Today:

- Our first real foray into representation learning!
- The setting: How to encode text?
- We will cover Word2Vec specifically

"Back in the day..." (~2013)

Bag-of-Words (BoW)

This aardvark
Movie great
Was ... = X
Great |
Movie |
... |
50k

Word w \rightarrow position w_{idx}

$X_{widx} = \begin{cases} 1 \text{ if } w \text{ in input} \\ 0 \text{ otherwise} \end{cases}$

Long, sparse vectors. Basically all 0s.
Issues with BoW?

We often want to measure similarity between texts: Cosine Similarity is a good fit

\[
\cos(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|} = \frac{[\sum \sum]}{2}
\]

Product of \(l_2\) norms

Consider \(\text{Sim}(x^{\text{dog}}, x^{\text{cat}})\): it will be \(\emptyset\)!

Surely we would like for

\[
\text{Sim}(x^{\text{dog}}, x^{\text{cat}}) > \text{Sim}(x^{\text{dog}}, x^{\text{pancake}})
\]

Distributional Semantics

"You shall know a word by the company it keeps."

So we want to find embeddings such that similar words are nearby each other.
Word2Vec is one method for this. (Mikolov et al. 2013)

Two variants: **Skip-gram** and **CBow**.

Both assume a **Target** word and **Context**.

The man loves his son

Skip-gram

\[
P(\text{the} | \text{loves}) \cdot P(\text{man} | \text{loves}) \cdot P(\text{his} | \text{love}) \cdot P(\text{son} | \text{loves})
\]

CBow

Practically we optimize a **loss** measuring similarity between **embeddings**

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 1 & \ldots & 0
\end{bmatrix}^T \cdot \begin{bmatrix}
\text{"cat"} & j & \ldots \ldots & j & \text{"cat"}
\end{bmatrix} = \mathbf{a} \cdot \mathbf{d}
\]

Embedding layer
Translating to objectives:

Skip-gram

\[
- \prod_w \prod_{w_c \text{ within window}} P(w_c | w) = \prod_w \prod_{w_c \text{ all words within window}} P(w_c | w)
\]

\[
P(w_c | w) \overset{\text{def}}{=} \frac{\exp \langle e_{w_c}, e_w \rangle}{\sum_{e_c \in V} \exp \langle e_{w_c}, e_w \rangle}
\]

CBOW

Similar, but

\[
P(w | w^i, \ldots w^s) \overset{\text{def}}{=} \frac{\exp \langle e_w, \bar{w}^c \rangle}{\sum_{e_c \in V} \exp \langle e_w, e_c \rangle}
\]

\[
\bar{w}^c = \frac{1}{|w|} \sum_{j} e_{w_j}^c
\]

Practical issues here? \(V\) is **BIG**!

Idea: Use negative sampling. In expectation, the relative similarity of embeddings of words that occur in similar contexts.
Strategy: Sample words W and contexts W^c

(loves, [The, man, his, son])

(man, [loves, The, his, son])

...

Skip-gram

- **Maximize** similarity b/w W_j, W^c_j (for all j) S_1
- **Minimize** this b/w W and words from other contexts \tilde{W}

\[
S_1 \uparrow \sigma (e_W^T \cdot e_{W^c_j})
\]
\[
S_2 \downarrow \sigma (e_W^T \cdot e_{\tilde{W}})
\]
\[
\text{Loss} = -S_1 + S_2
\]

CBOW

- **Maximize** similarity b/w W, \bar{W}^c
- **Minimize** similarity b/w \bar{W}, \bar{W}^c

\[
\bar{W}^c = \frac{1}{|W|} \sum_{j} e_{W^c_j}
\]
\[
S_1 \uparrow \sigma (e_W^T \cdot \bar{W}^c)
\]
\[
S_2 \downarrow \sigma (e_W^T \cdot \bar{W}^c)
\]
\[
\text{Loss} = -S_1 + S_2
\]

[Let's see in Colab...]
Exploiting Word Vectors in models
Suppose we want to train a Text Classifier. How could we incorporate embeddings?

One way: Adopt CBow approach.

This \([-3 1 \ldots 5]\)
Movie \([4 2 \ldots -1]\)
great \([-1 3 \ldots 2]\)
Average \([3 3 3 \ldots 1/4]\)
Loss gets backprop'd
Dense
Pos / Neg

Beyond “Words”

W2V was first introduced for NLP but is a general strategy for embedding discrete inputs.

Example Deep Walk [Perozzi et al.] for embedding nodes in graphs.
A, B, D, E

A, C

B, D, F