Some ethical issues in Gen AI: robustness & bias

So far this class has been purely technical

So far this class has been purely technical

But ML has huge societal implications and we, as the people who build these things, *need to think about these*

So far this class has been purely technical

But ML has huge societal implications and we, as the people who build these things, *need to think about these*

Arguably neural / deep models exacerbate these problems because they are **brittle** and hard to interpret

Today

A look at some of the key issues facing ML in practice, and societal implications of these

Today

A look at some of the key issues facing ML in practice, and societal implications of these

Disclaimer: A bit of a whirlwind overview of these topics!

Copyright & privacy

Copyright & privacy

LLMs work by training huge models over large corpora from the internet.

Where's the line between "learning" and "memorizing"? Is this "stealing"?

What are LLMs doing?

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?

Emily M. Bender* ebender@uw.edu University of Washington Seattle, WA, USA

Angelina McMillan-Major aymm@uw.edu University of Washington Seattle, WA, USA

Timnit Gebru* timnit@blackinai.org Black in AI Palo Alto, CA, USA

Shmargaret Shmitchell shmargaret.shmitchell@gmail.com The Aether

Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs

Harvey Lederman

Department of Philosophy The University of Texas at Austin, USA harvey.lederman@utexas.edu

Kyle Mahowald Department of Linguistics The University of Texas at Austin, USA

kyle@utexas.edu

Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve

R. Thomas McCov

Shunvu Yao

Dan Friedman

Matthew Hardy

Thomas L. Griffiths

Princeton University

Sparks of Artificial General Intelligence: Early experiments with GPT-4

Sébastien Bubeck Eric Horvitz

Ece Kamar Peter Lee Harsha Nori Hamid Palangi

Varun Chandrasekaran

Yin Tat Lee

Ronen Eldan

Marco Tulio Ribeiro

Johannes Gehrke Yuanzhi Li Yi Zhang

Scott Lundberg

Does LLM output inherently violate copyright law? [edit]

The copyright status of LLM-generated text is not defined by statute, so it is hard to make confident claims, but precedent exists for computer-generated art and other works created by non-humans. Here is what the US Copyright office has to say:^[1]

The Office will not register works produced by nature, animals, or plants. Likewise, the Office cannot register a work purportedly created by divine or supernatural beings, although the Office may register a work where the application or the deposit copy(ies) state that the work was inspired by a divine spirit.

[...]

Similarly, the Office will not register works produced by a machine or mere mechanical process that operates randomly or automatically without any creative input or intervention from a human author.

Is LLM output *capable* of violating copyright law? [edit]

The answer here is obviously "yes". An example, prompted from ChatGPT:[b]

What are the lyrics to "Moonage Daydream", by David Bowie?

```
Keep your 'lectric eye on me babe

Put your ray gun to my head

Press your space face close to mine, love

Freak out in a moonage daydream oh yeah
```

These are, indeed, the verbatim lyrics to an unambiguously copyrighted song. Of note is the fact that it was specifically asked to do this. Compare with this prompt, using the first couple line of the song:

I'm an alligator / I'm a mama papa comin' for you / I'm a space invader / I'll be a rock-'n-rollin' bitch for you

```
I'm a force of nature, a wild beast / A creature of the swamps, a king of the feast / I'm a living legend, a natural high / 'Cause I'm an alligator, and I'll never die
```

While this would be a sick Judas Priest song, it isn't one, and in fact, this text seems to never have been published ∠.

https://en.wikipedia.org/wiki/Wikipedia:Large_language_models_and_copyright

Privacy concerns

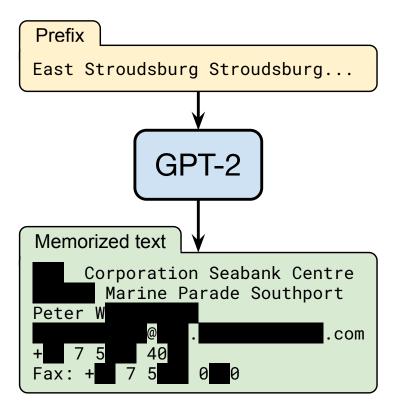


Figure 1: **Our extraction attack.** Given query access to a neural network language model, we extract an individual person's name, email address, phone number, fax number, and physical address. The example in this figure shows information that is all accurate so we redact it to protect privacy.

