
Scenario-Based Interactive UI Design
Koki Kusano Momoko Nakatani Takehiko Ohno

NTT Service Evolution Laboratories
1-1 Hikari-no-oka, Yokosuka-Shi, Kanagawa, 239-0847 Japan

{kusano.kouki, nakatani.momoko, ohno.takehiko}@lab.ntt.co.jp

ABSTRACT
Clearly picturing user behavior is one of the key
requirements when designing successful interactive
software. However, covering all possible user behaviors
with one UI is a complex challenge. The Scenario-based
Interactive UI Design tool is designed to support the
characterization of user behavior based on scenarios and
then using the information in UI design. Scenarios make it
easy to understand and share user behavior even if we have
little design knowledge. However, they have two big
weaknesses; 1) integrating several scenarios in one UI is
difficult, even if we can create appropriate scenarios, 2)
maintaining the links between scenarios and the UI is a
heavy task in iterative design. Our tool solves the above
problems through its hierarchical scenario structure and
visualized overview of scenarios. It enhances the designer’s
skill in writing scenarios and designing UIs smoothly and
easily.

Author Keywords
User interface design; Scenario; Design tool; Traceability

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

INTRODUCTION
A good understanding of user behavior is essential when
designing interactive software that must provide high
usability and user experience. Scenarios, which describe
how people accomplish tasks, are a popular design tool;
they are one way of making the user image concrete and
extracting user requirements in Scenario-Based Design
(SBD) [1]. In the human-computer interaction field,
scenarios are also utilized by designers when designing UIs
[2]. Scenarios that are written in a natural language are
comprehensible even if the writer has insufficient
experience in considering user-computer interaction. Hence,
scenarios help a designer to facilitate agreement and
consistency with stakeholders (ex. developers, clients).

However, managing scenarios becomes more difficult as

the number and complexity of scenarios increases [3].
Therefore, scenarios should offer an overview of their
contents by using some form of graphical representation to
assist in the understanding of user behavior [4]. This is a
critical requirement if the designer has to find common
points and trade-offs among the scenarios and integrate all
points into one UI [3]. In addition, updating the links
between scenarios and UI is very tough when the design is
iterated [5]. When a designer revises a UI based on the
results of usability testing, he/she has to refer to not only
the UI but also the original scenarios at the same time; this
process should be iterated to reach the required quality.
This difficulty renders scenarios less useful.

Therefore, designers must be able to overview, understand
and manage scenarios easily and smoothly when designing
a UI. Unfortunately, no tool well supports this requirement,
and efficiency strongly depends on the designer’s skill. In
this paper, we solve these problems with the Scenario-based
Interactive UI Design Tool (see Figure 1): we especially
focus on 1) managing scenarios and 2) visualizing the
relationships among multiple scenarios. First, our tool
supports the designer to reorder the sentences in each
scenario to more clearly express the hierarchical structure
of the scenario. In addition, a designer can attach a tag that
expresses a target user requirement to any sentence. Second,
the tool automatically visualizes the scenario structure
(overview) by using the tags. The designer can directly alter
the UI via the overview. The overview provides easy
understanding by focusing on the key common points and
conflicts among the scenarios. In addition, the tool
maintains the links among sentences, tags, visualization and
UI. The above features allow a designer to write and
manage scenarios and design a UI easily and smoothly in an
iterated design process.

RELATED WORK
Most SBD methods iterate the following four steps: 1.field
study, 2.create user image and scenarios, 3.design UI,
4.evaluate UI.

