So far we have considered cases where:

- $y \in \mathbb{R}$ classification
- $|X| = |Y|$ Sequence Tagging
 Here we 'tag' X_j with \hat{Y}_j, assuming these are aligned.

But many tasks do not conform to either of these assumptions.

- Image captioning
 \begin{center}
 \includegraphics[height=0.5in]{image.png}
 \end{center}
 a cat

- Translation
 \begin{center}
 C'est la vie \hfill That's life
 \end{center}

In general: Any time we have sequences as both input and output, and they may differ in shape.

$$X = [x_1, \ldots, x_n] \quad n \neq m \text{ in general}$$

$$y = [y_1, \ldots, y_m]$$
Seq2Seq models provide an abstraction for such cases.

Two components

- An **encoder** \(\text{enc} \)
- A **decoder** \(\text{dec} \)

Then:

\[Z_i = \text{enc}(x, \theta_{\text{enc}}) \]

\[\hat{y} = \text{dec}(z, \theta_{\text{dec}}) \]

This is pretty abstract. Consider a concrete example: Email response generation.

At **train time**, we have a choice: Condition the decoder at time \(t \) on (1) prediction or (2) truth.

We call (2) **teacher forcing**.
Let's consider a simple (toy) example: Learning to add in a strange way.

"56 + 8" → "64"

A string! Also a string!

Exercise Let's design this together!

What modules do we need?

- Encoder
- Decoder
- Seq2Seq to package together

Let's flesh these out.

Encoder

Input: chars
Embed
RNN

Shapes

In
Out

< b x max_len x num_chars>
< b x max_len x num_chars> < b x max_len x o1>
< b x max_len x o1>
< b x h >

Assuming we take just last hidden state
Decoder

Note: We do one step at a time here.

Input: \(Z \) and \(\hat{y} \) (char from last step)

Embed \(<b \times h>, <b \times \text{num_chars}> \) \(<b \times d> \)

RNN \(<b \times h>, <b \times d> \) \(<b \times h> \)

Prior hidden states \(\hat{y} \) embeddings

Out \(<b \times h> \) \(<b \times \text{num_chars}> \)

Now let's write pseudo code for \textit{Seq2Seq} (forward)

\textbf{Seq2Seq}

\[Z \leftarrow \text{enc}(x) \]
\[\hat{y}_t \leftarrow \mathbf{0} \]

decoded \(\leftarrow [\] \)

for \(t \) in \(\text{MAX_OUT_LEN} \)

\[\hat{y}_t, Z \leftarrow \text{dec}(Z, \hat{y}_t) \]

decoded. append (\(\hat{y}_t \))

return decoded

To Colab!