Modern LLMs & "post" training

Some slides and content today derived from materials by Mohit lyyer (CS685 @ UMass) and Anna Rogers ("A Primer on BERTology", TACL 2020)

Why isn't pre-training enough?

What we *want*: Generally useful models

What we *get*: Models capable of producing text capably. This is what we asked for! Given a big dataset of unlabeled data *D*:

$$\min_{\theta} -\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \sum_{t=1}^{T-1} \log \pi_{\theta}(x_{t+1} \mid x_t, \dots, x_1)$$

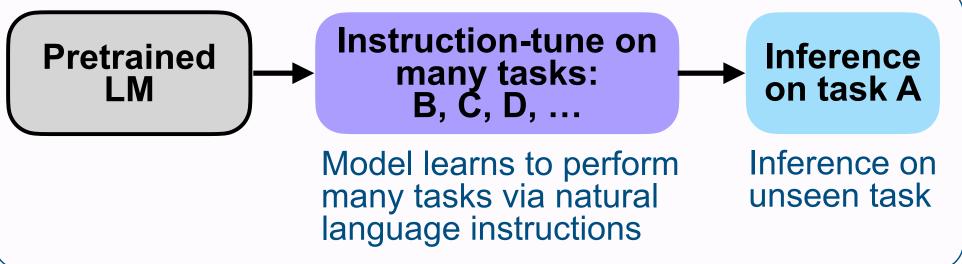
Why isn't pre-training enough?

What we *want*: Generally useful models

What we *get*: Models capable of producing text capably. This is what we asked for! Given a big dataset of unlabeled data *D*:

$$\min_{\theta} - \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \sum_{t=1}^{T-1} \log \pi_{\theta}(x_{t+1} \mid x_t, \dots, x_1)$$

*Post-*training is the idea of "aligning" the model with what we want. This requires some sort of *supervision*.


How to "align"

An active area of research

Two main strategies we'll discuss: *Instruction fine-tuning* and *Reinforcement Learning from Human Feedback (RLHF)*

nce sk A

Instruction fine-tuning

nce sk A

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vincent Y. Zhao*, Kelvin Guu*, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le

Google Research

Instruction fine-tuning

Input (Translation)

Spanish:

months.

Target

Translate this sentence to

was built in less than three

El nuevo edificio de oficinas

se construyó en tres meses.

The new office building

Finetune on many tasks ("instruction-tuning")

Input (Commonsense Reasoning)

Here is a goal: Get a cool sleep on summer days.

How would you accomplish this goal? OPTIONS:

-Keep stack of pillow cases in fridge. -Keep stack of pillow cases in oven.

Target

keep stack of pillow cases in fridge

Sentiment analysis tasks

Coreference resolution tasks

. . .

Inference on unseen task type

Input (Natural Language Inference)

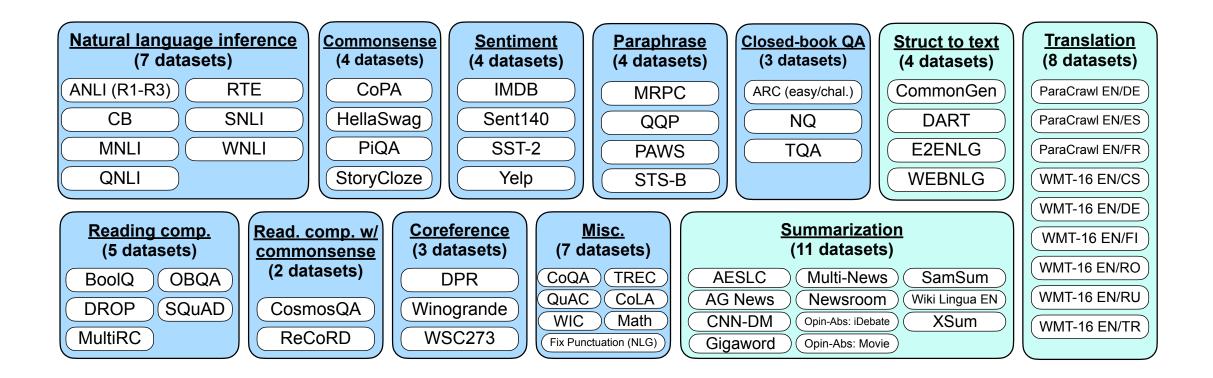
Premise: At my age you will probably have learnt one lesson.

