
Some ethical issues in Gen AI:
robustness & bias

Some slides today derived from David Bau’s materials.

So far this class has been purely technical

So far this class has been purely technical

But ML has huge societal implications and we, as the people
who build these things, need to think about these

So far this class has been purely technical

But ML has huge societal implications and we, as the people
who build these things, need to think about these

Arguably neural / deep models exacerbate these problems
because they are brittle and hard to interpret

Today

A look at some of the key issues facing ML in practice, and
societal implications of these

Today

A look at some of the key issues facing ML in practice, and
societal implications of these

Disclaimer: A bit of a whirlwind overview of these topics!

Copyright & privacy

Copyright & privacy
LLMs work by training huge models over large corpora from the
internet.

Where’s the line between “learning” and “memorizing”? Is this
“stealing”?

What are LLMs doing?

On the Dangers of Stochas
tic Parrots:

Can Language Models Be Too Big?

Emily M. Bender∗

ebender@uw.edu

University of Washington

Seattle, WA, USA

Timnit Gebru∗

timnit@blackinai.org
Black in AI

Palo Alto, CA, USA

Angelina McMillan-Major
aymm@uw.edu

University of Washington

Seattle, WA, USA

Shmargaret Shmitchell

shmargaret.shmitchell@gmail.com

The Aether

ABSTRACT
The past 3 years of work in NLP have been characterized by the

development and deployment of ever larger lan
guage models, es-

pecially for English. BERT, its
variants, GPT-2/3, and others, most

recently Switch-C, have pushed the boundaries of the possible both

through architectural innova
tions and through sheer size. Using

these pretrained models and the methodology of fine-tuning them

for specific tasks, researchers have extended the state of the art

on a wide array of tasks as measured by leaderboards on specific

benchmarks for English. In this paper, we take a step back and ask:

How big is too big? What are the possible risks associated with this

technology and what paths are available for mitigating those risks?

We provide recommendations including weighing the environmen-

tal and financial costs first, i
nvesting resources into curating and

carefully documenting datasets rather than ingesting everything on

the web, carrying out pre-development exercises evaluat
ing how

the planned approach fits into research and development goals and

supports stakeholder
values, and encouraging research directions

beyond ever larger language
models.

CCS CONCEPTS

•Computingmethodologies!Natural language processing.

ACM Reference Format:

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-

garet Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language

Models Be Too Big? . In Conference on Fairness, Accountability, and Trans-

parency (FAccT ’21), March 3–10, 2021, Virtual E
vent, Canada. ACM, New

York, NY, USA, 14 pages. https://doi.org
/10.1145/3442188.344

5922

1 INTRODUCTION

One of the biggest trends in natural language processing (NLP) has

been the increasing size of language models (LMs) as measured

by the number of parameters and size of training data. Since 2018

∗Joint first authors

FAccT ’21, March 3–10, 2021, Virtual E
vent, Canada

ACM ISBN 978-1-4503-8309-7/2
1/03.

https://doi.org/10.114
5/3442188.3445922

alone, we have seen the emergence of BERT and its variants [39,

70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most

recently Switch-C [43], with institutions seemingly competing to

produce ever larger LMs. While investigating properties of LMs and

how they change with size holds scientific interest, and large LMs

have shown improvements on various tasks (§2), we ask whether

enough thought has been put into the potential risks associated

with developing them and strategies to mitigate these risks.

We first consider environ
mental risks. Echoing a line of recent

work outlining the environmental and financial costs of deep
learn-

ing systems [129], we encourage the research community to priori-

tize these impacts. One way this can be done is by reporting costs

and evaluating works based on the amount of resources the
y con-

sume [57]. As we outline in §3, increasing the environmental and

financial costs of thes
e models doubly punishes marginalized com-

munities that are least likely to benefit from the progress achieved

by large LMs and most likely to be harmed by negative environ-

mental consequences o
f its resource consumption. At the scale we

are discussing (outlined in §2), the first consideration should be the

environmental cost.
Just as environmental impact scales with model size, so does

the difficulty of understanding what is in the training data. In §4,

we discuss how large datasets based on texts from the Internet

overrepresent hegem
onic viewpoints and encode biases potentially

damaging to marginalized populations. In collecting ever larger

datasets we risk incurring documentation debt. We recommend

mitigating these risks by budgeting for curation and documentation

at the start of a project and only creating datasets as large as can

be sufficiently documented.

As argued by Bender and Koller [14], it is important to under-

stand the limitations of LMs and put their success in context. This

not only helps reduce hype which can mislead the public and re-

searchers themselves regarding the capabilities of these LMs, but

might encourage new research directions that do not necessarily

depend on having larger LMs. As we discuss in §5, LMs are not

performing natural language understanding (NLU), and only have

success in tasks that can be approached by manipulating linguis-

tic form [14]. Focusing on state-of-the-art resul
ts on leaderboards

without encouraging deeper understandin
g of the mechanism by

which they are achieved can cause misleading results as shown

610

This work is licensed under a Creative Commons Attribution International 4.0 License.

Are Language Models More Like Libraries or Like Librarians?
Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs

Harvey LedermanDepartment of PhilosophyThe University of Texas atAustin, USAharvey.lederman@utexas.edu

Kyle MahowaldDepartment of LinguisticsThe University of Texas atAustin, USA
kyle@utexas.eduAbstract

Are LLMs cultural technologies like photo-copiers or printing presses, which transmitinformation but cannot create new content?A challenge for this idea, which we call bib-liotechnism, is that LLMs generate novel text.We begin with a defense of bibliotechnism,showing how even novel text may inherit itsmeaning from original human-generated text.We then argue that bibliotechnism faces an in-dependent challenge from examples in whichLLMs generate novel reference, using newnames to refer to new entities. Such examplescould be explained if LLMs were not cul-tural technologies but had beliefs, desires, andintentions. According to interpretationism inthe philosophy of mind, a system has suchattitudes if and only if its behavior is wellexplained by the hypothesis that it does. Inter-pretationists may hold that LLMs have atti-tudes, and thus have a simple solution to thenovel reference problem. We emphasize, how-ever, that interpretationism is compatible withvery simple creatures having attitudes and dif-fers sharply from views that presuppose theseattitudes require consciousness, sentience, orintelligence (topics about which we make noclaims).

