing involves determining the characteristics of
the comparison djstribution. The three key characteristics of the comparison distrib-
ution that you need to determine are:

1. Tts mean,

2, Tts spread (which you can measure using the variance and standard deviation),
3. Its shape. :

Notice three things about the distribution of means we built in our example, as

" samples
shown in Figure 5-3;

geta 9,
“ mean of
less ofie
more lik
and 8, 3

1. The mean of the distribution of means is about the same as the mean of the orig-
inal population of individuals (both are 5).

2. The spread of the distribution of means is less than the spread of the distribution
of the population of individuals.

3. The shape of the distribution of means is approximately normal, saml;rlzz
The first two observations, regarding the mean and the spread, are true for a) tremes i
distributions of means. The third, regarding the shape, is true for most distributions in the of
of means. These three observations, in fact, illustrate three basic rules you can use to amean
find the mean, the spread (that is, variance and standard deviation), and the shape of at a timu
any distribution of means without having to write on plastic balls and take endless even les
samples, ) Usi
Now let's look at the three rules more closely. The first is for the mean of a came ot

distribution of means, which v



Rule 1: The mean of a distribution of means is the same as the mean of the
population of individuals. ~ Stated as a formula,

P = W (5-1)

1 is the mean of the distribution of means (it uses a Greek letter because the
distribution of means is also a kind of population). . is the mean of the pop-
ylation of individuals.

Each sample is based on randomly selected individuals from the population of
individuals. Thus, the mean of a sample will sometimes be higher and sometimes
. lower than the mean of the whole population of individuals. However, because the
election process is random and we are taking a very large number of samples, even-
ually the high means and the low means perfectly balance each other out.

In Figure 5-3, as the number of sample means in the distributions of means
ncreases, the mean of the distribution of means becomes more similar to the mean
Jf the population of individuals, which in this example was 5. It can be proven math-
matically that, if you took an infinite number of samples, the mean of the distribu-
jon of means of these samples would come out to be exactly the same as the mean
5t the distribution of individuals.

. The second rule is about spread. Rule 2a is for the variance of a distribution of

38090

le 2a: The variance of a distribution of means is the variance of the pop-
stion of individuals divided by the number of individuals in each sample.
stribution of means will be less spread out than the distribution of individuals
 which the samples are taken. If you are taking a sample of two scores, it is less
that both scores will be extreme. Further, for a particular random sample to
: an extreme mean, the two extreme scores would both have to be extreme in the
direction (both very high or both very low). Thus, having more than a single
n each sample has a moderating effect on the mean of such samples. In any
mple, the extremes tend to be balanced out by a middle score or by an extreme
dpposite direction. This makes cach sample mean tend toward the middle and
from extreme values. With fewer extreme means, the variance of the means is”
the variance of the population of individuals,
onsider again our example. There were plenty of 1s and 9s in the population,
g a fair amount of spread, That is, about a ninth of the time, if you were taking
of single scores, you would get a 1 and about a ninth of the time you would
If you are taking samples of two at a time, you would get a sample with a
[(that is, in which both balls were 1s) or a mean of 9 (both balls 9s) much
1 Getting two balls that average out to a middle value such as 5 is much
y. (This is because several combinations could give this result—1 and 9, 2
nd 7, 4 and 6, or two 5s).
‘more individuals in each sample, the less spread out will be the means of the
Chis is because, the more scores in each sample, the rarer it will be for ex-
any particular sample not to be balanced out by middle scores or exiremes
r direction. In terms of the table tennis balls in our example, we rarely got
when taking samples of two balls at a time. If we were taking three balls
tting a sample with a mean of 1 (all three balls would have to be 1s) is
ely. Getting middle values for the means becomes even more likely.
amples of two balls at a time, the variance of the distribution of means
-about 3.34, This is half of the variance of the population of individuals,
6:67. If we had built up a distribution of means using samples of three
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The mean of a dlsmbuéloﬁ of
means is equal to the mean
the population of mdmdua[s

W3z mean of a distribution of means,

variance of a distribution of means
variance of the population divided by the
number of scores in each sample.
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balls each, the variance of the distribution of means would have been 222, T
one-third of the variance of our population of individuals, Had we randomly se}
five balls for each sample, the variance of the distribution of means would have
one-fifth of the variance of the population of individuals.
These examples follow a general rule—our Rule 2a for the distributig
Ineans: the variance of a distribution of means is the variance of the populatis
individuals divided by the number of individuals in each of the samples. Thig
holds in all situations and can be proven mathematically.
. e Here is Rule 2a stated as a formula:
3 ’I_fijxé__\rari_aﬁce of a distribution .
:of means is the variance of
the population of individuals
vided by the number of

D_2

2
G’ —_ —
MTN

ajris the variance of the distribution of means (it uses a Greek letter because i
distribution of means is also a kind of population). o? is the variance of the pop
tion of individuals, and A is the number of individuals in each sample.

- In our example, the variance of the population of individual children’s era
levels was 6.67, and there were two children’s grade levels in each sample. Thus,'__

2
2 Ut 667
=—=— =13,

To use a different example, suppose a population had a variance of 400 and yo
‘wanted to know the variance of a distribution of means of 25 individuals each:
’ 2

2 _ O 400

=——=—— =14

MTNT s

The second rule also tells us about the standard deviation of a distribution o
means,

i The standard deviation of a

istribution of means is the
-~ square root of the variance of
.. 'the distribution of means and

~also the square root of the

.- result of dividing the variance
. ‘of the population of

Rule 2b: The standard deviation of a distribution of means is the square
root of the variance of the distribution of means, Stated as a formula, :

s :
o ;
Tpy = VO‘%1=\/HA7 (5-3) -

e i_ndivi_du_é:ts by the number of

: : 0y is the standard deviation of the distribution of means, !
.- individuals in each sample. g The standard deviation of the distribution of means also has a special name of its
5 - o own, the standard error of the mean (SEM), or the standard error (SE), for short,
gy variance of a distribution of means, . A

dard deviation of a distribufi (Thus, o), also stands for the standard error.) It has this name because it tells you
standard deviation of a distrl O How much the means of samples are typically “in error” as estimates of the mean of
of means  square root of the variance

- Rule 2a
ulation

Rufe 2t
root of

of & distribution of means: also called the population of individuals. That s, it tells you how much the various means in the
standard error of the mean (SEM) and distribution of means deviate from the mean of the population. We have more to say
standard error (SE). ‘

about the standard error later in the chapter.

