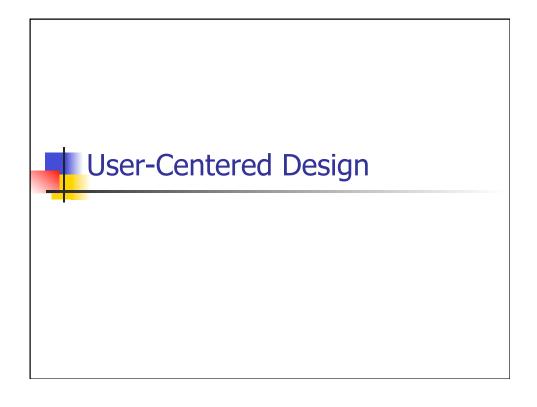
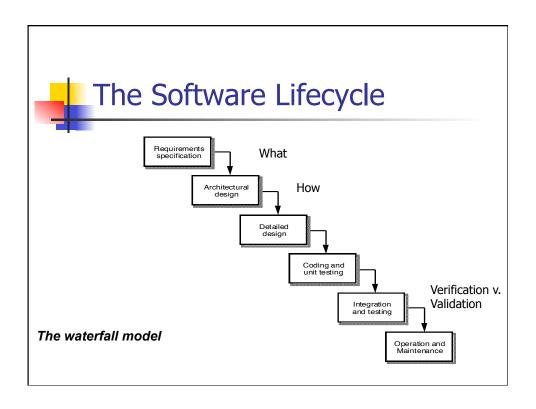


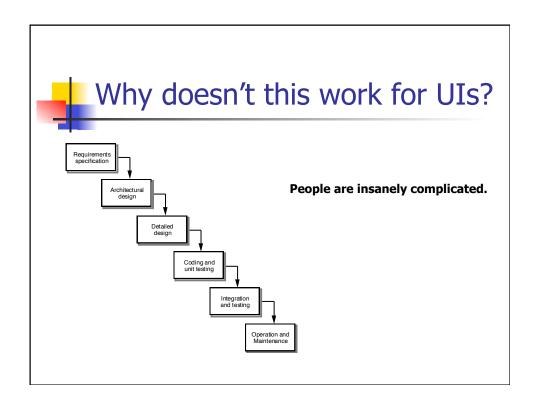
Human-Computer Interaction IS 4300

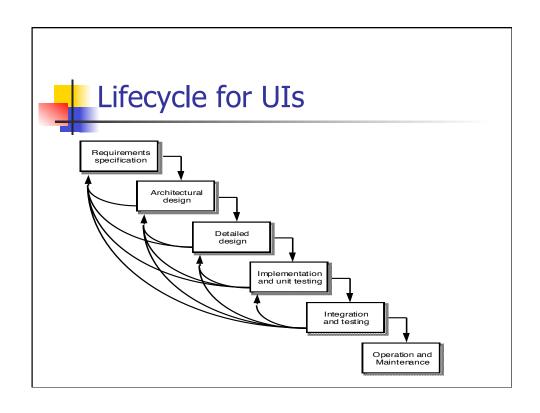
Overview for Today

- Brief review
- HCI Development Process
- Critical Analysis of UIs
 - Heuristic Evaluation
 - Cognitive Walk-through Evaluation
- Homework I2

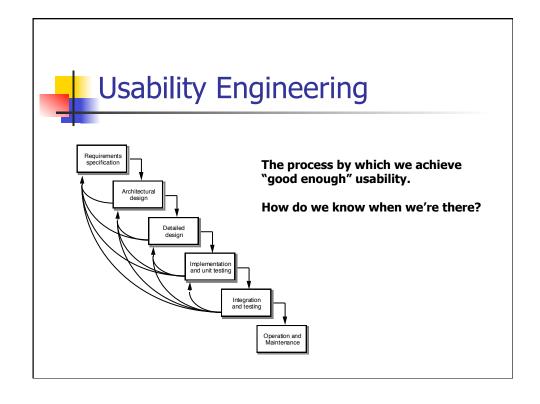

Overview of Course


http://www.ccs.neu.edu/course/is4300f15/


Course Website


IS4300— Human-Computer Interaction [Syllabus] [Schedule] [Homework] [Projects] [Resources] [Directory] Schedule

Date	Topics & Readings	Assignments	
		Due	Start
9/9	Overview of HCI and course. Getting started on projects.		<u>I1,P1</u>
9/14	HCI development process (Benyon Ch 1 & 3). Critical Analysis of UIs (Benyon 4.5 & 10.2). Team project brainstorming.	I1	<u>12</u>
9/16	Humans (Benyon Ch 21 & 25). Team project brainstorming.		
9/21	Doing observational studies (Benyon Ch 2 & 7; Fetterman; Example 1; Example 2).	I2	<u>I3</u>



User-Centered Design

- Try lots of stuff. See how it plays with users.
 - Involve representative users in all stages of the development process.
 - Minimize the cost of and commitment to prototypes.
 - Users often can't tell you which alternative is "better" – have to test and measure.