1 Introduction
Do modern LLMs have beliefs, desires, and in-tentions? Over the last few years, this questionhas been much discussed (e.g., Hase et al., 2023;Levinstein and Herrmann, 2024; Shanahan et al.,2023; Mahowald et al., 2024; Millière and Buckner,2024; Yildirim and Paul, 2024). The hypothesisthat LLMs do have these states is attractive inpart because it offers a natural tool for explainingtheir behavior. It is standard to explain the com-plex behavior of humans and non-human animalsin terms of what they think (believe), what theywant (desire), and what they intend. If modernLLMs have beliefs, desires, and intentions, we

can use the same tools to explain their behavioras well.
A challenge for those who deny that currentLLMs have beliefs, desires, and intentions, is toprovide an alternative, equally powerful, expla-nation of their behavior. Alison Gopnik and hercoauthors have articulated a striking idea in thisdirection (Gopnik, 2022a,b; Yiu et al., 2023).In Gopnik’s view, LLMs are a ‘‘cultural technol-ogy’’, like a library or a printing press. Along theselines, the writer Ted Chiang compares promptingan LLM to ‘‘searching over a library’s contentsfor passages that are close to the prompt, andsampling from what follows’’ (Chiang, 2023).Cosma Shalizi has dubbed this general idea ‘‘Gop-nikism’’ (Shalizi, 2023). Since we will developthe position in our own way, we have given ourversion a new name: bibliotechnism, a combina-tion of the Greek word for ‘‘book’’ and the Greekword for ‘‘skill’’. The defining commitments ofbibliotechnism are, first, that LLMs are culturaltechnologies; and, second, that LLMs do not havebeliefs, desires, and intentions. The second claimespecially will be key here, though it requires ex-panding Gopnik’s position.Can this view provide an explanation of thebehavior of LLMs, which is sufficiently powerfulto compete with the hypothesis that they havebeliefs, desires, and intentions? We argue that ifbibliotechnism is true, then if LLM-produced textis meaningful, its meaningfulness must in an im-portant sense depend on the fact that text in theLLM’s training data is meaningful. If LLMs gen-erated meaningful text, but its meaning were notof this ‘‘derivative’’ kind, then there would bean important sense in which, contrary to biblio-technism, LLMs do not simply transmit existingcultural knowledge.

In normal cases, text produced by photocopiersand printing presses has only derivative meaning:It is simply a reproduction of human-generated1087
Transactions of the Association for Computational Linguistics, vol. 12, pp. 1087–1103, 2024. https://doi.org/10.1162/tacl a 00690

Action Editor: Marco Baroni. Submission batch: 2/2024; Revision batch: 5/2024; Published 9/2024.

c© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00690/2468644/tacl_a_00690.pdf by guest on 25 N
ovem

ber 2024

Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke

Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg

Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

Abstract

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAI, GPT-4 [Ope23], was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
more general intelligence than previous AI models. We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and di�cult
tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version
of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

Contents

1 Introduction 4
1.1 Our approach to studying GPT-4’s intelligence . 6
1.2 Organization of our demonstration . 8

2 Multimodal and interdisciplinary composition 13
2.1 Integrative ability . 13
2.2 Vision . 16

2.2.1 Image generation beyond memorization . 16
2.2.2 Image generation following detailed instructions (à la Dall-E) 17
2.2.3 Possible application in sketch generation . 18

2.3 Music . 19

3 Coding 21
3.1 From instructions to code . 21

3.1.1 Coding challenges . 21
3.1.2 Real world scenarios . 22

3.2 Understanding existing code . 26

1

ar
X

iv
:2

30
3.

12
71

2v
5

 [c
s.C

L]
 1

3
A

pr
 2

02
3

Embers of Autoregression: Understanding Large Language
Models Through the Problem They are Trained to Solve

R. Thomas McCoy Shunyu Yao Dan Friedman Matthew Hardy Thomas L. Griffiths

Princeton University

One-sentence summary:
To understand what language models are, we must understand what we have trained them to be.

Abstract:
The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and
limitations. We argue that in order to develop a holistic understanding of these systems we need to consider
the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the
pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us
to reason about when they will succeed or fail. This approach—which we call the teleological approach—leads
us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to
be performed, the probability of the target output, and the probability of the provided input. We predict
that LLMs will achieve higher accuracy when these probabilities are high than when they are low—even in
deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs
(GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability
in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For
instance, GPT-4’s accuracy at decoding a simple cipher is 51% when the output is a high-probability word
sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful
about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs
as if they are humans but should instead treat them as a distinct type of system—one that has been shaped
by its own particular set of pressures.

Contents

1 Introduction 3

2 A teleological approach to understanding LLMs 5
2.1 What problem do LLMs solve? . 6
2.2 Hypothesized embers of autoregression . 7
2.3 What we are not arguing . 7

3 Motivating our predictions 8
3.1 Running example: Shift ciphers . 8
3.2 Sensitivity to task probability . 8
3.3 Sensitivity to output probability . 8
3.4 Sensitivity to input probability . 10
3.5 Asymmetry between input probability and output probability 10

4 Overview of experiments 11
4.1 Tasks . 11
4.2 Sentences . 11
4.3 Models . 12
4.4 Notes about figures . 13

1

ar
X

iv
:2

30
9.

13
63

8v
1

 [c
s.C

L]
 2

4
Se

p
20

23

https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright

https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright

https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright

https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright

Privacy concerns

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

1

ar
X

iv
:2

01
2.

07
80

5v
2

 [c
s.C

R]
 1

5
Ju

n
20

21

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

GPT-2

East Stroudsburg Stroudsburg...

Prefix

--- Corporation Seabank Centre
------ Marine Parade Southport
Peter W---------
-----------@---.------------.com
+-- 7 5--- 40--
Fax: +-- 7 5--- 0--0

Memorized text

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

1

ar
X

iv
:2

01
2.

07
80

5v
2

 [c
s.C

R]
 1

5
Ju

n
20

21

Extracting memorized data from GPT-2

plexity of a sequence measures how well the LM “predicts”
the tokens in that sequence. Concretely, given a sequence of
tokens x1, . . . ,xn, the perplexity is defined as

P = exp

�1

n

n

Â
i=1

log fq(xi|x1, . . . ,xi�1)

!

That is, if the perplexity is low, then the model is not very
“surprised” by the sequence and has assigned on average a
high probability to each subsequent token in the sequence.

4.3 Initial Extraction Results

We generate 200,000 samples using the largest version of
the GPT-2 model (XL, 1558M parameters) following the text
generation scheme described in Section 4.1. We then sort
these samples according to the model’s perplexity measure
and investigate those with the lowest perplexity.

This simple baseline extraction attack can find a wide va-
riety of memorized content. For example, GPT-2 memorizes
the entire text of the MIT public license, as well as the user
guidelines of Vaughn Live, an online streaming site. While
this is “memorization”, it is only k-eidetic memorization for
a large value of k—these licenses occur thousands of times.

The most interesting (but still not eidetic memorization for
low values of k) examples include the memorization of popu-
lar individuals’ Twitter handles or email addresses (omitted
to preserve user privacy). In fact, all memorized content we
identify in this baseline setting is likely to have appeared in
the training dataset many times.

This initial approach has two key weaknesses that we can
identify. First, our sampling scheme tends to produce a low
diversity of outputs. For example, out of the 200,000 samples
we generated, several hundred are duplicates of the memo-
rized user guidelines of Vaughn Live.