Finally, the third rule for finding the characteristics of a distribution of means
focuses on its shape. '

Rule 3.
either |
of the f
graphic

oy standard deviation of a distribution
of means.
standard error of the mean

(SEM) _satne as standard deviasion Rule 3: The shape of a distribution of means is approximately normal if either
of a distribution af means; also calted

The
standard error (SE). (a) each sample is of 30 or more individuals or (b) the distribution of the in math,
standard error (SE) same assiandard  POPUIGHON Of individuals is normal,  Whatever the shape of the Uistribution of tral lm
desiation of a distribution of means; also  the population of individuals, the distribution of means tends to be unimodal and sym- ability,

called standard error of the mean (SEM).  metrical. In the grade-level example, the population distribution was rectangular, any sha
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t this point, you may think you know all about hypothesis testing, Here's a
surprise: what you know will not help you much as a researcher. Why? The
procedures for testing hypotheses described up to this point were, of course,

absolutely necessary for what you will now learn. However, these procedures in-
volved comparing a group of scores to & known pepulation. In real research practice,
you often compare two or more groups of scores to each other, without any direct
information abont populations, For example, you may have two scores for each per-
son in a group of people, such as scores on an anxiety test beforé and after psy-
chotherapy or number of familiar versus unfamiliar words recalled in a memory
experiment. Or you might have one score per person for two groups of people, such

0 ExampteWorked OutProbIems 254:"%




as an experimental group and a control group in a study of the effect of sleep loss on
problem solving, or comparing the self-esteem test scores of a group of 10-year-oid
girls to a group of 10-year-old boys.

These kinds of research situations are among the most comunon in psychology,
where usually the ‘only information available is from samples. Nothitng is kiotm
about the populations that the samples are supposed to come from. In particular, the
researcher does not know the variance of the populations involved, whichis a crucial
ingredient in Step @ of the hypothesis-testing process (determining the characteristics
of the comparison distribution).

In this chapter, we first look at the solution to the problem of not knowing the
population variance by focusing on a special situation: comparing the mean of a sin-
gle sample to a population with a known mean but an unknown variance. Then, after
describing how to handle this problem of not knowing the population variance, we
go on to consider the situation in which there is no known population at all-—the sit-
uation in which all we have are two scores for each of a number of people.

The hypothesis-testing procedures you learn in this chapter, those in which the
population variance is unknown, are examples of ¢ tests, The ¢ test is sometimes
called “Student’s ¢ because its main principles were originally developed by
- William S. Gosset, who published his research articles anonymously using the name
“Student” {see Box 7-1). ' :

:The t Test for a Single Sample

Let’s begin with an example. Suppose your college newspaper reports an informal
survey showing that students at your college study an average of 17 hours per week.
However, you think that the students in your dormitory study much more than that.
You randomly pick 16 students from your dormitory and ask them how much they
study each day. (We will assume that they are all honest and accurate.) Your result is
that these 16 students study an average of 21 hours per week. Should you conclude
that students in your dormitory study more than the college average? Or should you
nclude that your results are close enough to the college average that the small dif-
ference of 4 hours might well be due to your having picked, purely by chance, 16 of
e more studious residents in your dormitory?
In this example you have scores for a sample of individuals and you want to com-
are the mean of this sample to a population for which you know the mean but not the
riance. Hypothesis testing in this situation is called a£ test for a single sample. (Itis
so called a one-sample t test.) The t test for a single sample works basically the same
ay as the Z test you learned in Chapter 5. In the studies we considered in that chapter,
1 had scores for a sample of individuals (such as a group of 64 students rating the at-
tiveness of a person in a photograph after being told that the person has positive
onality qualities) and you wanted to compare the mean of this sample to a popula-
(in this case, a population of students not told about the person’s personality qual-
). However, in the studies we considered in Chapter 5, you knew both the mean
variance of the general population to which you were going to compare your sam-
n the situations we are now going to consider, everything is the same, but you
tknow the population vartance. This presents two important new wrinkles affect-
the details of how you carry out two of the steps of the hypothesis-testing process.
The first important new wrinkle is in Step @, Because the population variance is not
WD, you have to estimate it, So the first new wrinkle we consider is how to estimate
known population variance. The other important new wrinkle affects Steps @
: When the population variance has to be estimated, the shape of the comparison
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t test hypothesis-testing procedure in
which the population variance is un-
known; it compares ¢ scores from a sam-
ple to a comparison distribution called a
1 distribution.

t test for a single sample hypothesis-
testing procedure in which a sample
mean is being compared to a known
population mean and the population
variance is unknown.
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BOX 7—"1

from Oxford Umversuy in

the Guinness brewers in

a first-ever smentlﬂc }ook at
) beermakmg Gosset took one

The Granger Col]cctioﬁ

immersed himself in barley, hops, and vats, of brew. .

The problem was how to make beer of a consxstently

high quality. Scientists such as Gosset wanted to make the

quality of beer less variable, and they. were. espemally in- .
terested in finding the cause of bad batches. A proper sci-
entist would say, “Conduct experirents!”-But a business -

such as a brewery could not afford to waste money on ex-

periments involving large numbers of vats, ‘some of which
any brewer worth his hops knew would faﬂ So. Gosset
was forced to contemplate the probablhty of, say, acertain. -
- kind, humble man, sensitive to others’ feelings. Gosset's
ment could consist of only a few batches of each strain. -

strain of barley preducing terrible beer when the expeti-

Adding to the problem was that he had no 1dea of the vari-
ability of a given strain of barley—peihaps somie ﬁelds

planted with the same strain grew better barley (Does thxs
sound familiar? Poor Gosset, like today s psychologlsts X

had no idea of his population’s variance.) .