Hypothesis: It's not certain how many lessons you'll learn by your thirties.

Does the premise entail the hypothesis?

OPTIONS:

-yes (-it is not possible to tell (-no)


FLAN Response

It is not possible to tell

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei^{*}, Maarten Bosma^{*}, Vincent Y. Zhao^{*}, Kelvin Guu^{*}, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le Google Research

Instruction fine-tuning

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vincent Y. Zhao*, Kelvin Guu*, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le

Google Research

Multiple instruction templates per task

Premise

Russian cosmonaut Valery Polyakov set the record for the longest continuous amount of time spent in space, a staggering 438 days, between 1994 and 1995.

Hypothesis

Russians hold the record for the longest stay in space.

Target

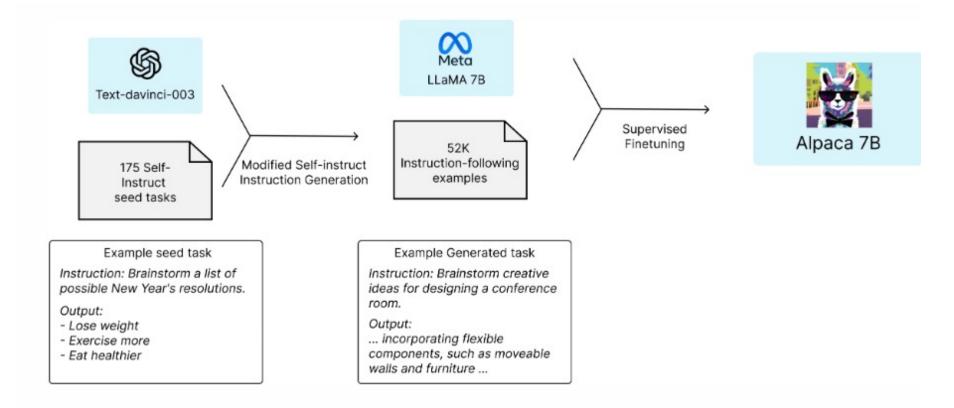
Entailment

Not entailment

Options: - yes - no

<u>Template 1</u> <u>Template 3</u> premise> Read the following and Based on the paragraph above, can we conclude that <hypothesis>? Premise: <premise> <options> <options> Template 2 <premise> Can we infer the following? Template 4, ... <hypothesis> <options>

determine if the hypothesis can be inferred from the premise:


Hypothesis: <hypothesis>

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vincent Y. Zhao*, Kelvin Guu*, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le

Google Research

Alpaca: Deriving training data from LLMs

Supernatural Instructions

Task Instruction

Definition

"... Given an utterance and recent dialogue context containing past 3 utterances (wherever available), output 'Yes' if the utterance contains the small-talk strategy, otherwise output 'No'. Small-talk is a cooperative negotiation strategy. It is used for discussing topics apart from the negotiation, to build a rapport with the opponent."

Positive Examples

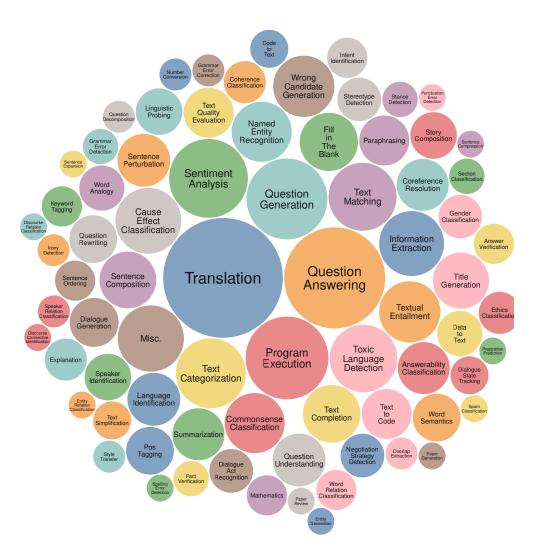
• Input: "Context: ... 'That's fantastic, I'm glad we came to something we both agree with.' Utterance: 'Me too. I hope you have a wonderful camping trip."

Output: "Yes'

Explanation: "The participant engages in small talk when wishing their opponent to have a wonderful trip."