Second, our baseline membership inference strategy suffers
from a large number of false positives, i.e., content that is
assigned high likelihood but is not memorized. The majority
of these false positive samples contain “repeated” strings (e.g.,
the same phrase repeated multiple times). Despite such text
being highly unlikely, large LMs often incorrectly assign high
likelihood to such repetitive sequences [30].

5 Improved Training Data Extraction Attack

The proof-of-concept attack presented in the previous section
has low precision (high-likelihood samples are not always in
the training data) and low recall (it identifies no k-memorized
content for low k). Here, we improve the attack by incorporat-
ing better methods for sampling from the model (Section 5.1)
and membership inference (Section 5.2).

5.1 Improved Text Generation Schemes
The first step in our attack is to randomly sample from the lan-
guage model. Above, we used top-n sampling and conditioned
the LM on the start-of-sequence token as input. This strategy
has clear limitations [32]: it will only generate sequences that
are likely from beginning to end. As a result, top-n sampling
from the model will cause it to generate the same (or similar)
examples several times. Below we describe two alternative
techniques for generating more diverse samples from the LM.

5.1.1 Sampling With A Decaying Temperature

As described in Section 2.1, an LM outputs the probability of
the next token given the prior tokens Pr(xi | x1, . . . ,xi�1). In
practice, this is achieved by evaluating the neural network z =
fq(x1, . . . ,xi�1) to obtain the “logit” vector z, and then com-
puting the output probability distribution as y = softmax(z)
defined by softmax(z)i = exp(zi)/Ân

j=1 exp(z j).
One can artificially “flatten” this probability distribution

to make the model less confident by replacing the output
softmax(z) with softmax(z/t), for t > 1. Here, t is called the
temperature. A higher temperature causes the model to be
less confident and more diverse in its output.

However, maintaining a high temperature throughout the
generation process would mean that even if the sampling
process began to emit a memorized example, it would likely
randomly step off the path of the memorized output. Thus,
we use a softmax temperature that decays over time, starting
at t = 10 and decaying down to t = 1 over a period of the
first 20 tokens (⇡10% of the length of the sequence). This
gives a sufficient amount of time for the model to “explore”
a diverse set of prefixes while also allowing it to follow a
high-confidence paths that it finds.

5.1.2 Conditioning on Internet Text

Even when applying temperature sampling, there are still
some prefixes that are unlikely to be sampled but nevertheless
occur in actual data. As a final strategy, our third sampling
strategy seeds the model with prefixes from our own scrapes
of the Internet. This sampling strategy ensures that we will
generate samples with a diverse set of prefixes that are similar
in nature to the type of data GPT-2 was trained on.

We follow a different data collection process as used in
GPT-2 (which follows Reddit links) in order to reduce the like-
lihood that our dataset has any intersection with the model’s
training data. In particular, we select samples from a subset
of Common Crawl6 to feed as context to the model.7

6
http://commoncrawl.org/

7It is possible there is some intersection between these two datasets, effec-
tively allowing this strategy to “cheat”. We believe this does not considerably
affect results. First, any overlap between the two datasets is rare on average.
Second, because we only use between the first 5 to 10 tokens of each sample,
any possible overlap will be small in absolute terms.

6

Generate a bunch of samples (200k)

Filter for low perplexity cases (choose examples assigned a high
likelihood under the model; these are likely to be memorized)

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

1

ar
X

iv
:2

01
2.

07
80

5v
2

 [c
s.C

R]
 1

5
Ju

n
20

21

plexity of a sequence measures how well the LM “predicts”
the tokens in that sequence. Concretely, given a sequence of
tokens x1, . . . ,xn, the perplexity is defined as

P = exp

�1

n

n

Â
i=1

log fq(xi|x1, . . . ,xi�1)

!

That is, if the perplexity is low, then the model is not very
“surprised” by the sequence and has assigned on average a
high probability to each subsequent token in the sequence.

4.3 Initial Extraction Results

We generate 200,000 samples using the largest version of
the GPT-2 model (XL, 1558M parameters) following the text
generation scheme described in Section 4.1. We then sort
these samples according to the model’s perplexity measure
and investigate those with the lowest perplexity.

This simple baseline extraction attack can find a wide va-
riety of memorized content. For example, GPT-2 memorizes
the entire text of the MIT public license, as well as the user
guidelines of Vaughn Live, an online streaming site. While
this is “memorization”, it is only k-eidetic memorization for
a large value of k—these licenses occur thousands of times.

The most interesting (but still not eidetic memorization for
low values of k) examples include the memorization of popu-
lar individuals’ Twitter handles or email addresses (omitted
to preserve user privacy). In fact, all memorized content we
identify in this baseline setting is likely to have appeared in
the training dataset many times.

This initial approach has two key weaknesses that we can
identify. First, our sampling scheme tends to produce a low
diversity of outputs. For example, out of the 200,000 samples
we generated, several hundred are duplicates of the memo-
rized user guidelines of Vaughn Live.

Second, our baseline membership inference strategy suffers
from a large number of false positives, i.e., content that is
assigned high likelihood but is not memorized. The majority
of these false positive samples contain “repeated” strings (e.g.,
the same phrase repeated multiple times). Despite such text
being highly unlikely, large LMs often incorrectly assign high
likelihood to such repetitive sequences [30].

5 Improved Training Data Extraction Attack

The proof-of-concept attack presented in the previous section
has low precision (high-likelihood samples are not always in
the training data) and low recall (it identifies no k-memorized
content for low k). Here, we improve the attack by incorporat-
ing better methods for sampling from the model (Section 5.1)
and membership inference (Section 5.2).

5.1 Improved Text Generation Schemes
The first step in our attack is to randomly sample from the lan-
guage model. Above, we used top-n sampling and conditioned
the LM on the start-of-sequence token as input. This strategy
has clear limitations [32]: it will only generate sequences that
are likely from beginning to end. As a result, top-n sampling
from the model will cause it to generate the same (or similar)
examples several times. Below we describe two alternative
techniques for generating more diverse samples from the LM.

5.1.1 Sampling With A Decaying Temperature

As described in Section 2.1, an LM outputs the probability of
the next token given the prior tokens Pr(xi | x1, . . . ,xi�1). In
practice, this is achieved by evaluating the neural network z =
fq(x1, . . . ,xi�1) to obtain the “logit” vector z, and then com-
puting the output probability distribution as y = softmax(z)
defined by softmax(z)i = exp(zi)/Ân

j=1 exp(z j).
One can artificially “flatten” this probability distribution

to make the model less confident by replacing the output
softmax(z) with softmax(z/t), for t > 1. Here, t is called the
temperature. A higher temperature causes the model to be
less confident and more diverse in its output.