Usability Engineering

- Must define usability attributes (multi-dimensional)
- Must define specific measures for each
- Must define "good enough" (goal) levels for each
 - If appropriate, current & ideal levels for each
- Example attributes (measures?)
 - Learnability
 - Efficiency
 - Memorability
 - Low error rate
 - Subjectively pleasing

User-Centered Design

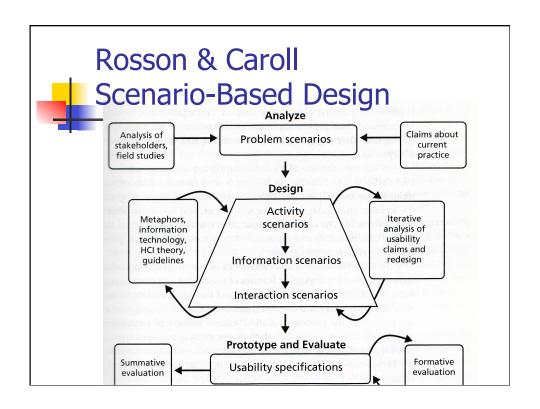
- Putting people first; designing interactive systems to support people and for people to enjoy
- Thinking about what people want to do rather than what the technology can do
- Involving users in the design process
 - Participatory design

The process of ... design

- Understanding (2 weeks)
 - Requirements
 - Stakeholders
- Design (2 weeks)
 - Scenario-based Design
 - Envisionment
- Evaluation (2 weeks)
 - Inspection
 - User evaluations

R

First Step:


Requirements & Specifications

- Know your user
- Knowledge about people in general
- Very, very specific knowledge about users and work environment
- Ethnography in 1 week

The process of ... design

- Personas
- Scenarios
 - Stories real-world experiences of people.

Critical Analysis of UIs

How do we know if a UI is "good"?

Evaluation Methodologies

- Expert
 - inspection methods
 - Heuristic evaluation
 - Cognitive walk through
 - models
- User testing
 - qualitative methods (observation, interviews, questionnaires, think aloud)
 - quantitative usability evaluation

Design Heuristics

- "Rules of Thumb" for improving usability
- aka "Design principles"

Heuristics / Design Principles

- There are many "checklists" available
 - Nielsen's 10 design heuristics
 - Tognazzi's First Principles of Interaction Design
 - Gerhardt-Powals' cognitive engineering principles
 - etc

Nielsen's Heuristics

- 1. Feedback
- Clearly tell user effects of input actions
- Keep user informed of system state
 - Cursor change
 - Selection highlight
 - Status bar
- Feedback re: processing response time
 - < 0.1 s: seems instantaneous</p>
 - 0.1-1 s: user notices, but no feedback needed
 - 1-10 s: display busy cursor or other feedback
 - > 10 s: display progress bar

Feedback

Feedback

- Air France Flight 447, 1 June 2009, Airbus A330-200
- Stalled, crashed, killed 216 passengers and 12 aircrew
- Final report:
 - Initial cause: icing of airspeed sensors
 - Many feedback problems:
 - Inconsistency between the airspeed measurements
 - Incomprehension of the situation when the autopilot disconnection occurred,
 - The lack of a clear display in the cockpit of the airspeed inconsistencies identified by the computers
 - A failure to identify the aural stall warning
 - The appearance at the beginning of the event of transient warnings that could be considered as spurious
 - The absence of any visual information to confirm the approach-to-stall after the loss of the limit speeds

Nielsen's Heuristics

2. Speak the User's Language

- Use common words, not techie jargon
 - But use domain-specific terms where appropriate
- Don't put limits on user defined names
- Allow aliases/synonyms in command languages
- Use good metaphors

Nielsen's Heuristics 3. Clearly Marked Exits / Navigation / Freedom

- Provide undo
- Long operations should be cancelable
- All dialogs should have a cancel button