Gosset was up to the task, although at the tlmé 0n1y he :

knew that. To his colleagues at the _b1§w¢_ry_,_hp_w_as a _'j "Tankard (1984)

Wllllam S. Gosset Allas “Student”-'
Not a Mathemat:caan, Buta Practical Man

‘William S. Gosset graduated._
o To his statistical colleagues, mainly at the Biometric Lab
© 1899 with degrees in mathe-r.{-_"'
. matics and chelmstry It hap-
pened that in the same year. -

; brewer and not a proper mathematician,

'the 1 test—smphcﬁy itself (compared to most o
: statistxcs)——for situations when samples are small an
‘the variability of the larger population is unknown. How.
.ever, the Guinness brewery did not allow its scientists t
.j"'pubhsh papers, because one Guinness scientist had re
of these jobs and soon had-._._;r
. call the ¢ distribution “Student’s 7 because Gosset wrole -
- under the anonymous name “Student,” A few of his fel
N low statisticians knew who “Student” was, but apparently
. meetings with others involved the secrecy worthy of a:
spy novel. The brewery learned of his scientific fame -

Dublin, Ireland, were seekmg,
a few young scientists to take _

pzofessor of mathematlcs and not a proper brewer at ali
‘oratory at Unwerszty College in London, he was & mere

So Gosset discovered the ¢ distribution and 1nvented

vealed brewery secrets. To this day, most statisticians

only at his death, when colleagues wanted to honor him.
In spite of his great achievements, Gosset ofien wrote

" in letters that his own work provided “only a rough idea

of the thing” or so-and-so “really worked out the com-
plete mathematics.” He was remembered as a thoughtful,

friendlineés and generosity with his time and ideas also

: resulted i_ﬁ many students and younger colleagues mak-
“ing major breakthroughs based on his help.

".To learn more about William Gosset, go to hifp://
www-hzsz‘ory mcs.st-andr ews.ac.uk/Biographies/Gosset.

i,
E Saurces Pcters (1987); Salsbmg {2001}, Stigler (1986};

distribution is not guite a normal curve; so the second new wrinkle we consider is the
shape of the comparison distribution {for Step @) and how to use a special table to find

the cutoff (Step ®) on what is a slightly differently shaped distribution.

Let’s return to the amount of studying example. Step @ of the hypothesis-testing
procedure is to restate the problem as hypotheses about popuiations. There are two

populations:

Population 1: The kind of students who live in your dormitory.
Population 2: The kind of students in general at your college.

The research hypothesis is that Population | students study more than Population 2
students; the null hypothesis is that Population 1 students do not study more than

Population 2 students. So far, the problem is no different from those in Chapter 5.

Step @ is to determine the characteristics of the comparison distribution. In this
example, its mean will be 17, what the survey found for stadents at your callege
generally (Population 2).

scores

T
shght
reasol
Ttis a
the pt




e The next part of Step @ is finding the variance of the distribution of means. Now
you face a problem. Up to now in this book, you have always known the variance of
the population of individuals. Usin g that variance, you then figured the variance of the
distribution of ;eans. However, in the present example, the variance of the numnber of

1. houzs studied for students at your college (the Population 2 students) was not reported

b- in the newspaper article. So you email the paper. Unfortunately, the reporter did not

re figure the variance, and the original survey results are no longer available, What to do?

e‘; Basic Principle of the f Test: Estimating the Population

:d Variance from the Sample Scores

w- If you do not know the variance of the population of individuals, you can estimate it

to from what you do know—the scores of the people in your sample.

re- In the logic of hypothesis testing, the group of people you study is considered to
ms, be 2 random sample from a particular population. The variance of this sample ought
e to reflect the variance of that population. If the scores in the population have g lot of
el- variation, then the scores in a sample randomly selected from that population should
fly . also have a lof of variation. If the population has very little variation, the scores in a
fa: . sample from that population should also have very litile variation. Thus, it should be
me - possible to use the variation among the scores in the sample to make an informed
i, - guess about the spread of the scores in the population. That is, you could figure the
ote variance of the sample’s scores, and that should be similar to the variance of the
Jea:

cores in the population. (See Figure 7-1.)

There is, however, one smail hitch. The variance of a sample will generally be
lightly smaller than the variance of the population from which it is taken. For this
eason, the variance of the sample is a biased estimate of the population variance.!

Introduction to ¢t Tests

ure 7-1  The variation in sarnples (as in each of the lower distributions) is similar to
driations in the poputations they are taken from (each of the upper distributions).
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biased estimate estimate of g popula-
tion parameter that is likely systemati-
cally to overestimate or underestimate
the true value of the population parame-
) _ a j i . ter, For exampte, SD? would be  biased
tis a biased estimate because it consistently underestimates the actual variance of

. > X ) estimate of the population variance (it
he population. (For example, if a population has a variance of 180, a typical sample  would systematically underestimate it),
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unbfased estimate of the population  of 20 scores might have a variance of only 171.) If we used a biased estimate of
variance (5%) - estimate of the popula-  population variance in our research studies, our results would not be accurate. The
a%?c;a;::;:;zfx;’:;m;p :E;c;;‘:s‘ fore, we need to identify an unbiased estimate of the population variance.
equally likely to overestimate or under- Fortunately, you can figure an unbiased estimate of the population varlance.b
estimate the true population variance; slightly changing the ordinary variance formula. The ordinary variance formula is th
the correction used is dividing the sum sum of the squared deviation scores divided by the number of scores. The changed for.
of squared deviations by the sample size  muyly still starts with the sum of the squared deviation scores, but divides this by th
2}13?;;;;;%;Z‘;:i:‘::;:‘ﬁgﬁ:fg;ﬂ number of scores minus 1. Dividing by a slightly smaller number makes the resy
degres of freedom (df) number of _shghtly larger. Dividing by !he numb.er of scores minus | makes tl}e variance you ge
scores free to vary when estimating a just enough larger to make it an unbiased estimate of the population variance. {Thi
population parameter; usually pact of a unbiased estimate is our best estimate of the population variance. However, it is st
formula for making that estimate—for an estimate, so it is unlikely to be exactly the same as the true population variance. Buy
example, in the formula for estimating we can be certain that our unbiased estimate of the population variance is equally likel
the P?P“i‘“g“ "a““"‘;a from a single to be too high as it is to be too Jow. This is what makes the estimate unbiased.)
:an:g):r ;fes C:jf;: cns}i?m??edom is the , The symbol we will use forl the unbiased estimate of the‘ population variance i

S“. The formula is the usual variance formula, but now dividing by N — I

S - My ss
N -1 N -1

The cstunated population
ariance is the sum of the
quared deviation scores di-
xded by the number of

§* =

(7-1

: The esnmated population
tanda.rd deviation is the

<+ square root of the estimated
. "population variance.

