

Con Nets

So far: Simple feed-forward Nerworks

Consider

The parameters associated with these G's are distinct!

Upshot Model must learn to spot 6 in all locations.

But: a 6 15 a 6! Invariance

Enter Convolutional Neural Networks (aka ComNets aka CMS)

Basic Idea: Slide Windows Dover Inputs to yield local features

Formally assume region A Starting at (A_{x}, A_{y}) .

Sum over $= \sigma(\sum_{i,j} W_{i+j} \cdot A_{ij})$ $= \sigma(\sum_{i,j} W_{i+j} \times (A_{x}+j)(A_{y}+i))$ $= \sigma(\sum_{i,j} W_{i+j} \times (A_{x}+j)(A_{y}+i))$

=o(\Switty Bij)

The key is that weights W are Shared across regions. W is called the Kernel or filter.

Q What about The here?

$$= \sum_{\alpha_k \in \alpha} (\nabla_{\alpha_k} \alpha_k \cdot \frac{\partial \mathcal{L}}{\partial \alpha_k})$$

A concrete example

* Adapted from
"Deep Learning"
by Goodfellow

In the Simplist Case - as here -

Padding

Strick Size has to do with how we pass Kernels over inputs - have assumed size of 1 above.

Also affects Output Size

$$\left(\frac{\left(X_{h}+P_{h}-W_{h}+S_{h}\right)}{S_{h}},\left(\frac{X_{w}+P_{w}-W_{w}+S_{w}}{S_{w}}\right)\right)$$

Higher Dimensions

Above we assumed 2d inputs but we can extend to carbitrary tensors. Useful, e.g. for RGB images.

Can Sum for final map, or use another Pooling Strategy. Feature - Pool - Smaller (often Scalar)
Map Output f Max pooling extract max value 2 2 2 2 Max
Pool
Pool
Feature Map
[10 6]
[14 90]

Q What happens to & Through Pooling (Max) Operation?

Intuition Individual filters may Specialize at recognizing Something (Say, Cats) - Max pooling is like asking "does this window contain a Cat?" repeatedly (More on HW4!)

Often we define multiple independent filters, with same or varying Size.

Concretely, Consider:

$$\begin{bmatrix} -2.5 + 3.3 & -2.3 + 3.1 \\ -2.6 + 3.8 & -2.8 + 3.1 \\ -2.2 + 3.3 & -2.3 + 3.4 \end{bmatrix} = \begin{bmatrix} -1 & -3 \\ 12 & -13 \\ 5 & 6 \end{bmatrix}$$