Extracting Training Data from Large Language Models

Nicholas Carlini ¹	Florian Tramèr ²	Eric Wallace ³	Matthew Jagielski ⁴
Ariel Herbert-Voss ^{5,6}	Katherine Lee ¹	Adam Roberts ¹	Tom Brown ⁵
Dawn Song ³	Úlfar Erlingsson ⁷	Alina Oprea ⁴	Colin Raffel ¹
¹ Google ² Stanford ³ UC	Berkeley ⁴ Northeast	ern University ⁵ Ope	enAI ⁶ Harvard ⁷ Apple

Extracting memorized data from GPT-2

Generate a bunch of samples (200k)

Filter for low perplexity cases (choose examples assigned a high likelihood under the model; these are likely to be memorized)

$$\mathcal{P} = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log f_{\theta}(x_i|x_1,\ldots,x_{i-1})\right)$$

Extracting Training Data from Large Language Models

Nicholas Carlini¹ Florian Tramèr² Eric Wallace³ Matthew Jagielski⁴

Ariel Herbert-Voss^{5,6} Katherine Lee¹ Adam Roberts¹ Tom Brown⁵

Dawn Song³ Úlfar Erlingsson⁷ Alina Oprea⁴ Colin Raffel¹

¹Google ²Stanford ³UC Berkeley ⁴Northeastern University ⁵OpenAl ⁶Harvard ⁷Apple

Extracting memorized data from GPT-2

This simple baseline extraction attack can find a wide variety of memorized content. For example, GPT-2 memorizes the entire text of the MIT public license, as well as the user guidelines of Vaughn Live, an online streaming site. While

Extracting Training Data from Large Language Models

Nicholas Carlini¹ Florian Tramèr² Eric Wallace³ Matthew Jagielski⁴

Ariel Herbert-Voss^{5,6} Katherine Lee¹ Adam Roberts¹ Tom Brown⁵

Dawn Song³ Úlfar Erlingsson⁷ Alina Oprea⁴ Colin Raffel¹

¹Google ²Stanford ³UC Berkeley ⁴Northeastern University ⁵OpenAI ⁶Harvard ⁷Apple

Extracting memorized data from GPT-2

Category					
US and international news	109				
Log files and error reports	79				
License, terms of use, copyright notices	54				
Lists of named items (games, countries, etc.)	54				
Forum or Wiki entry					
Valid URLs					
Named individuals (non-news samples only)					
Promotional content (products, subscriptions, etc.)	45				
High entropy (UUIDs, base64 data)					
Contact info (address, email, phone, twitter, etc.)					
Code	31				
Configuration files	30				
Religious texts	25				
Pseudonyms	15				
Donald Trump tweets and quotes	12				
Web forms (menu items, instructions, etc.)					
Tech news					
Lists of numbers (dates, sequences, etc.)	10				

Table 1: Manual categorization of the 604 memorized training examples that we extract from GPT-2, along with a description of each category. Some samples correspond to multiple categories (e.g., a URL may contain base-64 data). Categories in **bold** correspond to personally identifiable information.

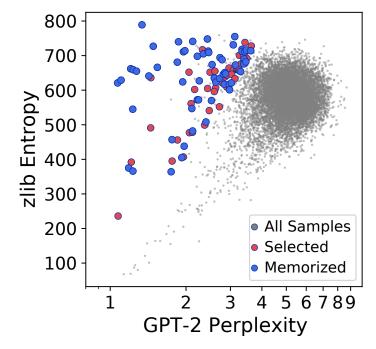


Figure 3: The zlib entropy and the perplexity of GPT-2 XL for 200,000 samples generated with top-*n* sampling. In red, we show the 100 samples that were selected for manual inspection. In blue, we show the 59 samples that were confirmed as memorized text. Additional plots for other text generation and detection strategies are in Figure 4.

Extracting Training Data from Large Language Models

OII						
	Nicholas Carlini ¹	Florian Tramèr ²	Eric Wallace ³	Matthew Jagielski ⁴		
Ariel Herbert-Voss ^{5,6}		Katherine Lee ¹	Adam Roberts ¹	Tom Brown ⁵		
	Dawn Song ³	Úlfar Erlingsson ⁷	Alina Oprea ⁴	Colin Raffel ¹		
1	Google ² Stanford ³ UC	Berkelev ⁴ Northeast	ern University ⁵ One	enAI ⁶ Harvard ⁷ Ar		

Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?

Eric Lehman* Ψ Υ ¹, Sarthak Jain* Υ ², Karl Pichotta^Φ, Yoav Goldberg^Ω, and Byron C. Wallace Υ