§ = V§? (7-2)'

Let’sreturn again to the example of hours spent sndying and figure the estimated
population variance from the sample’s 16 scores. First, you figure the sum of squared
deviation scores. {Subtract the mean from each of the scores, square those deviation
scores, and add them.) Presume in our example that this comes out to 694 (S5 = 694).
To get the estimated population variance, you divide this sum of squared deviation
scores by the number of scores minus 1; that is, in this example, you divide 694 by

16 — 1; 694 divided by 15 comes out to 46.27. In terms of the formuta, Note
C

, DX -M?  ss 694 694 stan

§° = = = = — = 46,27 1

N—1 N -1 6 -1 15 latio

bl 7—1 Summaryof
: Differe :Iypes of Standard Dewatlon y

estin

At this point, you have now seen several different types of standard deviation fon
1

and variance (that is, for a sample, for a population, and unbiased estimates); and

=-f;md Variance: . _

. e each of these types has used a different symbol. To help you keep them straight, a
Statistical Term S"'-“h”' summary of the types of standard deviation and variance is shown in Table 7-1.
Sample standard deviation s ‘ '

Population standard deviation Degrees of Freedom
Estimated population ~ * - S The number you divide by (the number of scores minus 1} to get the estimated pop-

standard deviation i . ulation variance has a special name. It is called the degrees of freedom. It has this
Sanip ]e‘varlan.ce . 52 name because it is the number of scores in a sample that are “free to vary.” The idea The
Po;?uianon vanance Uz is that, when figuring the variance, you first have to know the mean. If you know the an
Estimatod population vadiance mean and all but one of the scores in the sample, you can figure out the one you
don’t know with a little arithmetic. Thus, once you know the mean, one of the scores In €
in the sample is not free to have any possible value. So in this kind"of situation the curs
e déérees of freedom are degrees of freedom are the number of scores minus 1. In terms of a formula, i;'uqi
- thie number of scores in the % df =N —1 (7-3) tior
: le minus I, . ' ;
SATpTE TS df is the degrees of freedom, slig




Introduction to t Tests 227

the In our example, df = 16 — 1 = 15.{In some situations you learn about in later
Te- chapters, the degrees of freedom are figured a bit differently. This is because in those

situations, the number of scores free to vary is different, For all the situations you
1by learn about in this chapter, df = N — 1.} .
the - The formula for the estimated population variance is often written using df in-
for- steadof N — 1t o
the a2 The estimated populatio
sult §? = E(X M) _ E (7-4) variance is the sum of squar

df df deviations divided by the de-

get grees of freedom, =
{his
Sl:ﬂ The Standard Deviation of the Distribution of Means
kely Once you have figured the estimated population variance, you can figure the stan-

dard deviation of the comparison distribution using the same procedures you learned
in Chapter 5. Just as before, when you have a sample of more than one, the compar-
ison distribution is a distribution of meaus, and the variance of & distribution of
mmeans is the variance of the population of individuals divided by the sample size.
- You have just estimated the variance of the population. Thus, you can estimate the
- variance of the distribution of means by dividing the estimated population variance
by the sample size. The standard deviation of the distribution of means is the square
aot of its variance. Stated as formulas,

The variance of the distrity

tion of means based on'an €
timated population variance
is the estimated populatio
' variance divided by the num
© ber of scores in the sampl

, 8
Sk = v | (7-5)

The standard deviation of
distribution of means based o
an estimated population vari-
ance is the square root of th
variance of the distribution o
means based on an estimated
population varianee, - -

Sy = V8% (7-6) .

e that, with an estimated population variance, the symbols for the variance and
andard deviation of the distribution of means use § instead of ©.

“In our example, the sample size was 16 and we worked out the estimated popu-
tion variance to be 46.27. The variance of the distribution of means, based on that
mate, will be 2,89, That is, 46.27 divided by 16 equals 2.89. The standard devia-
1,70, the square root of 2.89. In terms of the formulas,

2
2
ST _ 4621 _ e

N 1

6
Sy = V54 = V289 =170

3 _
Sy =

Shape of the Comparison Distribution When Using
stimated Population Variance: The ¢ Distribution

apter 5 you learned that when the population distribution follows a normal
‘he shape of the distribution of means will also be a normal curve. However,
hanges when you do hypothesis testing with an estimated population variance.
ou are using an estimated population variance, you have less true informa-
d more room for error. The mathematical effect is that there are likely to be
ore extreme means than in an exact normal curve. Further, the smaller your
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t distribution  mathematically defined
curve that is the comparison distribution
used in a £ test.

* slightly more scores at the extremes). Figure 7-2 shows the shape of a  distribution -

Flgure 7-2 A distribution (dashed blue line) compared to the normal curve (so
black ling).

sample size, the bigger this tendency. This is because, with a smaller sample size
your estimate of the population variance is based on less information.

"The result of all this is that, when doing hypothesis testing using an estimated
variance, your comparison distribution will not be a normal curve. Instead, the com?
parison distribution will be a slightly different curve called a ¢ distribution.

Actually, there is a whole family of # distributions. They vary in shape according
to the degrees of freedom you used to estimate the population variance. However, for
any particular degrees of freedom, there is only one f distribution.

Generally, ¢ distributions look to the eye like a normal curve—bell-shaped, sym:
Tetrical, and unimodal. A ¢ distribution differs subtly in having heavier tails (that is,

compared to a normal curve, :

This slight difference in shape affects how extreme a score you need to reject -
the null hypothesis. As always, to reject the null hypothesis, your sample mean has -
to be in an exireme section of the comparison distribution of means, such as the top
5%. However, if the comparison distribution has more of its means in the tails than a
normal curve would have, then the point where the top 5% begins has to be farther
out on this comparison distribution. The result is that it takes a slightly more extreme
sample mean to get a significant result when using a ¢ distribution than when using a
normal curve.