Negative Examples

• Input: "Context: ... 'Sounds good, I need food the most, what is your most needed item?!' Utterance: 'My item is food too'." Output: "Yes" Explanation: "The utterance only takes the negotiation forward

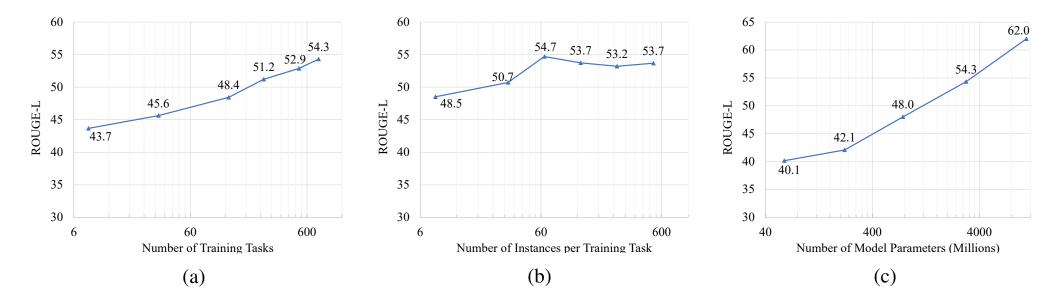

and there is no side talk. Hence, the correct answer is 'No'."

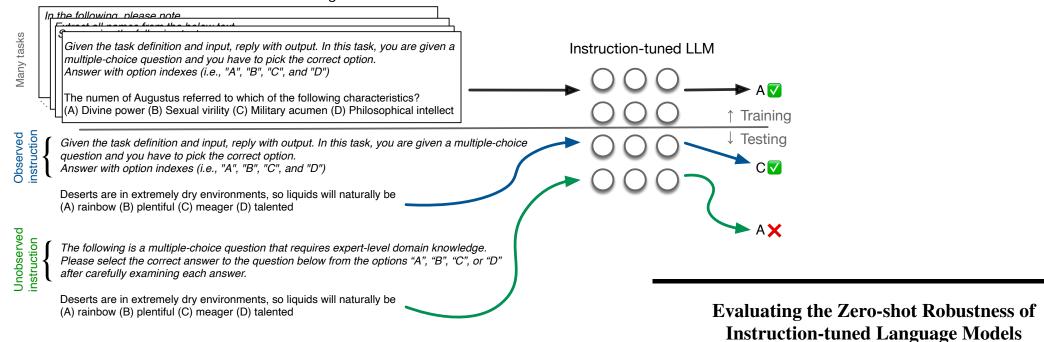
Evaluation Instances

Tk-Instruct

• Input: "Context: ... 'I am excited to spend time with everyone from camp!' Utterance: 'That's awesome! I really love being out here with my son. Do you think you could spare some food?'" • Expected Output: "Yes"

https://instructions.apps.allenai.org/

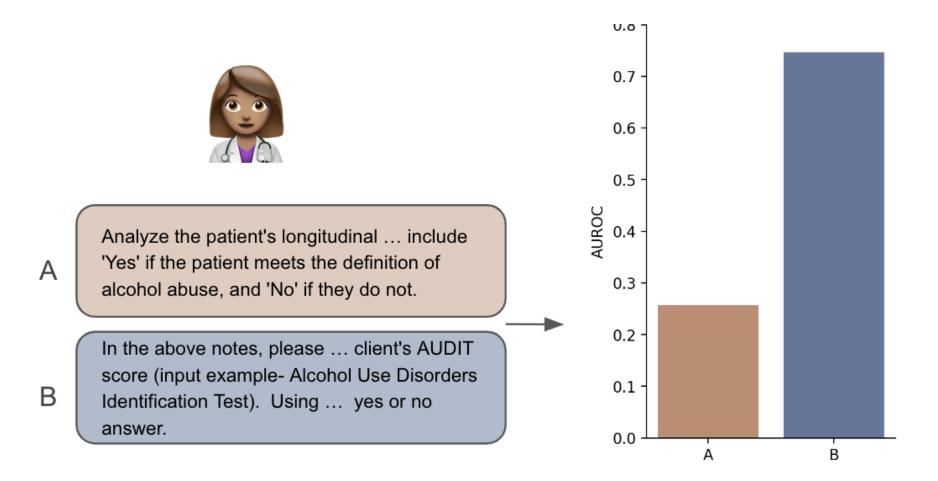



Figure 5: Scaling trends of models performance ($\S7.1$) as a function of (a) the number of training tasks; (b) the number of instances per training task; (c) model sizes. *x*-axes are in log scale. The **linear growth of model performance with exponential increase in observed tasks and model size** is a promising trend. Evidently, the performance gain from more instances is limited.