 Ψ MIT CSAIL

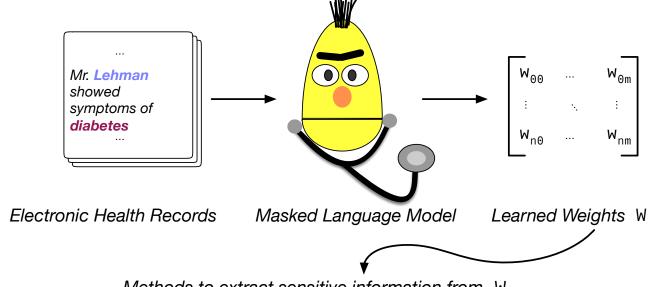
^{\gamma} Northeastern University

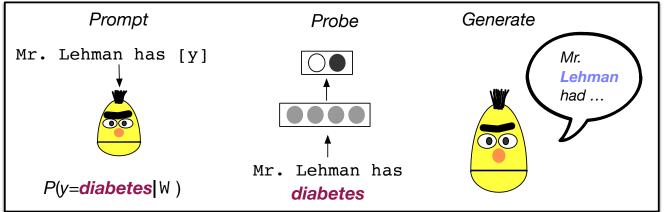
^ФMemorial Sloan Kettering Cancer Center

^ΩBar Ilan University / Ramat Gan, Israel; Allen Institute for Artificial Intelligence