First, the field specialist observes target-users conducting
interviews that reveal their actions in the target situation.
Second, the designer creates a concrete user image and
writes scenarios as needed based on the field data. Each
scenario contains one user goal, situation, and behaviors to
achieve the goal. Scenarios don’t contain UI-components or
functions to avoid the technology constraint trap. Next, the
designer extracts user-requirements and functions, and then
details the scenarios that contain UI-components. Third, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Session: Evaluation Methods 1 CHI 2013: Changing Perspectives, Paris, France

391

designer designs the UI based on the scenarios. This
process should be iterated with the scenario detailing step
because the designer can realize which UI-components or
functions are needed by observing the UI. Fourth, the
designer evaluates the UI through usability testing and then
revises the UI based on the test-results.
The process between step-two and step-three contains a
problem; it is difficult to understand and manage scenarios
and UI. Candidate solutions include structured-scenarios [6]
or graphics and flow-charts [4]. These proposals certainly
help the designer to understand the user requirements,
however, they fail to support the management of the links
among scenarios, requirements, and UI.

The task of maintaining traceability between requirements
and program-codes has been well studied [7]. The model-
driven UI automatic generation approach has been studied
for many years [8]. This approach makes it easier to
manage traceability. However, the model is difficult to
understand without special knowledge. This characteristic
is not suitable for designing UIs since there are various
stakeholders who don’t have specialist knowledge as
regards UI design. In the field of SBD, to maintain the links
between requirements and scenarios for software
development, scenario-browser [9] or agile development
process with scenario [10] has been proposed. However,
they have not focused on managing the links among
scenarios, user requirements and UI.

Finally, various prototyping tools have been proposed to
design and evaluate UIs efficiently, and some of them have
been utilized in real projects [11]. Prototyping tools
obviously support the designer by allowing the design

appearance of the UI to be more rapidly settled. However,
current prototyping tools are unable to integrate all scenario
information into one UI.

SCENARIO BASED INTERACTIVE UI DESIGN TOOL
The scenario based Interactive UI design tool provides
support for scenario management and UI design based on
scenarios. Furthermore, it offers traceability between
scenarios and UI such that a designer can efficiently iterate
the UI design-evaluation process. Figure 1 shows the GUI
of the proposed tool; a browser-based application
developed in HTML5 and JavaScript. Its key parts are the
Scenario Editor and UI Editor. The designer is able to
smoothly switch between them depending on the situation.

Support of Scenario Management.
The Scenario Editor has three steps for creating and
managing scenarios: 1.Writing a scenario, 2.Structuring the
scenario and 3.Tagging the scenario.

First, the designer writes, like a novel, a scenario that
contains user behavior when using the software (ex.
background, motivation, goal, steps).

Second, the designer creates hierarchies of sentences based
on sentence detail. This operation is similar to the use of the
outline-view. For the example shown in Figure 1 left, the
first hierarchy layer holds scene titles. The second layer
holds user behavior with no reference to UI expressions.
The third layer holds concrete UI expressions. The
hierarchy clearly shows the details of each sentence (does it
contain UI components or not). Traditional SBD separately
writes scenarios with and without UI components. The
drawback of traditional scenarios is they make it hard to

Figure 1: Scenario-Based Interactive UI Design Tool

Session: Evaluation Methods 1 CHI 2013: Changing Perspectives, Paris, France

392

maintain the links because the two types of scenarios are
written separately. On the other hand, our tool uses
hierarchy to integrate them. However, we feel that users
need to understand the adjustment rules that will yield the
proper hierarchy. Thus, our tool shows tooltips as guides
for hierarchy adjustment. For example, if there are UI-
component expressions (ex. window, button, icon) in the
second layer, the tooltip recommends moving them to the
third layer.

Third, the designer extracts tags, text labels, from the
scenarios. The designer selects a sentence that contains
requirements that impact UI design and manually creates a
tag for the sentence. A floating tag box is used to input tags
as shown Figure 2. The designer can quickly reuse
registered tags since this box support incremental tag search.
The tool automatically maintains each tag and links
between the sentence and the tag.