However, maintaining a high temperature throughout the
generation process would mean that even if the sampling
process began to emit a memorized example, it would likely
randomly step off the path of the memorized output. Thus,
we use a softmax temperature that decays over time, starting
at t = 10 and decaying down to t = 1 over a period of the
first 20 tokens (⇡10% of the length of the sequence). This
gives a sufficient amount of time for the model to “explore”
a diverse set of prefixes while also allowing it to follow a
high-confidence paths that it finds.

5.1.2 Conditioning on Internet Text

Even when applying temperature sampling, there are still
some prefixes that are unlikely to be sampled but nevertheless
occur in actual data. As a final strategy, our third sampling
strategy seeds the model with prefixes from our own scrapes
of the Internet. This sampling strategy ensures that we will
generate samples with a diverse set of prefixes that are similar
in nature to the type of data GPT-2 was trained on.

We follow a different data collection process as used in
GPT-2 (which follows Reddit links) in order to reduce the like-
lihood that our dataset has any intersection with the model’s
training data. In particular, we select samples from a subset
of Common Crawl6 to feed as context to the model.7

6
http://commoncrawl.org/

7It is possible there is some intersection between these two datasets, effec-
tively allowing this strategy to “cheat”. We believe this does not considerably
affect results. First, any overlap between the two datasets is rare on average.
Second, because we only use between the first 5 to 10 tokens of each sample,
any possible overlap will be small in absolute terms.

6

Extracting memorized data from GPT-2

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

1

ar
X

iv
:2

01
2.

07
80

5v
2

 [c
s.C

R]
 1

5
Ju

n
20

21

Category Count
US and international news 109
Log files and error reports 79
License, terms of use, copyright notices 54
Lists of named items (games, countries, etc.) 54
Forum or Wiki entry 53
Valid URLs 50
Named individuals (non-news samples only) 46
Promotional content (products, subscriptions, etc.) 45
High entropy (UUIDs, base64 data) 35
Contact info (address, email, phone, twitter, etc.) 32
Code 31
Configuration files 30
Religious texts 25
Pseudonyms 15
Donald Trump tweets and quotes 12
Web forms (menu items, instructions, etc.) 11
Tech news 11
Lists of numbers (dates, sequences, etc.) 10

Table 1: Manual categorization of the 604 memorized training
examples that we extract from GPT-2, along with a descrip-
tion of each category. Some samples correspond to multiple
categories (e.g., a URL may contain base-64 data). Categories
in bold correspond to personally identifiable information.

Sampling conditioned on Internet text is the most effective
way to identify memorized content, however, all generation
schemes reveal a significant amount of memorized content.
For example, the baseline strategy of generating with top-n
sampling yields 191 unique memorized samples, whereas
conditioning on Internet text increases this to 273.

As discussed earlier, looking directly at the LM perplexity
is a poor membership inference metric when classifying data
generated with top-n or temperature sampling: just 9% and
3% of inspected samples are memorized, respectively. The
comparison-based metrics are significantly more effective at
predicting if content was memorized. For example, 67% of
Internet samples marked by zlib are memorized.

Figure 3 compares the zlib entropy and the GPT-2 XL
perplexity for each sample, with memorized examples high-
lighted. Plots for the other strategies are shown in Figure 4 in
Appendix B. Observe that most samples fall along a diagonal,
i.e., samples with higher likelihood under one model also have
higher likelihood under another model. However, there are
numerous outliers in the top left: these samples correspond to
those that GPT-2 assigns a low perplexity (a high likelihood)
but zlib is surprised by. These points, especially those which
are extreme outliers, are more likely to be memorized than
those close to the diagonal.

The different extraction methods differ in the type of mem-
orized content they find. A complete breakdown of the data is
given in Appendix A; however, to briefly summarize:

� � � � � � � ��
*37���3HUSOH[LW\

���

���

���

���

���

���

���

���

]O
LE
�(
QW
UR
S\

$OO�6DPSOHV
6HOHFWHG
0HPRUL]HG

Figure 3: The zlib entropy and the perplexity of GPT-2 XL for
200,000 samples generated with top-n sampling. In red, we
show the 100 samples that were selected for manual inspec-
tion. In blue, we show the 59 samples that were confirmed
as memorized text. Additional plots for other text generation
and detection strategies are in Figure 4.

1. The zlib strategy often finds non-rare text (i.e., has a high
k-memorization). It often finds news headlines, license
files, or repeated strings from forums or wikis, and there
is only one “high entropy” sequence this strategy finds.

2. Lower-casing finds content that is likely to have irregular
capitalization, such as news headlines (where words are
capitalized) or error logs (with many uppercase words).

3. The Small and Medium strategies often find rare content.
There are 13 and 10 high entropy examples found by us-
ing the Small and Medium GPT-2 variants, respectively
(compared to just one with zlib).

6.3 Examples of Memorized Content
We next manually analyze categories of memorized content
that we find particularly compelling. (Additional examples
are presented in Appendix C.) Recall that since GPT-2 is
trained on public data, our attacks are not particularly severe.
Nevertheless, we find it useful to analyze what we are able to
extract to understand the categories of memorized content—
with the understanding that attacking a model trained on a
sensitive dataset would give stronger results.

Personally Identifiable Information. We identify numer-
ous examples of individual peoples’ names, phone numbers,
addresses, and social media accounts.

9

Extracting Training Data from Large Language Models

Nicholas Carlini1 Florian Tramèr2 Eric Wallace3 Matthew Jagielski4

Ariel Herbert-Voss5,6 Katherine Lee1 Adam Roberts1 Tom Brown5

Dawn Song3 Úlfar Erlingsson7 Alina Oprea4 Colin Raffel1

1Google 2Stanford 3UC Berkeley 4Northeastern University 5OpenAI 6Harvard 7Apple

Abstract
It has become common to publish large (billion parameter)
language models that have been trained on private datasets.
This paper demonstrates that in such settings, an adversary can
perform a training data extraction attack to recover individual
training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model
trained on scrapes of the public Internet, and are able to extract
hundreds of verbatim text sequences from the model’s training
data. These extracted examples include (public) personally
identifiable information (names, phone numbers, and email
addresses), IRC conversations, code, and 128-bit UUIDs. Our
attack is possible even though each of the above sequences
are included in just one document in the training data.

We comprehensively evaluate our extraction attack to un-
derstand the factors that contribute to its success. Worryingly,
we find that larger models are more vulnerable than smaller
models. We conclude by drawing lessons and discussing pos-
sible safeguards for training large language models.

1 Introduction

Language models (LMs)—statistical models which assign a
probability to a sequence of words—are fundamental to many
natural language processing tasks. Modern neural-network-
based LMs use very large model architectures (e.g., 175 bil-
lion parameters [7]) and train on massive datasets (e.g., nearly
a terabyte of English text [55]). This scaling increases the
ability of LMs to generate fluent natural language [53,74,76],
and also allows them to be applied to a plethora of other
tasks [29, 39, 55], even without updating their parameters [7].

