Modern LLMs & “post” training

Some slides and content today derived from materials by Mohit lyyer (CS685 @ UMass) and Anna
Rogers (“A Primer on BERTology”, TACL 2020)



Why isn’t pre-training enough?

What we want: Generally useful models

What we get. Models capable of producing text capably. This is what we asked
for! Given a big dataset of unlabeled data D:
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Post-training is the idea of “aligning” the model with what we want. This
requires some sort of supervision.



How to “align”

An active area of research

Two main strategies we’ll discuss: Instruction fine-tuning and Reinforcement
Learning from Human Feedback (RLHF)



Instruction fine-tuning
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Instruction fine-tuning

Finetune on many tasks (“instruction-tuning”)

Input (Commonsense Reasonin Input (Translation)

Here is a goal: Get a cool sleep on Translate this sentence to
summer days. Spanish:

How would you accomplish this goal? The new office building
OPTIONS: was built in less than three
-Keep stack of pillow cases in fridge. months.

-Keep stack of pillow cases in oven. Target

Target El nuevo edificio de oficinas
keep stack of pillow cases in fridge se construyd en tres meses.

Sentiment analysis tasks

Coreference resolution tasks

Inference on unseen task type

Input (Natural Lanquage Inference

Premise: At my age you will probably
have learnt one lesson.

Hypothesis: It's not certain how many
lessons you'll learn by your thirties.

Does the premise entail the hypothesis?

OPTIONS:
-yes | | -it is not possible to tell | [ -no

FLAN Response
It is not possible to tell

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT
LEARNERS

Jason Wei*, Maarten Bosma*, Vincent Y. Zhao*, Kelvin Guu*, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le

Google Research



Instruction fine-tuning
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Multiple instruction templates per task

Premise

fRussian cosmonaut Valery Polyakov\
set the record for the longest
continuous amount of time spent in
space, a staggering 438 days,

Q)etween 1994 and 1995. )

Hypothesis
Russians hold the record for the )

longest stay in space.

Target Options:
Entailment - yes
Not entailment - no

Template 1 Template 3
<premise> A Read the following and A
Based on the paragraph determine if the hypothesis can

Kfopﬁons>

above, can we conclude that be inferred from the premise:
<hypothesis>?

Premise: <premise>

) Hypothesis: <hypothesis>

Template 2

<options>

(<premise>

<hypothesis>

Coptions>

AN Y,

Can we infer the following? Template 4. ...

( )

)
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Alpaca: Deriving training data from LLMs
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Supernatural Instructions
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Figure 5: Scaling trends of models performance (§7.1) as a function of (a) the number of training tasks; (b) the
number of instances per training task; (c) model sizes. z-axes are in log scale. The linear growth of model
performance with exponential increase in observed tasks and model size is a promising trend. Evidently, the
performance gain from more instances is limited.
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Observed Many tasks

Unobserved
instruction

instruction

Multi-task instruction-tuning
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Given the task definition and input, reply with output. In this task, you are given a

multiple-choice question and you have to pick the correct option.
Answer with option indexes (i.e., "A", "B", "C", and "D")

Instruction-tuned LLM

» OO0 4,9

The numen of Augustus referred to which of the following characteristics?
(A) Divine power (B) Sexual virility (C) Military acumen (D) Philosophical intellect

O O O T Training

Given the task definition and input, reply with output. In this task, you are given a multiple-choice
question and you have to pick the correct option.
Answer with option indexes (i.e., "A", "B", "C", and "D")

Deserts are in extremely dry environments, so liquids will naturally be
(A) rainbow (B) plentiful (C) meager (D) talented

The following is a multiple-choice question that requires expert-level domain knowledge.
Please select the correct answer to the question below from the options “A”, “B”, “C”, or “D”
after carefully examining each answer.

Deserts are in extremely dry environments, so liquids will naturally be
(A) rainbow (B) plentiful (C) meager (D) talented
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4 )
Analyze the patient's longitudinal ... include
"Yes' if the patient meets the definition of

alcohol abuse, and 'No' if they do not.
- J

" In the above notes, please ... client's AUDIT R
score (input example- Alcohol Use Disorders
Identification Test). Using ... yes or no

\_ answer. )
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Human preferences

Often more natural to elicit preferences between pairs of outputs than to
provide explicit examples

For instance, if we want LLMs to generate “more polite” or less biased outputs,
difficult to write a bunch of examples explicitly demonstrating these things:
Easier to show two examples and ask which is “more polite”



Reinforcement) Learning from
Human Feedback

© Collect human feedback © Train reward model © Train policy with PPO
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(Reinforcement) Learning from
Human Feedback
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Let’s talk RL & PPO
[ see notes)



But who wants to deal w/RL?

Direct Preference Optimization (DPO) says: Oh, we can just used supervised
learning to directly optimize for preference feedback labels

Direct Preference Optimization:
Your Language Model is Secretly a Reward Model

Rafael Rafailov*' Archit Sharma*' Eric Mitchell*!

Stefano Ermon * Christopher D. Manning' Chelsea Finn'



The objective
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Win rate

TL:DR Summarization Win Rate vs Reference
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