4

Nielsen's Heuristics

4. Consistency

- Principle of Least Surprise
 - Similar things should look and act similar
 - Different things should look different
- Other properties
 - Size, location, color, wording, ordering, ...
- Follow platform standards
- Kinds of Consistency
 - Internal
 - External (aka "familiarity")
 - Metaphorical

Nielsen's Heuristics 5. Prevent Errors

- Selection is less error-prone than typing
- Disable illegal commands
- Description Error
 - different things/commands should look and act different
- Mode Error
 - Eliminate modes
 - Visibility of mode
 - Spring-loaded or temporary modes

Nielsen's Heuristics

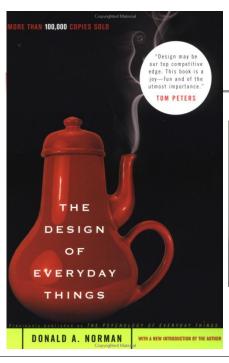
- 6. Minimize User Memory Load
- Use menus, not command languages
- Use combo boxes, not textboxes
- Use generic commands where possible (Open, Save, Copy Paste)
- All needed information should be visible

Nielsen's Heuristics

- 7. Shortcuts / Flexibility / Accelerators
- Provide easily-learned shortcuts for frequent operations to improve efficiency
 - Keyboard accelerators
 - Command abbreviations
 - Styles
 - Bookmarks
 - History

Nielsen's Heuristics

- 8. Simple design
- "Less is More" / KISS
 - Omit extraneous info, graphics, features

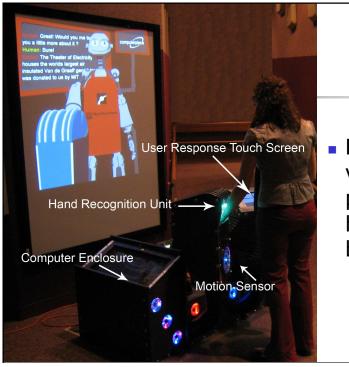

Nielsen's Heuristics 9. Good Error Messages

- Be precise; restate user's input
 - Not "Cannot open file", but "Cannot open file named paper.doc"
- Give constructive help
 - why error occurred and how to fix it
- Be polite and non-blaming
 - Not "fatal error", not "illegal"
- Hide technical details (stack trace) until requested

Nielsen's Heuristics 10. Help and Documentation

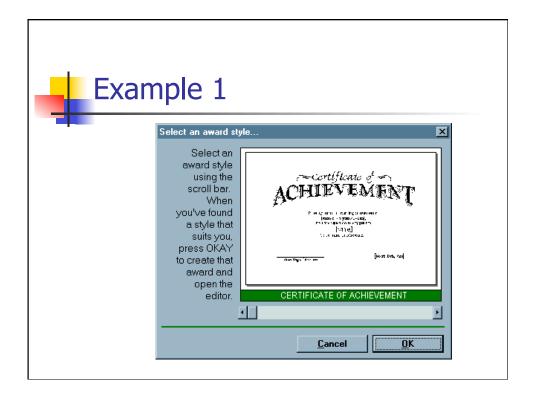
- Model
 - Searching
 - 2. Understanding
 - 3. Applying
- Important features
 - Index
 - Overview map
 - Help visible while user is applying
 - Describe confirmatory feedback

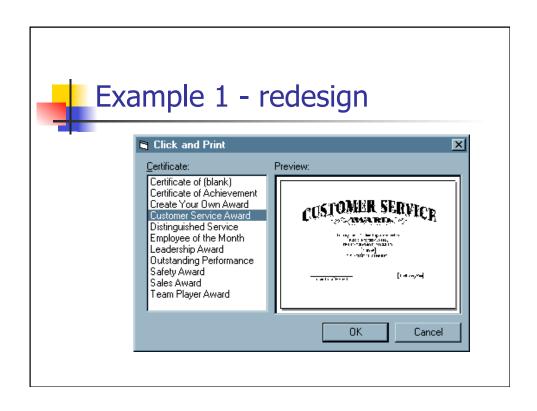
A few additional rules/principles...