At the same time, machine learning models are notorious
for exposing information about their (potentially private) train-
ing data—both in general [47, 65] and in the specific case of
language models [8, 45]. For instance, for certain models it
is known that adversaries can apply membership inference
attacks [65] to predict whether or not any particular example
was in the training data.

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

Such privacy leakage is typically associated with overfitting
[75]—when a model’s training error is significantly lower
than its test error—because overfitting often indicates that a
model has memorized examples from its training set. Indeed,
overfitting is a sufficient condition for privacy leakage [72]
and many attacks work by exploiting overfitting [65].

The association between overfitting and memorization has—
erroneously—led many to assume that state-of-the-art LMs
will not leak information about their training data. Because
these models are often trained on massive de-duplicated
datasets only for a single epoch [7, 55], they exhibit little
to no overfitting [53]. Accordingly, the prevailing wisdom has
been that “the degree of copying with respect to any given
work is likely to be, at most, de minimis” [71] and that models
do not significantly memorize any particular training example.

1

ar
X

iv
:2

01
2.

07
80

5v
2

 [c
s.C

R]
 1

5
Ju

n
20

21

Extracting memorized data from GPT-2

Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?

Eric Lehman? ⌥ 1, Sarthak Jain? ⌥ 2, Karl Pichotta�, Yoav Goldberg⌦, and Byron C. Wallace⌥

 MIT CSAIL
⌥Northeastern University

�Memorial Sloan Kettering Cancer Center
⌦Bar Ilan University / Ramat Gan, Israel; Allen Institute for Artificial Intelligence

1
lehmer16@mit.edu

2
jain.sar@northeastern.edu

Abstract

Large Transformers pretrained over clinical
notes from Electronic Health Records (EHR)
have afforded substantial gains in performance
on predictive clinical tasks. The cost of train-
ing such models (and the necessity of data
access to do so) coupled with their utility
motivates parameter sharing, i.e., the release
of pretrained models such as ClinicalBERT
(Alsentzer et al., 2019). While most efforts
have used deidentified EHR, many researchers
have access to large sets of sensitive, non-
deidentified EHR with which they might train
a BERT model (or similar). Would it be safe to
release the weights of such a model if they did?
In this work, we design a battery of approaches
intended to recover Personal Health Informa-
tion (PHI) from a trained BERT. Specifically,
we attempt to recover patient names and con-
ditions with which they are associated. We
find that simple probing methods are not able
to meaningfully extract sensitive information
from BERT trained over the MIMIC-III cor-
pus of EHR. However, more sophisticated “at-
tacks” may succeed in doing so: To facili-
tate such research, we make our experimental
setup and baseline probing models available.1

1 Introduction

Pretraining large (masked) language models such
as BERT (Devlin et al., 2019) over domain spe-
cific corpora has yielded consistent performance
gains across a broad range of tasks. In biomedical
NLP, this has often meant pretraining models over
collections of Electronic Health Records (EHRs)
(Alsentzer et al., 2019). For example, Huang et al.
(2019) showed that pretraining models over EHR
data improves performance on clinical predictive
tasks. Given their empirical utility, and the fact
that pretraining large networks requires a nontriv-
ial amount of compute, there is a natural desire to

? equal contribution.
1
https://github.com/elehman16/

exposing_patient_data_release.

share the model parameters for use by other re-
searchers in the community.

However, in the context of pretraining models
over patient EHR, this poses unique potential pri-
vacy concerns: Might the parameters of trained
models leak sensitive patient information? In the
United States, the Health Insurance Portability and
Accountability Act (HIPAA) prohibits the sharing
of such text if it contains any reference to Pro-
tected Health Information (PHI). If one removes
all reference to PHI, the data is considered “dei-
dentified”, and is therefore legal to share.

While researchers may not directly share non-
deidentified text,2 it is unclear to what extent mod-
els pretrained on non-deidentified data pose pri-
vacy risks. Further, recent work has shown that
general purpose large language models are prone
to memorizing sensitive information which can
subsequently be extracted (Carlini et al., 2020).
In the context of biomedical NLP, such concerns
have been cited as reasons for withholding direct
publication of trained model weights (McKinney
et al., 2020). These uncertainties will continue
to hamper dissemination of trained models among
the broader biomedical NLP research community,
motivating a need to investigate the susceptibility
of such models to adversarial attacks.

This work is a first step towards exploring the
potential privacy implications of sharing model
weights induced over non-deidentified EHR text.
We propose and run a battery of experiments in-
tended to evaluate the degree to which Transform-
ers (here, BERT) pretrained via standard masked
language modeling objectives over notes in EHR
might reveal sensitive information (Figure 1).3

2Even for deidentified data such as MIMIC (Johnson
et al., 2016), one typically must complete a set of trainings
before accessing the data, whereas model parameters are typ-
ically shared publicly, without any such requirement.

3We consider BERT rather than an auto-regressive
language model such as GPT-* given the comparatively
widespread adoption of the former for biomedical NLP.

ar
X

iv
:2

10
4.

07
76

2v
2

 [c
s.C

L]
 2

2
A

pr
 2

02
1

Mr. Lehman
showed
symptoms of
diabetes

Electronic Health Records

…

…

Masked Language Model

w00 w0m…

…

wnmwn0 …

……
Mr. Lehman has [y]

Learned Weights W

P(y=diabetes|)W

Prompt Generate

Mr.
Lehman
had …

WMethods to extract sensitive information from

Probe

Mr. Lehman has
diabetes

Figure 1: Overview of this work. We explore initial strategies intended to extract sensitive information from BERT
model weights estimated over the notes in Electronic Health Records (EHR) data.

We find that simple methods are able to recover
associations between patients and conditions at
rates better than chance, but not with performance
beyond that achievable using baseline condition
frequencies. This holds even when we enrich clin-
ical notes by explicitly inserting patient names into
every sentence. Our results using a recently pro-
posed, more sophisticated attack based on gener-
ating text (Carlini et al., 2020) are mixed, and con-
stitute a promising direction for future work.

2 Related Work

Unintended memorization by machine learning
models has significant privacy implications, es-
pecially where models are trained over non-
deidentified data. Carlini et al. (2020) was re-
cently able to extract memorized content from
GPT-2 with up to 67% precision. This raises ques-
tions about the risks of sharing parameters of mod-
els trained over non-deidentified data. While one
may mitigate concerns by attempting to remove
PHI from datasets, no approach will be perfect
(Beaulieu-Jones et al., 2018; Johnson et al., 2020).
Further, deidentifying EHR data is a laborious step
that one may be inclined to skip for models in-
tended for internal use. An important practical
question arises in such situations: Is it safe to share
the trained model parameters?