¹lehmer16@mit.edu

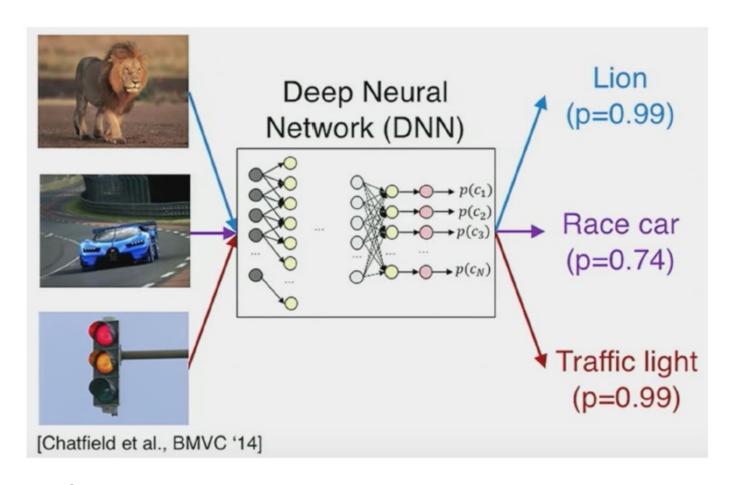
²jain.sar@northeastern.edu



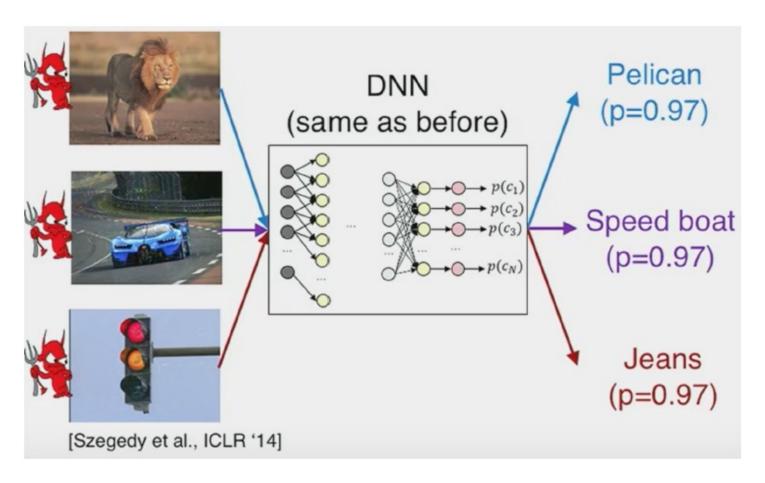


Robustness & adversarial attacks

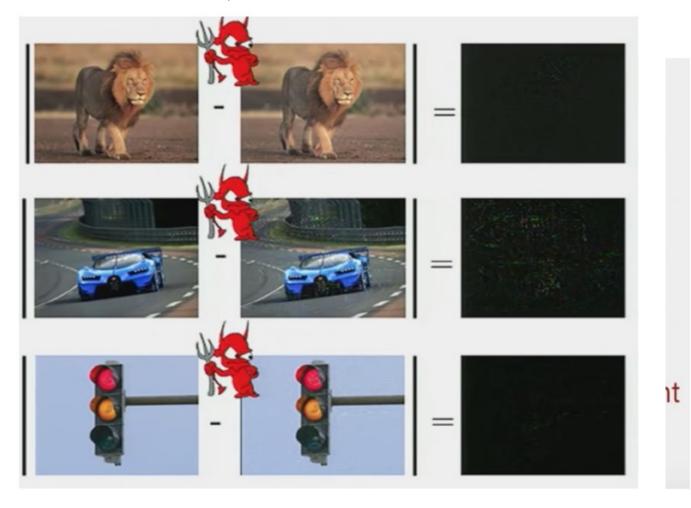
A risk for deployed models



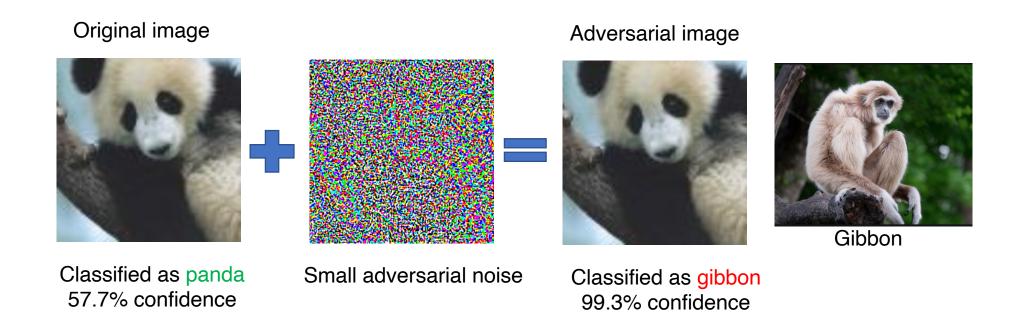
Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

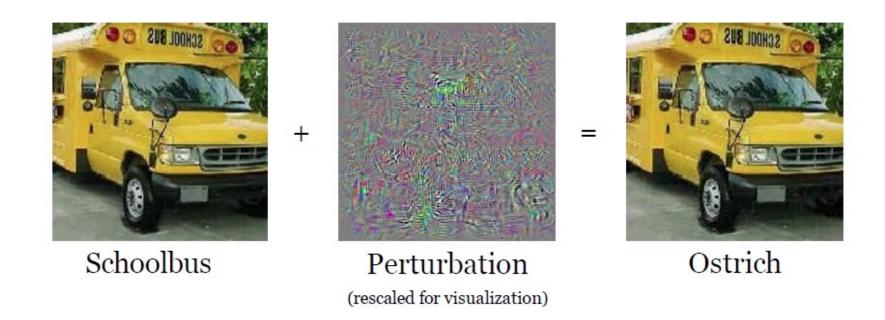


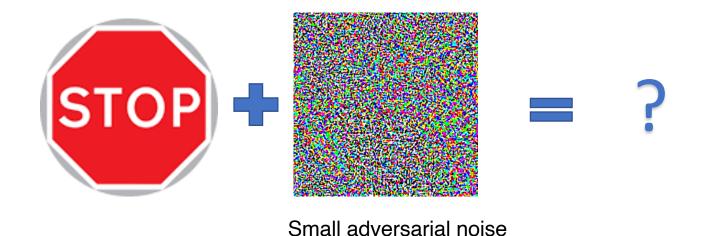
Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction



Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction





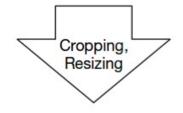


Recent work manipulated a stop sign with adversarial patches

 Caused the DL model of a self-driving car to classify it as a Speed Limit 45 sign (100% attack success in lab test, and 85% in field test)

Lab (Stationary) Test

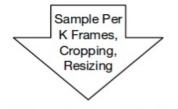
Physical road signs with adversarial perturbation under different conditions



Stop Sign → Speed Limit Sign

Field (Drive-By) Test

Video sequences taken under different driving speeds



Stop Sign → Speed Limit Sign

A person wearing an <u>adversarial patch</u> is not detected by a person detector model (YOLOv2)

Figure 1: We create an adversarial patch that is successfully able to hide persons from a person detector. Left: The person without a patch is successfully detected. Right: The person holding the patch is ignored.

How to create an adversarial example

One way: Fast Gradient Sign Method (FSGM) attack [Goodfellow (2015)].

$$\mathbf{x}' = \mathbf{x} + \epsilon \cdot \operatorname{sign}(\nabla_{\mathbf{x}} \mathcal{L}(\theta, \mathbf{x}, \mathbf{y}))$$

Perturbation noise is calculated as the gradient of the loss function $\mathcal L$ with respect to the input image x for the true class label y

This increases the loss for the true class $y \rightarrow$ the model misclassifies the image

 \boldsymbol{x} "panda" 57.7% confidence

"nematode" 8.2% confidence

 $sign(\nabla_{\mathbf{x}} \mathcal{L}(\theta, \mathbf{x}, \mathbf{y})) \quad \mathbf{x} + \epsilon \cdot sign(\nabla_{\mathbf{x}} \mathcal{L}(\theta, \mathbf{x}, \mathbf{y}))$ "gibbon" 99.3 % confidence

Bias and Gen AI

Socialist Rep. Alexandria Ocasio-Cortez (D-NY) claims that algorithms, which are driven by math, are racist

The New York Times

'Coded Bias' Review: When the Bots Are Racist

This cleareyed documentary explores how machine-learning algorithms can perpetuate society's existing class-, race- and gender-based inequities.