SUPER-NATURALINSTRUCTIONS: Generalization via Declarative Instructions on 1600+ NLP Tasks

 [◊]Yizhong Wang²
[◊]Swaroop Mishra³
[♠]Pegah Alipoormolabashi⁴
[♠]Yeganeh Kordi⁵ Amirreza Mirzaei⁴
Anjana Arunkumar³
Arjun Ashok⁶
Arut Selvan Dhanasekaran³ Atharva Naik⁷
David Stap⁸
Eshaan Pathak⁹
Giannis Karamanolakis¹⁰
Haizhi Gary Lai¹¹
Ishan Purohit¹²
Ishani Mondal¹³
Jacob Anderson³
Kirby Kuznia³
Krima Doshi³
Maitreya Patel³
Kuntal Kumar Pal³
Mehrad Moradshahi¹⁴
Mihir Parmar³
Mirali Purohit¹⁵
Neeraj Varshney³
Phani Rohitha Kaza³
Pulkit Verma³
Ravsehaj Singh Puri³
Rushang Karia³
Shailaja Keyur Sampat³
Savan Doshi³
Siddhartha Mishra¹⁶
Sujan Reddy¹⁷
Sumanta Patro¹⁸
Tanay Dixit¹⁹
Xudong Shen²⁰
Chitta Baral³
Yejin Choi^{1,2}
Noah A. Smith^{1,2}
Hannaneh Hajishirzi^{1,2}
Daniel Khashabi²¹

But!


Multi-task instruction-tuning

Jiuding Sun Khoury College of Computer Sciences Kh Northeastern University sun.jiu@northeastern.edu

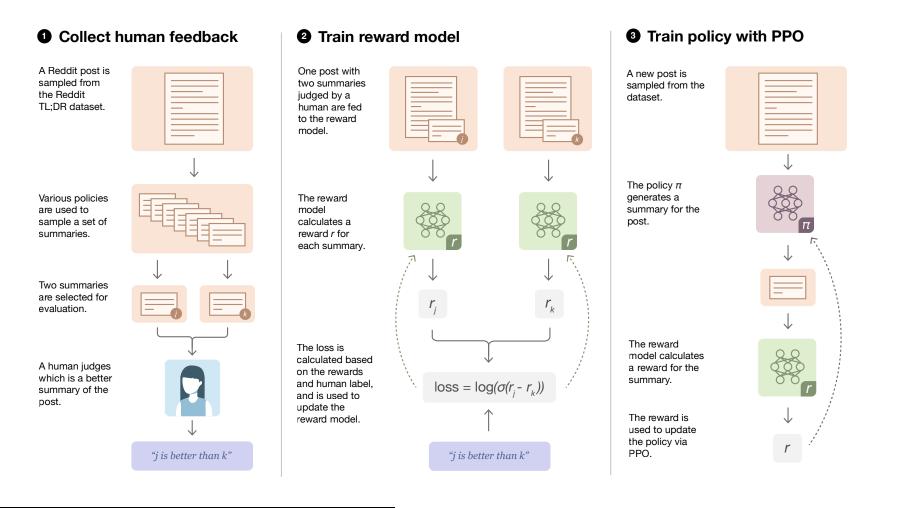
Chantal Shaib Khoury College of Computer Sciences Northeastern University shaib.c@northeastern.edu

Byron C. Wallace Khoury College of Computer Sciences Northeastern University b.wallace@northeastern.edu

Open (Clinical) LLMs are Sensitive to Instruction Phrasings

Alberto Mario Ceballos Arroyo*Monica Munnangi*Jiuding SunKaren Y.C. ZhangDenis Jered McInerneyByron C. WallaceSilvio Amir $^{\gamma}$ Northeastern University $^{\diamond}$ Codametrix

