
 

DS 4440 Auto encoders

Diffusion Models

Many problems in ML amount

to generative Modeling

Consider image generation
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Image generation Topefully a bit
model better Though

Want to be able to sample
from some unknown distribution

p x is on



But this hard What would P

look like for natural images

Auto encoders
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Loss Reconstruction error

x x ̅ MSECX x ̅

De noising Auto encoders add
noise first
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Variational Auto encoders inject a probabalistic
element into the process
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Diffusion Models approximate P

by iteratively sampling from
simple distributions

Suppose we have a sample Cat

image Xo In Gaussian Diffusion
we

repeatedly noise This
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Now Consider de
noising iteratively

Given Pt produce distribution Pt 1
This is a Reverse Sampler



IDEA Learn to reverse noising
one step at a Time
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But how For Gaussian noising IT
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Estimate via learned fo Rd p

Learn via denoising objective
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are sampling

If we learn This we can perform
one denoising Step

But Then we can generate
N 0 02 sample pure noise
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How could we Condition The

generation