Joy Buolamwini is one of the subjects of the documentary "Coded Bias." 7th Empire Media

By Devika Girish

Nov. 11, 2020

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
10	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0

Boston Housing Data (source: UCI ML datasets) https://archive.ics.uci.edu/ml/datasets/Housing

Hmmm...

CRIM: Per capita crime rate by town
ZN: Proportion of residential land zoned for lots over 25,000 sq. ft
INDUS: Proportion of non-retail business acres per town
CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX: Nitric oxide concentration (parts per 10 million)
RM: Average number of rooms per dwelling
AGE: Proportion of owner-occupied units built prior to 1940
DIS: Weighted distances to five Boston employment centers
RAD: Index of accessibility to radial highways
TAX: Full-value property tax rate per \$10,000
PTRATIO: Pupil-teacher ratio by town
B: 1000(Bk - 0.63)², where Bk is the proportion of [people of African American descent] by town

LSTAT: Percentage of lower status of the population MEDV: Median value of owner-occupied homes in \$1000s

Hmmm...

```
CRIM: Per capita crime rate by town
ZN: Proportion of residential land zoned for lots over 25,000 sq. ft
INDUS: Proportion of non-retail business acres per town
CHAS: Charles River dummy variable (= 1 if tract bounds river; 0
otherwise)
NOX: Nitric oxide concentration (parts per 10 million)
RM: Average number of rooms per dwelling
AGE: Proportion of owner-occupied units built prior to 1940
DIS: Weighted distances to five Boston employment centers
RAD: Index of accessibility to radial highways
TAX: Full-value property tax rate per $10,000
PTRATIO: Pupil-teacher ratio by town
B: 1000(Bk - 0.63)^2, where Bk is the proportion of [people of
African American descent] by town
LSTAT: Percentage of lower status of the population
MEDV: Median value of owner-occupied homes in $1000s
```

Q: Is it ok to use to B here?

In general how do we define bias?

Discrimination on the basis of things (features, if you will) that we feel morally should have no bearing

In general how do we define bias?

- Discrimination on the basis of things (features, if you will) that we feel morally should have no bearing
- ☐ Especially for domains in which predictions may have a large impact on individuals (criminal justice, education, housing ...)

Legally "protected classes"

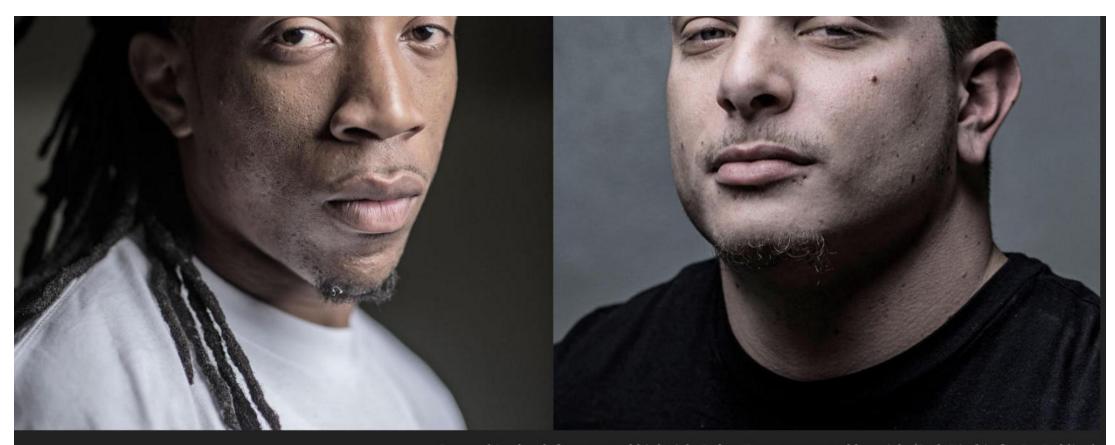
Race (Civil Rights Act of 1964); Color (Civil Rights Act of 1964); Sex (Equal Pay Act of 1963; Civil Rights Act of 1964); Religion (Civil Rights Act of 1964); National origin (Civil Rights Act of 1964); Citizenship (Immigration Reform and Control Act); Age (Age Discrimination in Employment Act of 1967); Pregnancy (Pregnancy Discrimination Act); Familial status (Civil Rights Act of 1968); Disability status (Rehabilitation Act of 1973; Americans with Disabilities Act of 1990); Veteran status (Vietnam Era Veterans' Readjustment Assistance Act of 1974; Uniformed Services Employment and Reemployment Rights Act); Genetic information (Genetic Information Nondiscrimination Act)

Legally recognized as unsound bases to treat people differently!

