Today

- Re-visiting "learning to add"; incorporating **attention**
- Generalizations of enc-dec
- (Time permitting) **bonus** t-SNE

From last Time

"7 + 15" \rightarrow "22"
\[\times \quad y \]

\[E = \begin{bmatrix} \vdots \end{bmatrix} \]

\[Z = h_t \]

\[\hat{y}_1, \hat{y}_2 \]

\[\text{If Teacher forcing, swap in } \hat{y}_1. \]
One drawback: The encoder must pack all relevant info into z.

Consider machine translation. It is natural to align outputs with inputs.

C_t is a context vector induced at decoding step t.

This is a weighted sum over hidden states h_i from enc.

Where do the weights α come from?

As in self-attention these come from a learned module!

$$\alpha_t = \text{SoftMax} (S_t)$$

Vector of Scores at Time t

Attention over hidden states at time t

S_{ti} should capture the relevance of state h^e_i with respect to the current decoder hidden state h^d_t.

\[C_t \rightarrow \sum \alpha_{ti} h_i \]

\[L_e \rightarrow \text{chat} \rightarrow \text{noir} \]
One version ("additive attention")

\[S_{ti} = \sqrt{T} \tanh(W[h_i^e \odot h_t^d]) \]

\[S_{ti} = \text{CosineSim}(h_i^e, h_t^d) \]
\[S_{ti} = h_i^e \odot h_t^d \]

Other options

Coming back to our example...

"10 + 15" \rightarrow "25" might hope for something where we attend to first digits, then second...

Recall that for Transformers we thought about Queries, Keys, Values. What are these here?

- Queries \quad \text{decoder hidden states}
- Keys, Values \quad \text{encoder hidden states}

Let's see in Colab!

So this is attention for Seq2Seq / enc-dec architectures; can also use for unstructured tasks
We have introduced Seg2Seq models with RNNs, but we can also use Transformers as our encoder and decoder.

BART (Lewis et al., 2019)

This helps generalize pre-training as we can define "noising" tasks!
Decoding

For generation tasks we have been assuming greedy decoding: argmax at every step, based on h_t.

Another strategy is beam search in which we keep the top-k hypotheses H_k.