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Today

• Reducing annotation costs: active learning and 
crowdsourcing



Efficient annotation

Active learning

Image from Burr Settles, AL literature survey, 2009  

Active learning Crowdsourcing
Figure from Settles, ‘08
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Motivation

• Labels are expensive 

• Maybe we can reduce the cost of training a good 
model by picking training examples cleverly



Why active learning?Suppose the data looks like…

Suppose classes looked like this



Why active learning?Suppose the data looks like…

Suppose classes looked like this 
We only need 5 labels!



Why active learning?

Example from Daniel Ting

Toy example
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Toy example
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Labeling points out here is not helpful!



Types of AL

• Stream-based active learning Consider one 
unlabeled instance at a time; decide whether to 
query for its label (or to ignore it).

• Pool-based active learning Given a large “pool” of  
unlabeled examples, rank these with some 
heuristic that aims to capture informativeness

Types of AL
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Pool based AL

• Pool-based active learning proceeds in rounds  

– Each round is associated with a current model that is learned using the labeled 
data seen thus far  

• The model selects the most informative example(s) remaining to 
be labeled at each step  

– We then pay to acquire these labels  

• New labels are added to the labeled data; the model is re-
trained  

• We repeat this process until we are out of $$$  
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How might we pick ‘good’ unlabeled examples? 



Query by Committee (QBC)Query by Committee
•  Which unlabelled point should you choose? 



Query by Committee (QBC)Query by Committee
•  Which unlabelled point should you choose? 

Query by Committee
•  Yellow = valid hypotheses 

Query by Committee
•  Queries an example based on the degree of 

disagreement between committee of classifiers 

Picking point about which there is most 
disagreement



Query by Committee application

[McCallum & 
Nigam, 1998]

Query by Committee (QBC)



Active Learning using Pre-clustering


If data clusters, we only require a few representative 
instances from each cluster to label data

Viagra"“Bargains”"

Investment"“OpportuniHes”"

Work"

Personal"
Facebook"

[Ngyuen"&"Smeulders"04]"

Pre-Clustering



Uncertainty sampling

• Query the event that the current classifier is most uncertain about  

• Needs measure of uncertainty, probabilistic model for prediction!  

•  Examples:  
– Entropy  
– Least confident predicted label  
– Euclidean distance (e.g. point closest to margin in SVM)  
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Uncertainty Sampling
•  Query the event that the current classifier is most 

uncertain about

•  Needs measure of uncertainty, probabilistic 
model for prediction!


•  Examples:
–  Entropy
–  Least confident predicted label
–  Euclidean distance (e.g. point closest to margin in 

SVM)

Uncertainty sampling





Let’s implement this…  
(“in class” exercise on active learning) 



Practical Obstacles to 
Deploying Active Learning

David Lowell
Northeastern University

Zachary C. Lipton
Carnegie Mellon University
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Given
• Pool of unlabeled data P
• Model parameterized by θ
• A sorting heuristic h







• Users must choose a single heuristic (AL strategy) from many 
choices before acquiring more data 

• Active learning couples datasets to the model used at 
acquisition time

Some issues



Active Learning involves:  

• A data pool 

• An acquisition model and function 

• A “successor” model (to be trained)

Experiments



Classification
Movie reviews, Subjectivity/objectivity, Customer reviews, Question type 
classification

Tasks & datasets

Sequence labeling (NER)
CoNLL, OntoNotes



Classification
SVM, CNN, BiLSTM

Models

Sequence labeling (NER)
CRF, BiLSTM-CNN



Uncertainty sampling
Uncertainty



(For sequences)
Uncertainty



Query By Committee (QBC)
Query By Committee (QBC)



(For sequences)
Query By Committee (QBC)



Results

• 75.0%: there exists a heuristic that outperforms i.i.d.  

• 60.9%: a specific heuristic outperforms i.i.d.  

• 37.5%: transfer of actively acquired data outperforms i.i.d. 
  

• But, active learning consistently outperforms i.i.d. for 
sequential tasks 



(a) Performance of AL relative to i.i.d. across corpora. (b) Transferring actively acquired training sets.

Figure 1: We highlight practical issues in the use of AL. (a) AL yields inconsistent gains, relative to a baseline of
i.i.d. sampling, across corpora. (b) Training a BiLSTM with training sets actively acquired based on the uncertainty
of other models tends to result in worse performance than training on i.i.d. samples.