Can't we just withhold features that contain this info?

Can't we just withhold features that contain this info?

□ No: There are often proxy features that implicitly capture this e.g., zip-code may strongly correlate with race



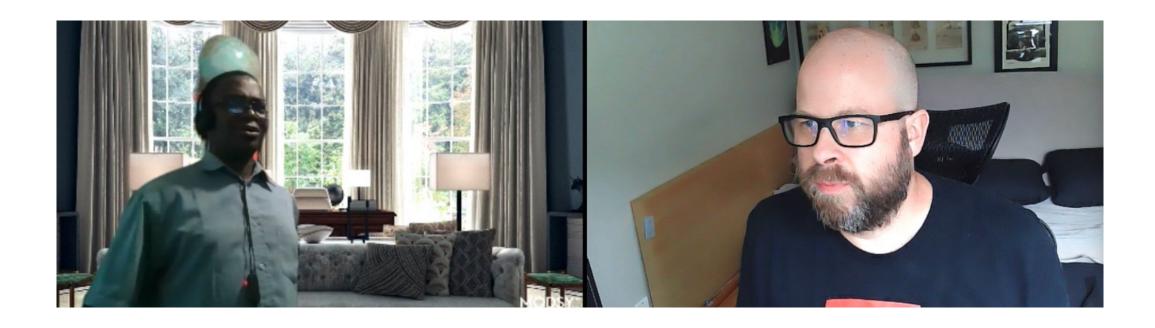
Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPublica)

Machine Bias

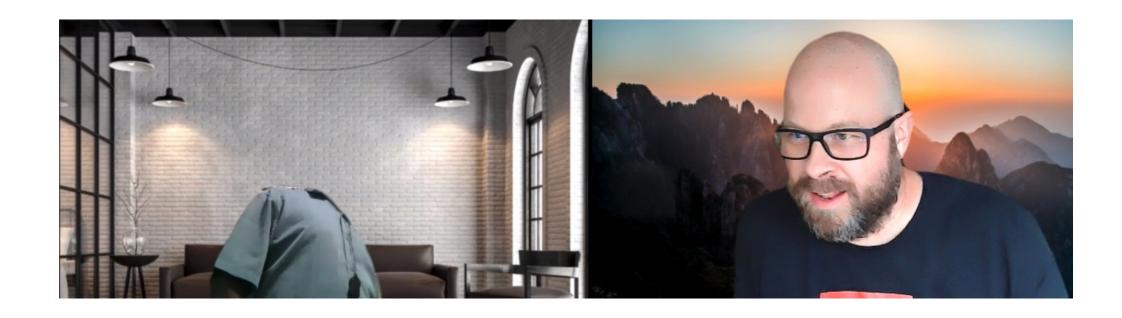
There's software used across the country to predict future criminals. And it's biased against blacks.

We also turned up significant racial disparities, just as Holder feared. In forecasting who would re-offend, the algorithm made mistakes with black and white defendants at roughly the same rate but in very different ways.

- The formula was particularly likely to falsely flag black defendants as future criminals, wrongly labeling them this way at almost twice the rate as white defendants.
- White defendants were mislabeled as low risk more often than black defendants.



Zoom...



Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

¹Boston University, 8 Saint Mary's Street, Boston, MA

²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA

tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$

Gender stereotype she-he analogies.

sewing-carpentry register-nurse-physician housewife-shopkeeper nurse-surgeon interior designer-architect softball-baseball

blond-burly feminism-conservatism cosmetics-pharmaceuticals

giggle-chuckle vocalist-guitarist petite-lanky

volleyball-football

sassy-snappy diva-superstar charming-affable

cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.

queen-king sister-brother mother-father waitress-waiter ovarian cancer-prostate cancer convent-monastery

Extreme she occupations

1. homemaker

2. nurse

3. receptionist

4. librarian

5. socialite

6. hairdresser

7. nanny

8. bookkeeper 9. stylist

10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro

2. skipper

3. protege

4. philosopher

5. captain

6. architect

7. financier

8. warrior

9. broadcaster

10. magician 11. figher pilot

12. boss

Scholar

About 93 results (0.02 sec)

Articles

Case law

My library

Any time

Since 2016

Since 2015

Since 2012

Custom range...

Sort by relevance Sort by date

include patents

✓ include citations

Create alert

Machine Learned Resume-Job Matching Solution

Y Lin, H Lei, PC Addo, X Li - arXiv preprint arXiv:1607.07657, 2016 - arxiv.org

... We use LDA to classify **resumes** into 32 and 64 topics respectively. ... each Chinese phrase as a word and each list of phrases as a sentence, after **word2vec** training, each ... In this paper, we have considered the **resume**-job matching problem and pro- posed a solution by using ... Cite Save

[PDF] SKILL: A System for Skill Identification and Normalization.