Support of Designing UI
The UI Editor automatically visualizes the relationships of
sentences by the tags (see Figure 1 right); this helps the
designer to overview the scenarios and create a rough UI.
The relationship is visualized as a graph that uses nodes
(translucent square with dashed border) as tags and edges
(line) as the relationships between tags, which is based on
the tag position in the scenario hierarchy. The visualized-
node positions are calculated by the spring-model. Node-
size increases with frequency of usage in the scenario.
Edge-width is calculated from the distance between tags in
the scenario structure (sentences on same layer and
next/previous sentences have strong ties). An edge is
automatically created if tag distance is under a distance
threshold (edge-threshold).

Graphs are very effective for overviewing relationships. In
particular, using a graph to visualize the scenario structure
helps the designer to visually consider groups of
requirements and possible conflicts. For example, a node
that has many edges is visually obvious and logically
important in the graph because this node (tag) is related to
many scenarios and can be the cause of user confusion. The
current prototype focuses on several tens of nodes, and the
default edge threshold is optimum for up to ten scenarios
and tens of nodes. Hence, it provides only plain interaction
(no zooming and filtering) with the graph. However, users
can manually adjust the threshold for the number of nodes
by slider operation; the graph is automatically updated.

The designer can create UI-components directly on the
graph by selecting a stencil (see Figure 1 top) and dropping
it on a node; nodes can be moved and layouts created.
Figure 1 right shows the middle part of the UI design
process (intermediate between graph and UI). It shows that
our tool can maintain the links among scenarios, tags,
graphs and UI. This feature shortens the design time. Even
if the designer sets a UI-component to a node, both the
visualized data and the UI-component can be easily

recognized due to the overlaying of visualized data. The
designer easily turns off the graph with single click.
Incidentally, the current prototype does not focus the
creation of a click-through prototype. This functionality can
be added, however, it is well supported by various
prototyping tools.

Provides Traceability among Scenarios, Tags and UI
Our tool always maintains the data of scenarios, scenario-
structures, tags, UI-components and the links created by the
designer. Because of this, it allows scenario construction to
become a environment in which to envisage the design at a
rough scale and then detailing that design by re-linking
design choices back to earlier versions.

Figure 1 shows the linkage between highlighted nodes, tags,
and scenarios. Highlighted nodes and edges have different
color and tone. The designer understands quickly the
number of tags used and their source sentences, since the
scenario editor shows link-icons (see Figure 1). If the
designer clicks a link-icon, the scenario editor immediately
shows the linked sentence and the tag in question. For
example, after setting a UI-component on each node and
laying the nodes out, if the designer selects a scenario to
better understand the links between the scenario and its UI-
components, our tool automatically highlights only those
UI-components related to the sentence in question. In
addition, our tool warns users when they delete a sentence
that has a tag; the node that was linked to the deleted
sentence changes its color.

The above features offer high traceability and interactivity
between scenario writing and UI designing. They encourage
the designer to concentrate on imagining user behavior and
designing the UI. Additionally, this feature strongly
supports iterative-design, since it allows quick reference to
data related to the issue. In iterative-design, the designer
has to repeatedly evaluate the UI, find an issue and fix it.
This means that the designer should refer to not only the UI,
but also the related data of scenarios and tags. It is
obviously a heavy task without our tool.

Furthermore, the designer must create test scenarios for
usability testing. First, the designer decides which part of

Figure 2: Floating Tag Box

Session: Evaluation Methods 1 CHI 2013: Changing Perspectives, Paris, France

393

the UI should be evaluated; he/she can quickly refer to the
related scenarios and choose to create an abstract scenario
or a concrete scenario depending on the evaluation
objective. This feature strongly supports iterative design.

USER STUDY
We conducted a preliminary user study to get user feedback.
Three participants who were unfamiliar with SBD used a
prototype of our tool. We requested them to design one UI
suitable for two situations; Scene 1, user uses a smartphone
application to browse a movie website, and Scene 2, user
wants to search and watch a movie recommended by a
friend via a smartphone application. We mainly observed
design activities related to writing, structuring, and tagging
scenarios and designing a rough UI.

The participants commented that writing and structuring the
two scenarios was useful for clarifying user behavior and
for finding vague points. This result confirms the
effectiveness of the hierarchy structure. However, they also
commented that it was difficult to set appropriate
hierarchies at first. One solution is to show scenario
samples or tutorials.