Just how much the ¢ distribution differs from the normal curve depends on the de-

== :

grees of freedom, the amount of information used in estimating the population vari- - 1
ance. The ¢ distribution differs most from the normal curve when the degrees of 2
freedom are low (because your estimate of the population variance is based on a very 3
small sample). For example, using the normal curve, you may recall that 1.64 is the C 4
cutoff for a one-tailed test at the .05 level. On a 1 distribution with 7 degrees of free- 5
dom (that is, with a sample size of 8), the cutoff is 1.895 for a one-tailed test at the .05 6
level. If your estimate is based on a larger sample, say a sample of 25 (so that df = 24), 7
the cutoff is 1.711, a cutoff much closer to that for the normal curve. If your sample 8
size is infinite, the 7 distribution is the same as the normal curve. (Of course, if your g
sample size were infinite, it would include the entire population!) But even with sam- 10
ple sizes of 30 or more, the ¢ distribution is nearly identical to the normal curve. 1
Shortly, you will learn how to find the cutoff using a 7 distribution, but let’s first 12
return briefly to the example of how much students in your dorm study each week. 13
You finally have everything you need for Step @ about the characteristics of the 4
comparison distribution, We have already seen that the distribution of means in this 35
example has a mean of 17 hours and a standard deviation of 1.70. You can now add 16
that the shape of the comparison distribution will be a ¢ distribution with 15 degrees 17

of freedom,?
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The Cutoff Sample Score for Rejecting the Null
Hypothesis: Using the f Table

Step © of hypothesis testing is determining the cutoff for rejecting the null hypothesis.
There is a different ¢ distribution for any particular degrees of freedom, However, to
avoid taking up pages and pages with tables for each possible 7 distribution, you use a
simplified table that gives only the crucial cutoff points, We have included such a
t table in the Appendix (Table A-2). Just as with the normal curve table, the # table
shows only positive  scores, If you have a one-tailed test, you need to decide whether

alid your cutoff score is a positive ¢ score or a negative f score. If your one-tailed test is test-
ing whether the mean of Population 1 is greater than the mean of Population 2, the cut-
off ¢ score is positive. However, if your one-tailed test is testing whether the mean of

, Population 1 is less than the mean of Population 2, the cutoff 7 score is negative.

ize, In the hours-studied example, you have a one-tailed test. (You want to know
whether students in your dorm study miore than students in general at your college

ed study.) You will probably want to use the 5% significance level, because the cost of a

o Type I error (mistakenly rejecting the null hypothesis) is not great. You have 16 partic-

) ipants, making 15 degrees of freedom for your estimate of the population variance.

ling Table 7-2 shows a portion of the ¢ table from Table A-2 in the Appendix. Find

the column for the .05 significance level for one-tailed tests and move down fo the
] . . . ttable table of cutoff scores on the
- row for 15 degrees of freedom. The cracial cutoff is 1.753. In this example, you are o .
R ; . - t distribution for various degrees of
esting whether students in your dormitory (Population 1) study more than students  freegom, significance levels, and
n general at your college (Population 2). In other words, you are testing whether  one- and two-tailed tests.

able Z-2 - Culoff Scores for ¢ Distributions with 1 Thiough 17 Degrees ef Freedom T
: {nghlightmg Cuioff for Houss—Studled Example} R

_One_-TailedrTests P " ‘Two-Tailed Tests .

oi A0 05 o1
6314 12706
2.920 4303

. 2353 3182
2.132 2,776
2015 2571
1943 2447
1.895 2365
1.860 2,306
1833 2262
1813 22

4796 2201
1783 2478
171 248t

‘2145
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students in your dormitory have a higher ¢ score than students in general. This me;
that the cutoff ¢ score is positive. Thus, yon will reject the null hypothesis if youf
sample’s mean is 1.753 or more standard deviations above the mean on the comp
ison distribution. (If you were using a known variance, you would have found yoy
cutoff from a normal curve table. The Z score to reject the null hypothesis baseda
the normal curve would have been 1.645.) '

One other point about using the f table: In the full ¢ table in the Appendix, ther
are rows for each degree of freedom from 1 through 30, then for 35, 40, 45, and §
on up to 100. Suppose your study has degrees of freedom between two of these highé
values, To be safe, you should use the nearest degrees of freedom to yours given o,
the table that is less than yours. For example, in a study with 43 degrees of freedom
you would use the cutoff for df = 40,

The Sample Mean’s Score on the Camparison
Distribution: The ¢ Score

Step @ of hypothesis testing is figuring your sample mean’s score on the comparison
distribution. In Chapter 5, this meant finding the Z score on the comparison
distribution—the number of standard deviations your sample’s mean is from the .
mean on the distribution. You do exactly the same thing when your comparison distri- -
bution is a f distribution, The only difference is that, instead of calling this a Z score, -
‘because it is from a r distribution, you call it a f score. In terms of a fornmla,

The t'sééfé is.' dlu"r's.am Ie's
rhe 7 score Is you p

Figur

imean minus the population M-

mean, divided by the standard t=—" (7-7)

deviation of the distribution Sm Anot
ofmeans. - 7 . -

SO ! In the example, your sample’s mean of 21 is 4 hours from the mean of the distri- Consid

bution of means, which amounts to 2.35 standard deviations from the mean {4 hours
divided by the standard deviation of 1.70 hours).? That is, the 7 score in the example
is 2.35. In terms of the formula,