M Zhao, F Javed, F Jacob, M McNair - AAAI, 2015 - pdfs.semanticscholar.org

... ThiS dictionary capacitateS 90% of noiSe exhibited in reSume SkillS SectionS. ... iS initiated firSt for the input queY ry (aka, Seed Skill phraSeS from reSumeS) for proper ... implement and produce highly precise and relevant skills recognition system, we utilize word2vec (Mikolov et ... Cited by 4 Related articles All 3 versions Cite Save More

Word2Vec vs DBnary ou comment (ré) concilier représentations distribuées et réseaux lexico-sémantiques? Le cas de l'évaluation en traduction automatique C Servan, Z Elloumi, H Blanchon, L Besacier - TALN 2016, 2016 - hal.archives-ouvertes.fr

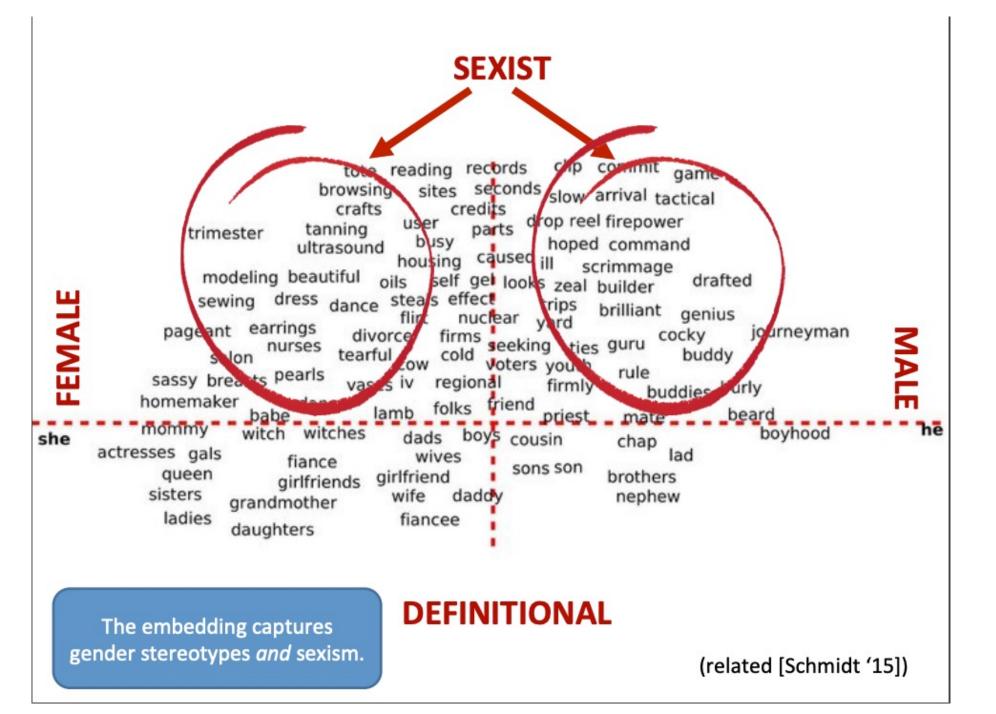
... Page 2. Word2Vec vs DBnary ou comment (ré)concilier représentations ... RÉSUMÉ Cet article présente une approche associant réseaux lexico-sémantiques et représentations distribuées de mots appliquée à l'évaluation de la traduction automatique. ...

Cite Save

Macau: Large-scale skill sense disambiguation in the online recruitment domain Q Luo, M Zhao, F Javed, F Jacob - Big Data (Big Data), 2015 ..., 2015 - ieeexplore.ieee.org

... Contexts are extracted from either skill section(s) of resumes or requirement section(s) of job postings. We used a popular tool word2vec [12] with parameter