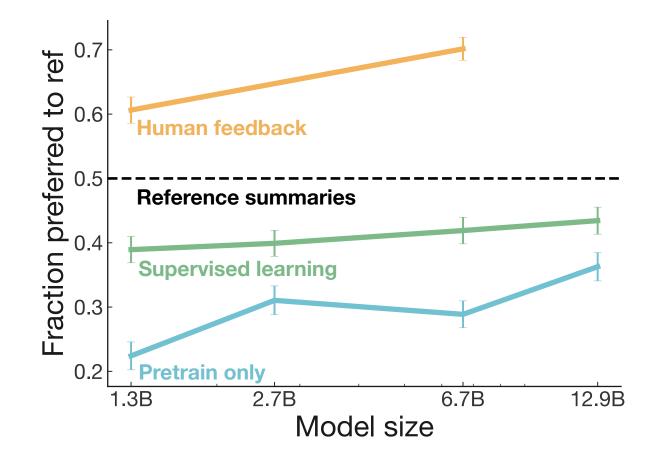
 ${ceballosarroyo.a, munnangi.m, sun.jiu, zhang.yuchen, b.wallace, s.amir} @northeastern.edu$


jmcinerney@codametrix.com

Human preferences

Often more natural to elicit *preferences* between pairs of outputs than to provide explicit examples

For instance, if we want LLMs to generate "more polite" or less biased outputs, difficult to write a bunch of examples explicitly demonstrating these things: Easier to show two examples and ask which is "more polite"


(Reinforcement) Learning from Human Feedback

Learning to summarize from human feedback

Nisan Stiennon*	Long Ouyang*	Jeff Wu*	Daniel M. Zieg	gler*	Ryan Lowe*
Chelsea Voss*	Alec Radford	l Dario) Amodei	Paul Cl	hristiano*

(Reinforcement) Learning from Human Feedback

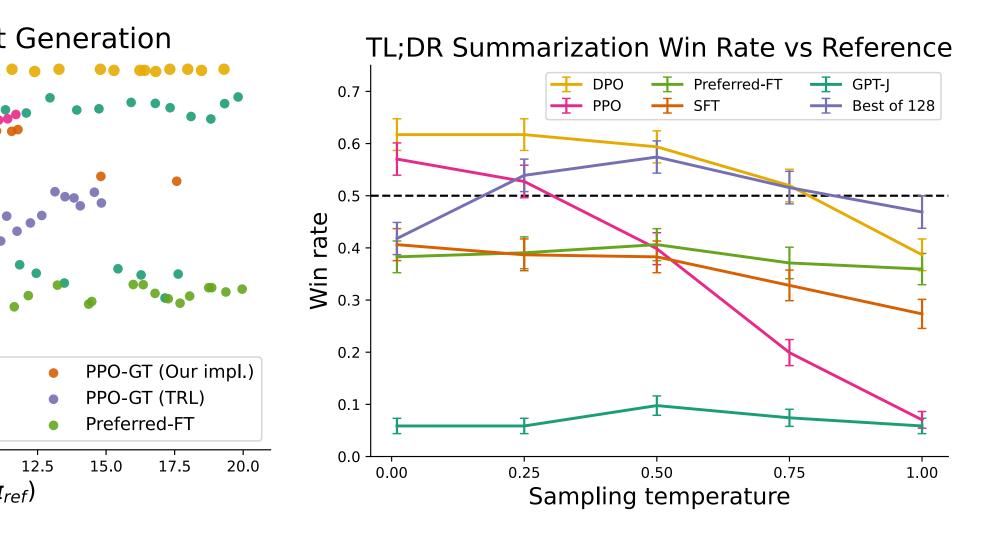
Learning to summarize from human feedback

Nisan Stiennon*Long Ouyang*Jeff Wu*Daniel M. Ziegler*Ryan Lowe*Chelsea Voss*Alec RadfordDario AmodeiPaul Christiano*

Let's talk RL & PPO [see notes]

But who wants to deal w/RL?

Direct Preference Optimization (DPO) says: Oh, we can just used supervised learning to directly optimize for preference feedback labels


Direct Preference Optimization: Your Language Model is Secretly a Reward Model

Rafael Rafailov*†	Archit Sharma*†	Eric Mitchell* [†]
Stefano Ermon ^{†‡}	Christopher D. Manning †	Chelsea Finn †

The objective

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta};\pi_{\text{ref}}) = -\mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta\log\frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)}\right)\right]$$

(*w* preferred to *I*)