M- 21-17 4

t = = — =235
Si 170 170

cal effe
was in

Tabi

Deciding Whether to Reject the Null Hypothesis

Step @ of hypothesis testing is deciding whether to reject the null hypothesis. This :s;( pslz
Tole

step is exactly the same with a f test, as it was in the hypothesis-testing situations dis- _
cussed in previous chapters. In the example, the cutoff ¢ score was 1.753 and the @ Roste
actual f score for your sample was 2.35. Conclusion: reject the nuil hypothesis. The . and e
research hypothesis is supported that students in your dorm study more than students © Detel
in the college overall. distr
Figure 7-3 shows the various distributions for this example. - Popu
- Popul
- ; ; : Stant
Sun-1mary of Hypothesis Testing When the Population §
Variance Is Not Known R
Table 7-3 compares the hypothesis-testing procedure we just considered (for a 7 test © Datel
for a single sample) with the hypothesis-testing procedure for .a Z test from N ™ Detﬁt
fscore ona f distribution, number of Chapte;: 5. That is, we are fzompa_ring the current situatio.n in .which you know the }_ " com)
standard deviations from the mean (like ~ POPulation’s mean but not its variance to the Chapter 5 situation, where you knew ® Decil
a Z score, but on a ¢ distribution). the population’s mean and variance. -
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n the previous chapter, you learned how to use the f test for dependent means to of

; compare two sets of scores from a single group of people (such as the same men
measured on communication quality before and after premarital counseling), fo
! In this chapter, you learn how to compare two sets of scores, one from each of ' &
: two entirely separate groups of people. This is a very common situation in psychol- : se
, ogy research, For example, a study may compare the scores from individuals in an 1 be
'I ] experimental group and individuals in a control group (or from a group of men and 1 g
) £ test for ;nde&zgigi::ﬁn rocedurein & BTOUP of women). This is & f test situation because you don’t know the population : cr
E‘;ﬂ;ihm) g;two . Eparaipgmups ;m variances (so they must be estimated). The scores of the two groups are indepen- 2 R
people tested and in which the poputa- dent of each other; so the test you learn in this chapter is called a ¢ test for inde- ot
tion variance is not known, pendent means, : m
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Let’s consider an example. A team of researchers is interested in the effect on
physical health of writing about thoughts and feelings associated with traumatic life
events. This kind of writing is called expressive writing. Suppose the researchers
recruit undergraduate students to take part in a study and randomly assign them to
be in an expressive writing group or a control group. Students in the expressive writ-
ing group are instructed to write four 20-minute essays over four consecutive days
about their most traumatic life expericnces. Students in the control group write
four 20-minute essays over four consecutive days describing their plans for that day.
One month later, the researchers ask the students to rate their overall level of physi-
cal health (on a scale from 0 = very poor health to 100 = perfect health). Since the
expressive writing and the control group contain different students, a f test for inde-
pendent means is the appropriate test of the effect of expressive writing on physical
health, We will return to this example later in the chapter. But first, you will learn

about the logic of the 7 test for independent means, which involves learning about 2
new kind of distribution (called the distribution of differences between means).

" The Distribution of Differences Between Means

* In the previous chapter, you learned the logic and figuring for the f test for dependent
“means. In that chapter, the same group of people each had two scores; that is, you
had a pair of scores for each person. This atlowed you to figure a difference score for
each person. You then carried out the hypothesis-testing procedure using these dif-
ference scores. The comparison distribution you used for this hypothesis testing was
distribution of means of difference scores. ) ,

In the situation you face in this chapter, the scores in one group are for different
ople than the scores in the other group. So you don’t have any pairs of scores, as you
id when the same group of people each had two scores. Thus, it wouldn’t make sense
y create difference scores, and you can’t use difference scores for the hypothesis-
esting procedure in this chapter. Instead, when the scores in one group are for differ-
it people than the scores in the other group, what you can compare is the mean of one.
oup to the mean of the other group. -

. So the ¢ test for independent means focuses on the difference between the means
fhe two groups. The hypothesis-testing procedure, however, for the most part
rks just like the hypothesis-testing procedures you have already learned, Since the
us is now on the difference between means, the comparison distribution is a
tribution of differences between means.

A distribution of differences between means is, in a sense, two steps removed
the populations of individuats: First, there is a distribution of means from each
pulation of individuals; second, there is a distribution of differences between pairs
eans, one of each pair from each of these distributions of means,

me 1 Think of this distribution of differences between meaus as heing built up as
ws: (2) randomly select one mean from the distribution of means for the first
p’s population, (b} randomly select one mean from the distribution of means for the
nd group’s population, and (¢} subtract, (That is, take the mean from the first distri-
n.of means and subtract the mean from the second distribution of means.) This
s a difference score between the two selected means. Then repeat the process. This
tes a second difference score, a difference between the two newly selected means.
ting this process a large number of times creates a distribution of differences be-
eans. You would never actually create a distribution of differences between
s using this lengthy method. But it shows clearly what makes up the distribution.
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distribution of differences between
means distribution of differences
betweeh means of pairs of samples such
that, for each pair of means, one is from
one poputation and the other is from a
second population; the comparison
distribution in a ¢ test for independent

means.
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Apuiatiy\
Distributions of —»
. means

Distribution of
~—- differences between
means

Figure 8-1 Diagram of the logic of a distribution of differences between means.

The Logic

Figure 8-1 shows the entire logical construction for a distribution of differences

between means. At the top are the two population distributions. We do not know the
characteristics of these population distributions, but we do know that if the null hy-
pothesis is true, the two population means are the same. That is, the nul hypothesis
is that ju; = pp. We also can estimate the variance of these populations based on the
sample information (these estimated variances will be S7 and $3).

Below each population distribution is the distribution of means for that popula-

tion. Using the estimated population variance and knowing the size of each sample, -

you can figure the variance of each distribution of means in the usual way. (It is the
estimated variance of its parent population divided by the size of the sample from
that population that is being studied.)

Below these two distributions of means, and built from them, is the crucial
distribution of differences benween means. This distribution’s variance is ultimately
based on estimated population variances. Thus, we can think of it as a ¢ distribution.
The goal of a ¢ test for independent means is to decide whether the difference be-
tween the means of your two actual samples is a more extreme difference than the
cutoff difference on this distribution of differences between means. The two actual
samples are shown (as histograms) at the bottom.

Remember, this whole procedure is really a kind of complicated castle in the air., It
exists only in our minds to help us make decisions based on the results of an actual ex-
periment. The only concrete reality in all of this is the actual scores in the two samples.
You estimate the population variances from these sample scores. The variances of the
two distributions of means are based entirely on these estimated popnlation variances
(and the sample sizes). And, as you will see shortly, the characteristics of the distribu-
tion of differences between means are based on these two distributions of means.