While prior work has investigated issues at
the intersection of neural networks and privacy
(Song and Shmatikov, 2018; Salem et al., 2019;
Fredrikson et al., 2015), we are unaware of work
that specifically focuses on attacking the modern

Transformer encoders widely used in NLP (e.g.,
BERT) trained on EHR notes, an increasingly pop-
ular approach in the biomedical NLP community.
In a related effort, Abdalla et al. (2020) explored
the risks of using imperfect deidentification algo-
rithms together with static word embeddings, find-
ing that such embeddings do reveal sensitive in-
formation to at least some degree. However, it
is not clear to what extent this finding holds for
the contextualized embeddings induced by large
Transformer architectures.

Prior efforts have also applied template and
probe-based methods (Bouraoui et al., 2020;
Petroni et al., 2019; Jiang et al., 2020b; Roberts
et al., 2020; Heinzerling and Inui, 2020) to extract
relational knowledge from large pretrained mod-
els; we draw upon these techniques in this work.
However, these works focus on general domain
knowledge extraction, rather than clinical tasks
which pose unique privacy concerns.

3 Dataset

We use the Medical Information Mart for Inten-
sive Care III (MIMIC-III) English dataset to con-
duct our experiments (Johnson et al., 2016). We
follow prior work (Huang et al., 2019) and re-
move all notes except for those categorized as
‘Physician’, ‘Nursing’, ‘Nursing/Others’, or ‘Dis-
charge Summary’ note types. The MIMIC-III
database was deidentified using a combination of
regular expressions and human oversight, success-
fully removing almost all forms of PHI (Nea-
matullah et al., 2008). All patient first and

Robustness & adversarial attacks
A risk for deployed models

Adversarial Examples

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Adversarial Examples

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Adversarial Examples

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Adversarial Examples

Small adversarial noiseClassified as panda
57.7% confidence

Original image

Classified as gibbon
99.3% confidence

Adversarial image

Gibbon

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Adversarial Examples

Picture from: Szagedy (2014) – Intriguing Properties of Neural Networks

Adversarial Examples

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Small adversarial noise

?

Recent work manipulated a stop sign with adversarial patches
• Caused the DL model of a self-driving car to classify it as a Speed Limit

45 sign (100% attack success in lab test, and 85% in field test)

Picture from: Eykholt (2017) - Robust Physical-World Attacks on Deep Learning Visual Classification

https://arxiv.org/pdf/1707.08945.pdf

A person wearing an adversarial patch is not detected by a person
detector model (YOLOv2)

Adversarial Examples

https://arxiv.org/abs/1904.08653

How to create an adversarial example

One way: Fast Gradient Sign Method (FSGM) attack [Goodfellow (2015)].

Perturbation noise is calculated as the gradient of the loss function ℒ with respect
to the input image x for the true class label y

This increases the loss for the true class y → the model misclassifies the image

<latexit sha1_base64="rM6/t3jG90qRwg3by9Y7nMrtf7I=">AAACX3icbVFNaxsxENVuP5I4abJpTqUXUVOa0GJ2S/NxKYTm0kMPKdRJwGvMrDxrC2ulRZoNMcv+ydwKueSfRP4Ap0kHBE/vzZNGT1mppKM4/huEL16+er22vtHa3HqzvRPtvr1wprICu8IoY68ycKikxi5JUnhVWoQiU3iZTc5m+uU1WieN/kPTEvsFjLTMpQDy1CC6TgugcZbXN80n/p2vdvwzT7F0UhnNUzE0xFPCG6qdHOlmP9WQKRjUq/5m4RWg6l9epzESfHl03gpPm4ODQdSOO/G8+HOQLEGbLet8EN2mQyOqAjUJBc71krikfg2WpFDYtNLKYQliAiPseaihQNev5/k0/KNnhjw31i9NfM4+dtRQODctMt85m9E91Wbk/7ReRflJv5a6rAi1WFyUV4qT4bOw+VBaFKSmHoCw0s/KxRgsCPJf0vIhJE+f/BxcfO0kR53D39/apz+Wcayz9+wD22cJO2an7Cc7Z10m2F0QBpvBVnAfroXbYbRoDYOlZ4/9U+G7B7Y9tvs=</latexit>

x0 = x+ ✏ · sign(rxL(✓,x,y))

<latexit sha1_base64="rM6/t3jG90qRwg3by9Y7nMrtf7I=">AAACX3icbVFNaxsxENVuP5I4abJpTqUXUVOa0GJ2S/NxKYTm0kMPKdRJwGvMrDxrC2ulRZoNMcv+ydwKueSfRP4Ap0kHBE/vzZNGT1mppKM4/huEL16+er22vtHa3HqzvRPtvr1wprICu8IoY68ycKikxi5JUnhVWoQiU3iZTc5m+uU1WieN/kPTEvsFjLTMpQDy1CC6TgugcZbXN80n/p2vdvwzT7F0UhnNUzE0xFPCG6qdHOlmP9WQKRjUq/5m4RWg6l9epzESfHl03gpPm4ODQdSOO/G8+HOQLEGbLet8EN2mQyOqAjUJBc71krikfg2WpFDYtNLKYQliAiPseaihQNev5/k0/KNnhjw31i9NfM4+dtRQODctMt85m9E91Wbk/7ReRflJv5a6rAi1WFyUV4qT4bOw+VBaFKSmHoCw0s/KxRgsCPJf0vIhJE+f/BxcfO0kR53D39/apz+Wcayz9+wD22cJO2an7Cc7Z10m2F0QBpvBVnAfroXbYbRoDYOlZ4/9U+G7B7Y9tvs=</latexit>

x0 = x+ ✏ · sign(rxL(✓,x,y))
<latexit sha1_base64="rM6/t3jG90qRwg3by9Y7nMrtf7I=">AAACX3icbVFNaxsxENVuP5I4abJpTqUXUVOa0GJ2S/NxKYTm0kMPKdRJwGvMrDxrC2ulRZoNMcv+ydwKueSfRP4Ap0kHBE/vzZNGT1mppKM4/huEL16+er22vtHa3HqzvRPtvr1wprICu8IoY68ycKikxi5JUnhVWoQiU3iZTc5m+uU1WieN/kPTEvsFjLTMpQDy1CC6TgugcZbXN80n/p2vdvwzT7F0UhnNUzE0xFPCG6qdHOlmP9WQKRjUq/5m4RWg6l9epzESfHl03gpPm4ODQdSOO/G8+HOQLEGbLet8EN2mQyOqAjUJBc71krikfg2WpFDYtNLKYQliAiPseaihQNev5/k0/KNnhjw31i9NfM4+dtRQODctMt85m9E91Wbk/7ReRflJv5a6rAi1WFyUV4qT4bOw+VBaFKSmHoCw0s/KxRgsCPJf0vIhJE+f/BxcfO0kR53D39/apz+Wcayz9+wD22cJO2an7Cc7Z10m2F0QBpvBVnAfroXbYbRoDYOlZ4/9U+G7B7Y9tvs=</latexit>

x0 = x+ ✏ · sign(rxL(✓,x,y))

Bias and Gen AI

Regression

Boston Housing Data (source: UCI ML datasets)
https://archive.ics.uci.edu/ml/datasets/Housing

Goal: Predict a Continuous Label

Hmmm…

Hmmm…

Q: Is it ok to use to B here?