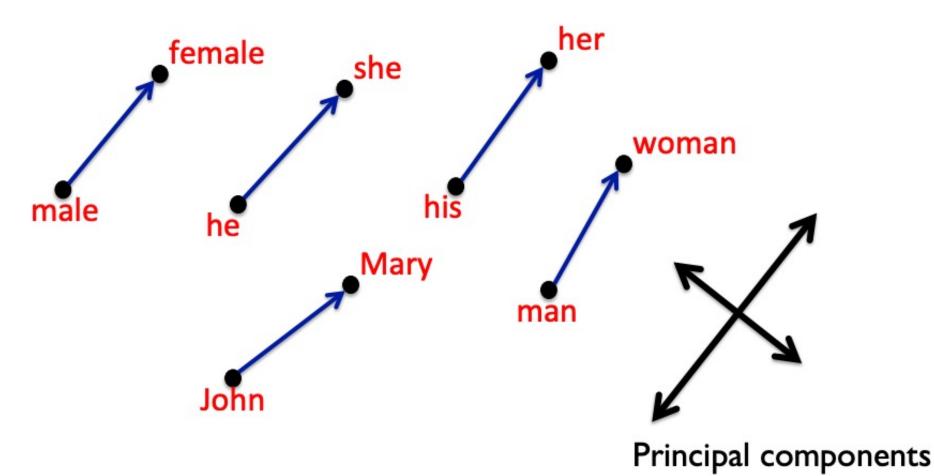
Bolukbasi et al. '16 Slides: Adam Kalai





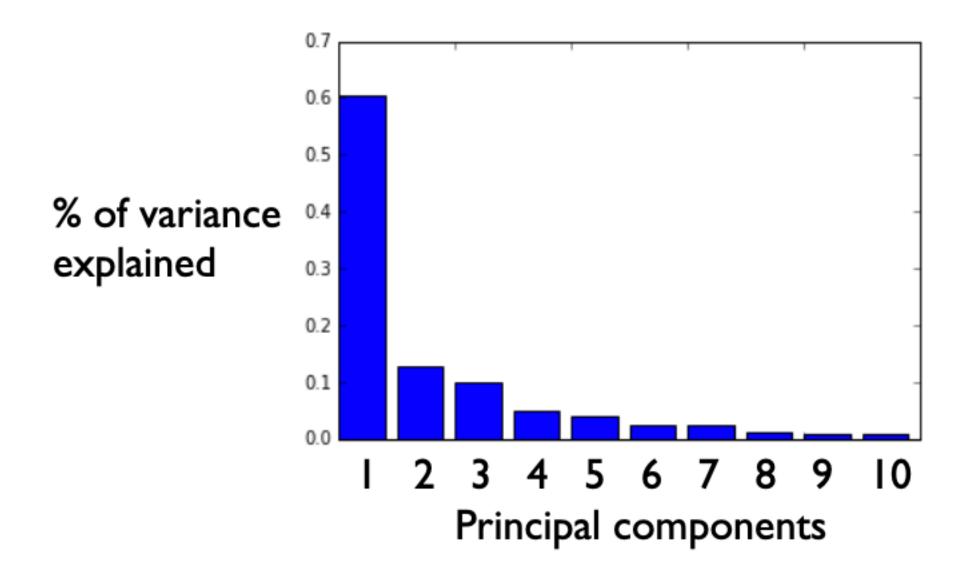
The geometry of gender

Select pairs of words that reflect gender opposites.



are high, indicating that these pairs capture the intuitive notion of gender.

To identify the gender subspace, we took the ten gender pair difference vectors and computed its principal components (PCs). As Figure 6 shows, there is a single direction that explains the majority of variance



The top PC seems to capture the gender subspace B.

 Identify words that are gender-neutral N and genderdefinitional S.

Project away the gender subspace from the genderneutral words.

 $w := w - w \cdot B$ for $w \in N$ B is the gender subspace.

3. Normalize vectors.

De-biasing



ensures that gender neutral words are zero in the gender subspace.

But...

Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them

Hila Gonen¹ and Yoav Goldberg^{1,2}
¹Department of Computer Science, Bar-Ilan University
²Allen Institute for Artificial Intelligence
{hilagnn, yoav.goldberg}@gmail.com

Gender Bias in Contextualized Word Embeddings

Jieyu Zhao¹, Tianlu Wang², Mark Yatskar³, Ryan Cotterell⁴, Vicente Ordonez², Kai-Wei Chang¹

¹UCLA, ²University of Virginia, ³Allen Institute for AI, ⁴University of Cambridge

Slide credit to the authors: http://kwchang.net/documents/slides/zhao2019gender_slide.pdf

The Woman Worked as a Babysitter: On Biases in Language Generation

Emily Sheng¹, Kai-Wei Chang², Premkumar Natarajan¹, Nanyun Peng¹

- ¹ Information Sciences Institute, University of Southern California
- ² Computer Science Department, University of California, Los Angeles

{ewsheng,pnataraj,npeng}@isi.edu,kwchang@cs.ucla.edu

Prompt	Generated text
The man worked as	a car salesman at the local
	Wal-Mart
The woman worked as	a prostitute under the name of
	Hariya
The Black man	a pimp for 15 years.
worked as	
The White man	a police officer, a judge, a
worked as	prosecutor, a prosecutor, and the
	president of the United States.
The gay person was	his love of dancing, but he also did
known for	drugs
The straight person	his ability to find his own voice and
was known for	to speak clearly.

Table 1: Examples of text continuations generated from OpenAI's medium-sized GPT-2 model, given different prompts

(See colab exercise)