In contrast to experimental (retrospective) stud-
ies, in a real-world setting, an AL practitioner is
not afforded the opportunity to retrospectively an-
alyze or alter their scoring function. One would
instead need to expend significant resources to val-
idate that a given scoring function performs as in-
tended for a particular model and task. This would
require i.i.d. sampled data to evaluate the com-
parative effectiveness of different AL strategies.
However, collection of such additional data would
defeat the purpose of AL, i.e., obviating the need
for a large amount of supervision. To confidently
use AL in practice, one must have a reasonable be-
lief that a given AL scoring (or acquisition) func-
tion will produce the desired results before they de-
ploy it (Attenberg and Provost, 2011).

Most AL research does not explicitly character-
ize the circumstances under which AL may be ex-
pected to perform well. Practitioners must there-
fore make the implicit assumption that a given ac-
tive acquisition strategy is likely to perform well
under any circumstances. Our empirical findings
suggest that this assumption is not well founded
and, in fact, common AL algorithms behave in-
consistently across model types and datasets, of-
ten performing no better than random (i.i.d.) sam-
pling (1a). Further, while there is typically some
AL strategy which outperforms i.i.d. random sam-
ples for a given dataset, which heuristic varies.
Contributions. We highlight important but of-
ten overlooked issues in the use of AL in practice.
We report an extensive set of experimental results
on classification and sequence tagging tasks that

suggest AL typically affords only marginal per-
formance gains at the somewhat high cost of non-
i.i.d. training samples, which do not consistently
transfer well to subsequent models.

2 The (Potential) Trouble with AL

We illustrate inconsistent comparative perfor-
mance using AL. Consider Figure 1a, in which
we plot the relative gains (�) achieved by a
BiLSTM model using a maximum-entropy active
sampling strategy, as compared to the same model
trained with randomly sampled data. Positive val-
ues on the y-axis correspond to cases in which
AL achieves better performance than random sam-
pling, 0 (dotted line) indicates no difference be-
tween the two, and negative values correspond to
cases in which random sampling performs better
than AL. Across the four datasets shown, results
are decidedly mixed.

And yet realizing these equivocal gains using
AL brings inherent drawbacks. For example, ac-
quisition functions generally depend on the under-
lying model being trained (Settles, 2009, 2012),
which we will refer to as the acquisition model.
Consequently, the collected training data and the
acquisition model are coupled. This coupling is
problematic because manually labeled data tends
to have a longer shelf life than models, largely be-
cause it is expensive to acquire. However, progress
in machine learning is fast. Consequently, in many
settings, an actively acquired dataset may remain
in use (much) longer than the source model used
to acquire it. In these cases, a few natural ques-



Results
It is difficult to characterize when AL will be successful  

Trends: 

• Uncertainty with SVM or CNN  

• BALD with CNN 

• AL transfer leads to poor results



Crowdsourcing

slides derived from Matt Lease 



Crowdsourcing

• In ML, supervised learning still dominates (despite the various 
innovations in self-/un-supervised learning we have seen in this 
class 

• Supervision is expensive; modern (deep) models need lots of it 

• One use of crowdsourcing is collecting lots of annotations, on 
the cheap
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• In ML, supervised learning still dominates (despite the various 
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class 
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Crowdsourcing

Data “crowdworkers”

Y 

$$$

Crowdsourcing 
platform

$$$

Y 



Crowdsourcing

Human Intelligence Tasks (HITs)





NLP: Snow et al. (EMNLP 2008)
•  MTurk annotation for 5 Tasks
– Affect recognition
– Word similarity
– Recognizing textual entailment
– Event temporal ordering
– Word sense disambiguation

•  22K labels for US $26
•  High agreement between 

consensus labels and !
gold-standard labels 

33"

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 254–263,
Honolulu, October 2008. c�2008 Association for Computational Linguistics

Cheap and Fast — But is it Good?
Evaluating Non-Expert Annotations for Natural Language Tasks

Rion Snow† Brendan O’Connor‡ Daniel Jurafsky§ Andrew Y. Ng†

†Computer Science Dept.
Stanford University
Stanford, CA 94305

{rion,ang}@cs.stanford.edu
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Abstract

Human linguistic annotation is crucial for
many natural language processing tasks but
can be expensive and time-consuming. We ex-
plore the use of Amazon’s Mechanical Turk
system, a significantly cheaper and faster
method for collecting annotations from a
broad base of paid non-expert contributors
over the Web. We investigate five tasks: af-
fect recognition, word similarity, recognizing
textual entailment, event temporal ordering,
and word sense disambiguation. For all five,
we show high agreement between Mechani-
cal Turk non-expert annotations and existing
gold standard labels provided by expert label-
ers. For the task of affect recognition, we also
show that using non-expert labels for training
machine learning algorithms can be as effec-
tive as using gold standard annotations from
experts. We propose a technique for bias
correction that significantly improves annota-
tion quality on two tasks. We conclude that
many large labeling tasks can be effectively
designed and carried out in this method at a
fraction of the usual expense.