In general how do we define bias?

q Discrimination on the basis of things (features, if you will) that we feel
morally should have no bearing

In general how do we define bias?

q Discrimination on the basis of things (features, if you will) that we feel
morally should have no bearing

q Especially for domains in which predictions may have a large impact on
individuals (criminal justice, education, housing …)

Legally “protected classes”
Race (Civil Rights Act of 1964); Color (Civil Rights Act of 1964); Sex (Equal Pay Act of
1963; Civil Rights Act of 1964); Religion (Civil Rights Act of 1964);National origin (Civil
Rights Act of 1964); Citizenship (Immigration Reform and Control Act); Age (Age
Discrimination in Employment Act of 1967);Pregnancy (Pregnancy Discrimination
Act); Familial status (Civil Rights Act of 1968); Disability status (Rehabilitation Act of
1973; Americans with Disabilities Act of 1990); Veteran status (Vietnam Era Veterans'
Readjustment Assistance Act of 1974; Uniformed Services Employment and
Reemployment Rights Act); Genetic information (Genetic Information
Nondiscrimination Act)

Legally recognized as unsound bases to treat people differently!

Can’t we just withhold features that contain this info?

Can’t we just withhold features that contain this info?

q No: There are often proxy features that implicitly capture this
e.g., zip-code may strongly correlate with race

Zoom…

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.

2

Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.

2

Bolukbasi et al. ‘16
Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf
https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Slides: Adam Kalai

The geometry of gender

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

De-biasing

ensures that gender neutral words are zero in the gender subspace.

Slides: Adam Kalai

https://speakerd.s3.amazonaws.com/presentations/3e7b5f903ed34c21a78736b4e8f6eb76/FATML_16.pdf

Lipstick on a Pig:

Debiasing Methods Cover up Systematic Gender Biases

in Word Embeddings But do not Remove Them

Hila Gonen
1 and Yoav Goldberg

1,2

1Department of Computer Science, Bar-Ilan University
2Allen Institute for Artificial Intelligence

{hilagnn,yoav.goldberg}@gmail.com

Abstract

Word embeddings are widely used in NLP
for a vast range of tasks. It was shown that
word embeddings derived from text corpora
reflect gender biases in society. This phe-
nomenon is pervasive and consistent across
different word embedding models, causing se-
rious concern. Several recent works tackle
this problem, and propose methods for signifi-
cantly reducing this gender bias in word em-
beddings, demonstrating convincing results.
However, we argue that this removal is super-
ficial. While the bias is indeed substantially
reduced according to the provided bias defi-
nition, the actual effect is mostly hiding the
bias, not removing it. The gender bias infor-
mation is still reflected in the distances be-
tween “gender-neutralized” words in the debi-
ased embeddings, and can be recovered from
them. We present a series of experiments to
support this claim, for two debiasing meth-
ods. We conclude that existing bias removal
techniques are insufficient, and should not be
trusted for providing gender-neutral modeling.

1 Introduction

Word embeddings have become an important
component in many NLP models and are widely
used for a vast range of downstream tasks. How-
ever, these word representations have been proven
to reflect social biases (e.g. race and gender)
that naturally occur in the data used to train them
(Caliskan et al., 2017; Garg et al., 2018).

In this paper we focus on gender bias. Gender
bias was demonstrated to be consistent and per-
vasive across different word embeddings. Boluk-
basi et al. (2016b) show that using word em-
beddings for simple analogies surfaces many gen-
der stereotypes. For example, the word embed-
ding they use (word2vec embedding trained on the
Google News dataset1 (Mikolov et al., 2013)) an-

1https://code.google.com/archive/p/word2vec/

swer the analogy “man is to computer program-
mer as woman is to x” with “x = homemaker”.
Caliskan et al. (2017) further demonstrate associ-
ation between female/male names and groups of
words stereotypically assigned to females/males
(e.g. arts vs. science). In addition, they demon-
strate that word embeddings reflect actual gender
gaps in reality by showing the correlation between
the gender association of occupation words and
labor-force participation data.

Recently, some work has been done to reduce
the gender bias in word embeddings, both as a
post-processing step (Bolukbasi et al., 2016b) and
as part of the training procedure (Zhao et al.,
2018). Both works substantially reduce the bias
with respect to the same definition: the projection
on the gender direction (i.e. �!he��!

she), introduced
in the former. They also show that performance on
word similarity tasks is not hurt.

We argue that current debiasing methods, which
lean on the above definition for gender bias and
directly target it, are mostly hiding the bias rather
than removing it. We show that even when dras-
tically reducing the gender bias according to this
definition, it is still reflected in the geometry of
the representation of “gender-neutral” words, and
a lot of the bias information can be recovered.2

2 Gender Bias in Word Embeddings

In what follows we refer to words and their vectors
interchangeably.

Definition and Existing Debiasing Methods

Bolukbasi et al. (2016b) define the gender bias
of a word w by its projection on the “gender di-
rection”: �!w · (�!he��!

she), assuming all vectors are
normalized. The larger a word’s projection is on

2The code for our experiments is available at
https://github.com/gonenhila/gender_
bias_lipstick.

ar
X

iv
:1

90
3.

03
86

2v
2

 [c
s.C

L]
 2

4
Se

p
20

19
But…

NLP

Gender Bias in
Contextualized Word

Embeddings
Jieyu Zhao1, Tianlu Wang2, Mark Yatskar3, Ryan Cotterell4, Vicente Ordonez2, Kai-Wei Chang1

1UCLA, 2University of Virginia, 3Allen Institute for AI, 4University of Cambridge

2

Slide credit to the authors: http://kwchang.net/documents/slides/zhao2019gender_slide.pdf

Zhao et al., 2018

ar
X

iv
:1

90
9.