Still, the procedure is a powerful one. It has the power of matheniatics and logic
behind it. It helps you develop general knowledge based on the specifics of a particu-
lar study.

With this overview of the basic logic, we now turn to six key details: (1) the
mean of the distribution of differences between means, (2) the estimated population
variance, (3) the variance of the two distributions of means, (4) the variance and
standard deviation of the distribution of differences between means, (5) the shape of
the distribution of differences between means, and (6) the ¢ score for the difference

between the two means being compared.




Mean of the Distribution of Differences Between Means

In a ¢ test for independent means, you ate considering two populations: for example,
one population from which an experimental group is taken and one population from
which a control.group is taken. In practice, you don’t know the mean of either popu-
1ation. You do know that if the null hypothesis is true, these fwo populations have
equal means. Also, if these two populations have equal means, the two distributions
of means have equat means. (This is because each distribution of means has the same
mean as its parent population of individuals.) Finally, if you take random samples
from two distributions with equal means, the differences between the means of these
random samples, in the long run, balance out to 0. The result of all this is the follow-
ing: whatever the specifics of the study, you know that, if the mall hypothesis is true,
the distribution of differences between means has a mean of 0.

Estimating the Population Variance

In Chapter 7, you learned to estimate the population variance from the scores in your
sample. It is the sum of squared deviation scores divided by the degrees of freedom
(the number in the sample minus 1). To do a f test for independent means, it has to be

" ns.

ences reasonable to assume that the populations the two samples come from have the same
w the “yariance (which, in statistical terms, is called homogeneity of variance). (If the null
il h}," hypothess is true, they also have the same mean. However, whether or not the nult
thests ypothesis is true, you must be able to assume that the two populations have the
on the ame variance.) Therefore, when you estimate the variance from the scores in either
. ample, you are getting two separate estimates of what should be the-same number.
opula- Tn practice; the two estimates will 2lmost never be exactly identical. Since they are
u;nple, oth supposed to be estimating the same thing, the best solution is to average the two
is the timates to get the best single overall estimate. This is called the pooled estimate of
> from he population variance (S3,010d)-

* In making this average, howevet, you also have to take into account that the two

t provides is likely to be more accurate (because it is based on more information), If
th samples are exactly the same size, you could just take an ordinary average of
ice be the two estimates. On the other hand, when they are not the same size, you need to
san ke some adjustment in the averaging to give more weight to the larger sample.
act at is, you need a weighted average, an average weighted by the amount of infor-
ation each sample provides. )
Also, to be precise, the amount of information each sample provides is not its
ber of scores, but its degrees of freedom (its number of scores minus 1). Thus,
olir weighted average needs to be based on the degrees of frecdom each sample
ides. To find the weighted average, you figure out what proportion of the total
rees of freedom each sample contributes and multiply that proportion by the pop-
on variance estimate from that sample. Finally, you add up the two results, and
is your weighted, pooled estimate, In terms of a formula, ‘

dfy df,
Roeq = o (Sh + (55 8-1
Bootea = e (0% G &1

{n this formula, SBooteq is the pooled estimate of the population variance. dff is the
-es of freedom in the sample from Population 1, and df; is the degrees of freedom
> sample from Population 2. (Remember, each sample’s dfis its number of scores
1) dfpor is the total degrees of freedom (dfroar = dft + df)- §% is the

ples may not be the same size. If one sample is larger than the other, the estimate
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pooled estimate of the population
variance (SFoaled) inattest for inde-
pendent means, weighted average of the
estimates of the population variance from
two samples {each estimate weighted by
the proportion consisting of its sample’s
degrees of freedom divided by the totak
degrees of freedom for both samples}.

weighted average average in which
the scores being averaged do not have
equal influence on the total, as in figur-
ing the pooled variance estimate ina ¢
test for independent means.

The pooled estimate of the.
population variance is the de-
grees of freedom in the first
sample divided by, the
degrees of freedom (from
both samptes), multiptied b
the population estime
on the first sample, plus the
degrees of fréedom in the
second sample divided by.
total degrees of freedom mul-
tiptied by the population

| variance estimate basec
i thesecond sample. 0
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estimate of the population variance based on the scores in Population 1’s sample;
the estimate based on the scores in Population 2's sample.

Consider a study in which the popnlation variance estimate based on an expe
mental group of 11 participants is 60, and the population variance estimate based on
a control group of 31 participants is 80, The estimate from the experimental group
based on 10 degrees of freedom (11 participants minus 1), and the estimate from th
control group is based on 30 degrees of freedom (31 minus 1). The total informatid;’l
on which the estimate is based is the total degrees of freedom—in this example, 4(
(that is, 10 + 30). Thus, the experimental group provides one-quarter of the infi
mation (10/40 = 1/4), and the control group provides three-quarters of the informa.
tion (30/40 = 3/4).

You then multiply the estimate from the experimental group by 1/4, making 15
(that 1s, 60 X 1/4 = 15), and you multiply the estimate from the control group by
3/4, making 60 (that is, 80 X 3/4 = 60). Adding the two gives an overall estimate
of 15 plus 60, which is 75. Using the formula, :

dfy dr
Shooked =~ — sh + -2

df Total df Total

2 - 10 30
(53 = ;5 60 + - 80)

- = 5(60) + :3{(80) =15+ 60 =75,

You'know you have made a mis-*
take In figuring Shegieq if it doss not .
coimg out betwean the two estl--
‘matés of the population variance:
(Yol also know you have made ¢
‘mistake If it does not come ot
‘closer to the estimate from the"

Notice that this procedure does not give the same result as ordinary averaging
{without weighting).