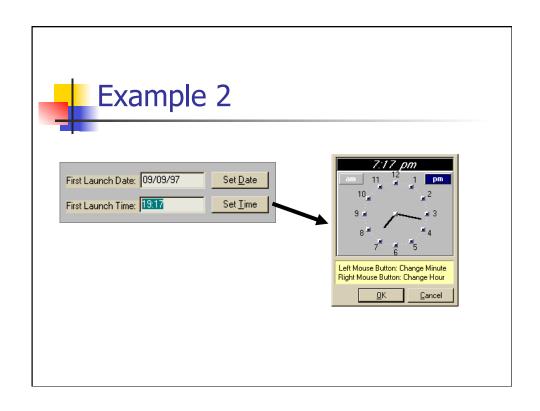


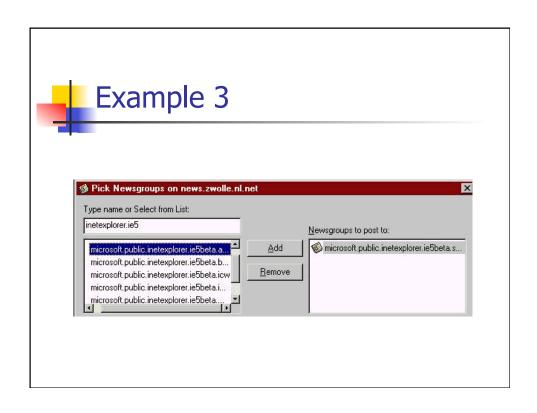
Affordances

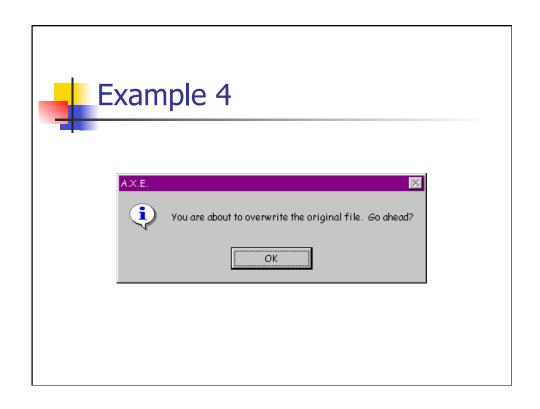
- The fundamental properties of a thing that determine just how it could possibly be used.
 - Examples?
 - A chair affords sitting
 - Knobs are for turning.
 - Slots are for inserting things into.




How to get visitors to put their hand in the box?




- aka "Obviousness"
- The correct parts must be visible.
- They must convey the correct message.
- Impacts learnability.
- How different from affordance?
- Examples?



Exercises in Inspection

- Break into groups
- One person must have a laptop or smart phone
- Pick an uncommon web site (preferred) or app
- Do a heuristic evaluation

Exercise 1

- "Heuristic evaluation"
- Critique a UI using Heuristics discussed
 - Feedback
 - 2. Speak the User's Language
 - 3. Clearly Marked Exits
 - 4. Consistency
 - 5. Prevent Errors
 - 6. Minimize User Memory Load
 - Flexibility / Shortcuts
 - 8. Simple Design
 - Good Error Messages
 - 10. Help and Documentation
 - 11. Use Appropriate Affordances
 - 12. Visibility / Obviousness

Inspection methods

- Cognitive walkthrough
 - Walk through each step in the task and evaluate:
 - Given current user goal, is the choice of action obvious?
 - 2. Will users see that the action is available?
 - Once users have found the action, will they know it is the one they need?
 - 4. After the action is taken, will users understand the feedback they get?

Exercise 2

- Cognitive walk-through
 - A more methodical approach to heuristic evaluation
- 1. Define a task (as end goal, not how-to)
- 2. For each step (UI action)
 - Is the next action obvious?
 - Is the effect of the action taken obvious?

Individual Homework #2 UI Critique

- Find 2 good & 2 bad examples of UI design
- Use Nielsen's Heuristics
 - Make explicit reference to them!
- Include visuals (screen shots)
- Make suggestions for improvement

Project Review

- Must have a substantial UI
- UI must be interactive
- Creative, original, non-obvious is better
- Ideas: research papers & past CHI, UIST, IUI
- Each project should have 3-5 members
- Ideally complementary skills

Projects

- Next class
 - You each present your top idea to the class (30 seconds)
- By 9/23
 - Email me a brief description and list of team members.
 - I'll reply with OK, or suggestions for change.
- 9/28 Project proposal due

Plug for study

- Volunteers Needed to Participate in a Study to Evaluate an Automated System to Promote Wellness
- It takes one hour and pays \$15

https://www.surveymonkey.com/s/AgentStudy

To Do for Next Class

- 1. I1
 - Set up individual course web page
 - Post project ideas
- 2. Read 6 Articles on Cog Sci
 - Memory, Attention, Perception
 - >> think about ramifications for UI design <<</p>
 - Fitt's Law: Read Sections 1-3, skim rest
- 3. I2 Start UI critique (1 week)