1 Introduction

Large scale annotation projects such as TreeBank
(Marcus et al., 1993), PropBank (Palmer et
al., 2005), TimeBank (Pustejovsky et al., 2003),
FrameNet (Baker et al., 1998), SemCor (Miller et
al., 1993), and others play an important role in
natural language processing research, encouraging
the development of novel ideas, tasks, and algo-
rithms. The construction of these datasets, how-
ever, is extremely expensive in both annotator-hours

and financial cost. Since the performance of many
natural language processing tasks is limited by the
amount and quality of data available to them (Banko
and Brill, 2001), one promising alternative for some
tasks is the collection of non-expert annotations.
In this work we explore the use of Amazon Me-

chanical Turk1 (AMT) to determine whether non-
expert labelers can provide reliable natural language
annotations. We chose five natural language under-
standing tasks that we felt would be sufficiently nat-
ural and learnable for non-experts, and for which
we had gold standard labels from expert labelers,
as well as (in some cases) expert labeler agree-
ment information. The tasks are: affect recogni-
tion, word similarity, recognizing textual entailment,
event temporal ordering, and word sense disam-
biguation. For each task, we used AMT to annotate
data and measured the quality of the annotations by
comparing them with the gold standard (expert) la-
bels on the same data. Further, we compare machine
learning classifiers trained on expert annotations vs.
non-expert annotations.
In the next sections of the paper we introduce

the five tasks and the evaluation metrics, and offer
methodological insights, including a technique for
bias correction that improves annotation quality.2

1 http://mturk.com
2 Please see http://blog.doloreslabs.com/?p=109

for a condensed version of this paper, follow-ups, and on-
going public discussion. We encourage comments to be di-
rected here in addition to email when appropriate. Dolores
Labs Blog, “AMT is fast, cheap, and good for machine learning
data,” Brendan O’Connor, Sept. 9, 2008. More related work at
http://blog.doloreslabs.com/topics/wisdom/.

254

Our evaluation of non-expert labeler data vs. expert 
annotations for five tasks found that for many tasks only a 
small number of non- expert annotations per item are 
necessary to equal the performance of an expert annotator.  



Computer Vision: !
Sorokin & Forsythe (CVPR 2008)
•  4K labels for US $60

34"



Dealing with noise

Problem Crowd annotations are often noisy 

One way to address: collect independent annotations 
from multiple workers 

But then how to combine these? 
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Problem Crowd annotations are often noisy 

One way to address: collect independent annotations 
from multiple workers 

But then how to combine these? 



Dawid-Skene

Define a simple probabilistic model of worker annotations, 
conditioned on latent “true” labels for instances 

Can easily estimate via Expectation-Maximization



J labelers

K categories (classes)

I instances



Aggregating and Predicting Sequence Labels from Crowd Annotations

An T. Nguyen
1

Byron C. Wallace
2

Junyi Jessy Li
3

Ani Nenkova
3

Matthew Lease
1

1University of Texas at Austin, 2Northeastern University,
3University of Pennsylvania,

atn@cs.utexas.edu, byron@ccs.neu.edu,
{ljunyi|nenkova}@seas.upenn.edu, ml@utexas.edu

Abstract

Despite sequences being core to NLP,
scant work has considered how to handle
noisy sequence labels from multiple anno-
tators for the same text. Given such anno-
tations, we consider two complementary
tasks: (1) aggregating sequential crowd la-
bels to infer a best single set of consen-
sus annotations; and (2) using crowd an-
notations as training data for a model that
can predict sequences in unannotated text.
For aggregation, we propose a novel Hid-
den Markov Model variant. To predict se-
quences in unannotated text, we propose
a neural approach using Long Short Term
Memory. We evaluate a suite of meth-
ods across two different applications and
text genres: Named-Entity Recognition in
news articles and Information Extraction
from biomedical abstracts. Results show
improvement over strong baselines. Our
source code and data are available online1.

1 Introduction

Many important problems in Natural Language
Processing (NLP) may be viewed as sequence la-
beling tasks, such as part-of-speech (PoS) tagging,
named-entity recognition (NER), and Information
Extraction (IE). As with other machine learning
tasks, automatic sequence labeling typically re-
quires annotated corpora on which to train pre-
dictive models. While such annotation was tra-
ditionally performed by domain experts, crowd-
sourcing has become a popular means to acquire
large labeled datasets at lower cost, though anno-
tations from laypeople may be lower quality than
those from domain experts (Snow et al., 2008). It

1 Soure code and biomedical abstract data:
www.github.com/thanhan/seqcrowd-acl17,
www.byronwallace.com/EBM_abstracts_data

is therefore essential to model crowdsourced la-
bel quality, both to estimate individual annotator
reliability and to aggregate individual annotations
to induce a single set of “reference standard” con-
sensus labels. While many models have been pro-
posed for aggregating crowd labels for binary or
multiclass classification problems (Sheshadri and
Lease, 2013), far less work has explored crowd-
based annotation of sequences (Finin et al., 2010;
Hovy et al., 2014; Rodrigues et al., 2014).