Furthermore, they noted the benefit of the graph-based form
of visualization. They could understand quickly which tags
were key and which were related tags. Our proposed
visualization and interaction method is simple, but we could
confirm its effectiveness for understanding relationships
between tags. Note that this benefit strengthens with
scenario size. Thus, we plan to extend visualization by
adding some of the interaction techniques proposed in the
research field of visualization that will enhance its scaling
performance and conduct further experiments to confirm
this strength.

In the UI design stage, when the participants identified
some shortfall in the UI, they could quickly and easily trace
and revise the related sentences and tags. This means that
the participants performed the iterated design process, while
smoothly tracing the data relationships identified by
highlighted sentences, tags and UI components. On the
other hand, when participants wanted to detail the UI, a new
sentence had to be created to anchor the new UI-component.
This seems to be somewhat inefficient. This case study
revealed that implementing an annotating-function that does
not involve the addition of sentences would further enhance
the iterative process. The above results show that this tool is
effective for managing scenarios and designing UIs.

CONCLUSION
We have presented the Scenario-based Interactive UI
Design tool; it supports designers in structuring scenarios
and maintains the links among scenarios, tags, and UI. We
also have shown that it enables designers to concentrate on
design-tasks and allows the iterative design process to be
conducted smoothly and efficiently by providing highly

effective support. A user study gathered positive feedback
from all participants. In the future, we will conduct examine
bigger scenarios to more fully evaluate the effectiveness of
interactivity and traceability among scenarios, tags and UI.
We also plan to put our tool into commercial use (in-house)
to observe the resulting design activities for a detailed
evaluation of its practicality.

REFERENCES
1. Carroll, J. M. Making Use: Scenario-Based Design of

Human-Computer Interactions. The MIT Press, 2000.
2. Cooper, A., Reimann, R., and Cronin, D. About face 3:

the essentials of interaction design. John Wiley & Sons,
Inc., New York, NY, USA, 2007.

3. Hertzum, M. Making use of scenarios: A field study of
conceptual design. International Journal of Human-
Computer Studies 58 (2003), 215–239.

4. Gough, P. A., Fodemski, F. T., Higgins, S. A., and Ray,
S. J. Scenarios-an industrial case study and hypermedia
enhancements. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering,
IEEE Computer Society (1995), 10–17.

5. Nielsen, J. Iterative user-interface design. Computer 26,
11 (1993), 32–41.

6. Yanagida, K., Ueda, Y., Go, K., Takahashi, K.,
Hayakawa, S., and Yamazaki, K. Structured Scenario-
Based design method. In Human Centered Design, vol.
5619 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2009), 374–380.

7. Winkler, S., and von Pilgrim, J. A survey of traceability
in requirements engineering and model-driven
development. Software and Systems Modeling 9 (2010),
529–565.

8. Sousa, K., Mendonca, H., Vanderdonckt, J., Rogier, E.,
and Vandermeulen, J. User interface derivation from
business processes: a model-driven approach for
organizational engineering. In Proceedings of the 2008
ACM symposium on Applied computing, ACM (2008),
553–560.

9. Rosson, M. B., and Carroll, J. M. Integrating task and
software development for object-oriented applications.
In Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM Press/Addison-
Wesley Publishing Co. (1995), 377–384.

10. Obendorf, H., and Finck, M. Scenario-Based usability
engineering techniques in agile development processes.
In CHI ’08 extended abstracts on Human factors in
computing systems, ACM (2008), 2159–2166.

11. Tang, L., Yu, Z., Zhou, X., Wang, H., and Becker, C.
Supporting rapid design and evaluation of pervasive
applications: challenges and solutions. Personal
Ubiquitous Comput. 15, 3 (2011), 253–269.

Session: Evaluation Methods 1 CHI 2013: Changing Perspectives, Paris, France

394