Ordinary averaging would give an estimate of 70 (that is, [60 + 80]/2 = 70).
Your weighted, pooled estimate of the population variance of 75 is closer to the esti-
mate based on the control group alone than to the estimate based on the experimen-
tal group alone. This is as it should be, because the control group estimate in this
example was based on more information.

larger sample) 7

Figuring the Variance of Each of the Two
Distributions of Means

The pooled estimate of the population variance is the best estimate for both popula-
tions. (Remember, o do a ¢ test for independent means, you have to be able to as-
sume that the two populations have the same variance.) However, even though the
two populations have the same variance, if the samples are not the same size, the dis-
tributions of means taken from them do not have the same variance, That is because
the variance of a distribution of means is the population variance divided by the sam-
ple size. In terms of formulas,
'+ The variance of the distribu-
.- tion of means for the first
population (based on an
'é.étimagcd population var-
ance) is the pooled estimate
-..of the population varianee
L7 divided by the number of
: ' participants ir: the sample
Vi from the first population.

2
Sheoled
Ny

Sh, = (8-2)
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The variance of the ‘dis,ﬁ'i:l'ai_i-' =
tion of means for the secon
population (based on an ~:

A s S%ooled estimated population vari-
SM2 Y (8-3) ance} is the pooled estimate;
of the population variance
divided by the number o

Consider again the study with 11 inthe experimental group and 31 in the control
group. We figured the pooled estimate of the population variance to be 75. For the
experimental group, the variance of the distribution of means would be 75/11, which
is 6.82. For the control group, the variance would be 75/31, which is 2.42. Using the

participants in the sampte
from the second population, '

formulas,

Y 5
Pooted _ 15 _ 682

2 fmry
ST Ty T
S3 75
3 Pooled
= 2Pl = =042,
S ™ TN, T3 2

The Variance and Standard Deviation of the
Distribution of Differences Between Means
The variance of the distribution of differences between means (SEifference) is the
yariance of Population 1’s distribution of means plus the variance of Population 2's
distribution of means. (This is because, in a difference between two numbers, the
variation in each contributes to the overall variation in their difference. 1t is like sub-
tracting a moving number from a moving target.) Stated as a formula,

The variance of the -
distribution of differences:.:
between means is the varian
of the distribution of means -
for the first population (based” .
on an estimated population "
variance) plus the variance of
" the distribution of means for
the second population (based
on an estimated poputation.
variance). RN

2 _ 2
Shifterence = 541, T Sh, (8-4)

The standard deviation of the distribution of differences hetween means
‘Difference) is the square root of the variance: -

The standard deviation of the
distribution of differences :

between means i the square
root of the variance of the -+
distribation of differences. :
between means. B

_a/e2 .
Spifference = SDifferenc'e (8‘5)

In the example we have been considering, the variance of the distribution of
eans for the experimental group was 6.82, and the variance of the distribution of
ans for the control group was 2.42; the variance of the distribution of the differ-
e between means is thus 6.82 plus 2.42, which is 9.24. This makes the standard
fation of this distribution the square root of 9.24, which is 3.04. In terms of the

variance of a distribution of differ-
ences between means {S3iference)
one of the numbers figured as part of a

Shitterence = S%fi + S,ZHZ = 682 + 242 =924 ¢ test for independent means; it equals
the sum of the variances of the distribu-
Shifference = V S%iffgrence = /924 = 3.04, tions of means associated with each of

the two samples.
standard deviation of the distribu-

S-tePS to Find the Standard Deviation of the tion of differences between means
Distribution of Differences Between Means {Soitference) in a1 test for independent
means, square root of the variance of the

Figure the estimated population variances based on each sample. That is, distribution of differences between
figure one estimate for each population using the formula $* = SS/(N — 1). means.
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1 The total degress of free-

‘dom for a f test for indepen-

"dent means is the degrees of

eedom in the first sample

us the degrees of freedom -
the second sample.

;. The ¢ score is the difference
i7" Tetwéen the two sample

- means divided by the

-+ standard déviation of the
. distribution of differences
R _-:between means.

® Figure the pooled estimate of the population variance:

df n
SBocted = sh + (3 :
Poated = e D G O

(dfy = Ny—land dfy = Ny — 1; dfpo = dfy + dfy)

@I‘lgure the variance of each distribution of means: SM] S%mled/ N aq

Sk, = Stootea/ No.
@Flgure the variance of the distribution of differences between mea

SleTerence SM1 + SM;
G Figure the standard deviation of the distribution of differences betw

. — 2
means: Spitrerence =V SDifference-

The Shape of the Distribution of Differences
Between NMeans

The distribution of differences between means is based on estimated population vari
ances. Thus, the distribution of differences between means (the comparison distri
bution) is a ¢ distribution. The variance of this distribution is figured based o
population variance estimates from two samples. Therefore, the degrees of freedo
for this ¢ distribution are the sum of the degrees of freedom of the two samples. In
terms of a formula,
dfrorat = dfy + dfa (8-6).
In the example we have been considering with an experimental gronp of 11 and
a control group of 31, we saw earlier that the total degrees of freedom is 40 (that is, -
11 — 1 =10;31 — 1 = 30; and 10 + 30 = 40). To find the t score needed for sig-
nificance, you look up the cutoff point in the ¢ table in the row with 40 degrees of
freedom. Suppose you are conducting a one-tailed test using the .05 significance
ievel, The ¢ table in the Appendix (Table A-2) shows a cutoff of 1.684 for 40 degrees
of freedom. That is, for a result to be significani, the difference between the means
has to be at least 1.684 standard deviations above the mean difference of 0 on the
distribution of differences between means,

The t Score for the Difference Between
the Two Actual Means

Here is how you figure the ¢ score for Step @ of the hypothesis testing: First, figure
the difference between your two samples’ means. (That is, subtract one from the
other), Then, figure out where this difference is on the distribution of differences be-
tween means. You do this by dividing your difference by the standard deviation of
this distribution, In terms of a formula,
Spifference

For our example, suppose the mean of the first sample is 198 and the mean .of
the second sample is 190. The difference hetween these two means is 8 (that is,
198 — 190 = 8). Earlier we figured the standard deviation of the distribution of dif-
ferences between means in this example to be 3.04. That would make a ¢ score of
2.63 (that is, 8/3.04 = 2.63).-In other words, in this example the difference between
the {wo means is 2.63 standard deviations above the mean of the distribution of dif-

ferences between means. In terms of the formula,
Mz 198 — 190 g

b= = = 2.63
SD1fference 3.04 3.04