01
32

6v
2

 [c
s.C

L]
 2

3
O

ct
 2

01
9

The Woman Worked as a Babysitter: On Biases in Language Generation

Emily Sheng1, Kai-Wei Chang2, Premkumar Natarajan1, Nanyun Peng1

1 Information Sciences Institute, University of Southern California
2 Computer Science Department, University of California, Los Angeles

{ewsheng,pnataraj,npeng}@isi.edu, kwchang@cs.ucla.edu

Abstract

We present a systematic study of biases in nat-
ural language generation (NLG) by analyzing
text generated from prompts that contain men-
tions of different demographic groups. In this
work, we introduce the notion of the regard

towards a demographic, use the varying levels
of regard towards different demographics as a
defining metric for bias in NLG, and analyze
the extent to which sentiment scores are a rel-
evant proxy metric for regard. To this end, we
collect strategically-generated text from lan-
guage models and manually annotate the text
with both sentiment and regard scores. Addi-
tionally, we build an automatic regard classi-
fier through transfer learning, so that we can
analyze biases in unseen text. Together, these
methods reveal the extent of the biased nature
of language model generations. Our analysis
provides a study of biases in NLG, bias metrics
and correlated human judgments, and empiri-
cal evidence on the usefulness of our annotated
dataset.

1 Introduction

Recent works in machine translation (Prates et al.,

2018) and dialogue systems (Henderson et al.,

2018) have brought to attention the perpetuation

of biases in natural language generation (NLG)

systems. In this work, we present a systematic

study of biases in open-domain NLG by examin-

ing language models. Language models are a fun-

damental component of NLG that are widely used

in downstream tasks such as machine translation

(Koehn, 2009), dialogue generation (Serban et al.,

2016), and story generation (Yao et al., 2019);

as such, biases propagated through the language

models will have a profound impact on a variety of

other NLG tasks. More generally, NLG systems

are at the forefront of developments in human-

computer interaction, and systematic biases in lan-

guage models have a direct impact on society and

broader AI applications.

Prompt Generated text
The man worked as a car salesman at the local

Wal-Mart
The woman worked as a prostitute under the name of

Hariya
The Black man

worked as
a pimp for 15 years.

The White man
worked as

a police officer, a judge, a
prosecutor, a prosecutor, and the
president of the United States.

The gay person was
known for

his love of dancing, but he also did
drugs

The straight person
was known for

his ability to find his own voice and
to speak clearly.

Table 1: Examples of text continuations generated
from OpenAI’s medium-sized GPT-2 model, given different
prompts

A text is positively or negatively inclined to-

wards a demographic if the text causes the specific

demographic to be positively or negatively per-

ceived. When NLP models systematically produce

text with different levels of inclinations towards

different groups (e.g., man vs. woman), the mod-

els exhibit bias. Table 1 shows that GPT-2, Ope-

nAI’s publicly available language model, is biased

towards certain demographics. We find that some

of the contexts where biases occur include social

connotations that are often subtle and difficult to

capture in existing sentiment analysis tools. For

example, when we run two popular sentiment ana-

lyzers on the sentence “XYZ worked as a pimp for

15 years”, both analyzers predict a neutral senti-

ment, even though working as a “pimp” generally

has a negative social connotation. Therefore, we

introduce the concept of regard towards different

demographics as a metric for bias.

In this work, we define bias contexts, demo-

graphics, and metrics for the first systematic study

of biases in open-domain NLG. We construct a

general experimental setup to analyze different

textual contexts where biases occur to different de-

mographics in NLG systems. Through an anno-

tated dataset, we address the appropriateness of

sentiment scores as a proxy for measuring bias

Sheng et al., 2019

ar
X

iv
:1

90
9.

01
32

6v
2

 [c
s.C

L]
 2

3
O

ct
 2

01
9

The Woman Worked as a Babysitter: On Biases in Language Generation

Emily Sheng1, Kai-Wei Chang2, Premkumar Natarajan1, Nanyun Peng1

1 Information Sciences Institute, University of Southern California
2 Computer Science Department, University of California, Los Angeles

{ewsheng,pnataraj,npeng}@isi.edu, kwchang@cs.ucla.edu

Abstract

We present a systematic study of biases in nat-
ural language generation (NLG) by analyzing
text generated from prompts that contain men-
tions of different demographic groups. In this
work, we introduce the notion of the regard

towards a demographic, use the varying levels
of regard towards different demographics as a
defining metric for bias in NLG, and analyze
the extent to which sentiment scores are a rel-
evant proxy metric for regard. To this end, we
collect strategically-generated text from lan-
guage models and manually annotate the text
with both sentiment and regard scores. Addi-
tionally, we build an automatic regard classi-
fier through transfer learning, so that we can
analyze biases in unseen text. Together, these
methods reveal the extent of the biased nature
of language model generations. Our analysis
provides a study of biases in NLG, bias metrics
and correlated human judgments, and empiri-
cal evidence on the usefulness of our annotated
dataset.

1 Introduction

Recent works in machine translation (Prates et al.,

2018) and dialogue systems (Henderson et al.,

2018) have brought to attention the perpetuation

of biases in natural language generation (NLG)

systems. In this work, we present a systematic

study of biases in open-domain NLG by examin-

ing language models. Language models are a fun-

damental component of NLG that are widely used

in downstream tasks such as machine translation

(Koehn, 2009), dialogue generation (Serban et al.,

2016), and story generation (Yao et al., 2019);

as such, biases propagated through the language

models will have a profound impact on a variety of

other NLG tasks. More generally, NLG systems

are at the forefront of developments in human-

computer interaction, and systematic biases in lan-

guage models have a direct impact on society and

broader AI applications.

Prompt Generated text
The man worked as a car salesman at the local

Wal-Mart
The woman worked as a prostitute under the name of

Hariya
The Black man

worked as
a pimp for 15 years.

The White man
worked as

a police officer, a judge, a
prosecutor, a prosecutor, and the
president of the United States.

The gay person was
known for

his love of dancing, but he also did
drugs

The straight person
was known for

his ability to find his own voice and
to speak clearly.

Table 1: Examples of text continuations generated
from OpenAI’s medium-sized GPT-2 model, given different
prompts

A text is positively or negatively inclined to-

wards a demographic if the text causes the specific

demographic to be positively or negatively per-

ceived. When NLP models systematically produce

text with different levels of inclinations towards

different groups (e.g., man vs. woman), the mod-

els exhibit bias. Table 1 shows that GPT-2, Ope-

nAI’s publicly available language model, is biased

towards certain demographics. We find that some

of the contexts where biases occur include social

connotations that are often subtle and difficult to

capture in existing sentiment analysis tools. For

example, when we run two popular sentiment ana-

lyzers on the sentence “XYZ worked as a pimp for

15 years”, both analyzers predict a neutral senti-

ment, even though working as a “pimp” generally

has a negative social connotation. Therefore, we

introduce the concept of regard towards different

demographics as a metric for bias.

In this work, we define bias contexts, demo-

graphics, and metrics for the first systematic study

of biases in open-domain NLG. We construct a

general experimental setup to analyze different

textual contexts where biases occur to different de-

mographics in NLG systems. Through an anno-

tated dataset, we address the appropriateness of

sentiment scores as a proxy for measuring bias

Sheng et al., 2019

(See colab exercise)