In this paper, we investigate two complemen-
tary challenges in using sequential crowd labels:
how to best aggregate them (Task 1); and how to
accurately predict sequences in unannotated text
given training data from the crowd (Task 2). For
aggregation, one might want to induce a single set
of high-quality consensus annotations for various
purposes: (i) for direct use at run-time (when a
given application requires human-level accuracy
in identifying sequences); (ii) for sharing with oth-
ers; or (iii) for training a predictive model.

When human-level accuracy in tagging of se-
quences is not crucial, automatic labeling of unan-
notated text is typically preferable, as it is more ef-
ficient, scalable, and cost-effective. Given a train-
ing set of crowd labels, how can we best predict
sequences in unannotated text? Should we: (i)
consider Task 1 as a pre-processing step and train
the model using consensus labels; or (ii) instead
directly train the model on all of the individual an-
notations, as done by Yang et al. (2010)? We in-
vestigate both directions in this work.

Our approach is to augment existing sequence
labeling models such as HMMs (Rabiner and
Juang, 1986) and LSTMs (Hochreiter and Schmid-
huber, 1997; Lample et al., 2016) by introduc-
ing an explicit ”crowd component”. For HMMs,
we model this crowd component by including ad-
ditional parameters for worker label quality and
crowd label variables. For the LSTM, we intro-
duce a vector representation for each annotator. In

model from multiple labels (although the identi-
ties of the annotators or workers were not used).
Rodrigues et al. (2014) extended this approach to
account for worker identities, providing a joint
”crowd-CRF” model. They collected a dataset of
crowdsourced labels for a portion of the CoNLL
2003 dataset. Using this, they showed that their
model outperformed Dredze et al. (2009)’s model
and other baselines. However, due to the technical
difficulty of the joint approach with CRFs, they re-
sorted to strong modeling assumptions. For exam-
ple, their model assumes that for each word, only
one worker provides the correct answer while all
others label the word completely randomly. While
this assumption captures some aspects of label
quality, it is potentially problematic, such as for
‘easy words’ labeled correctly by all workers.

More recently, Huang et al. (2015) proposed
HMM models for aggregating crowdsourced dis-
course segmentation labels. However, they did
not consider the general sequence labeling set-
ting. Their method includes task-specific assump-
tions, e.g., that discourse segment lengths follow
some empirical distribution estimated from data.
In the absence of a gold standard, they evaluated
by checking that workers accuracies are consistent
and by comparing their two models to each other.
We include their approach along with Rodrigues
et al. (2014) as a baseline in our evaluation.

3 Methods

We present our Task 1 HMM approach in Section
3.1 and our Task 2 LSTM approach in Section 3.2.

3.1 HMMs with Crowd Workers

Model: We first define a standard HMM with hid-
den states hi, observations vi, transition parameter
vectors ⌧ hi and emission parameter vectors ⌦hi :

hi+1|hi ⇠ Discrete(⌧ hi) (1)
vi|hi ⇠ Discrete(⌦hi) (2)

The discrete distributions here are governed by
Multinomials. In the context of our task, vi is the
word at position i and hi is the true, latent class of
vi (e.g., entity or non-entity).

For the crowd component, assume there are n
classes, and let lij be the label for word i provided
by worker j. Further, let C(j) be the confusion
matrix for worker j, i.e., C(j)

k is a vector of size n
in which element k0 is the probability of worker j

lij
Discrete

C(j)

hihi�1 hi+1

m workers

Discrete

vi

⌦

Figure 1: The factor graph for our HMM-Crowd
model. Dotted rectangles are gates, where the
value of hi is used to select the parameters for the
Multinomial governing the Discrete distribution.

providing the label k0 for a word of true class k:

lij |hi ⇠ Discrete(C(j)
hi

) (3)

Figure 1 shows the factor graph of this model,
which we call HMM-Crowd. Note that we assume
that individual crowdworker labels are condition-
ally independent given the (hidden) true label.

A common problem with crowdsourcing mod-
els is data sparsity. For workers who provide only
a few labels, it is hard to derive a good estimate
of their confusion matrices. This is exacerbated
when the label distribution is imbalanced, e.g.,
most words are not part of a named entity, con-
centrating the counts in a few confusion matrix
entries. Solutions for this problem include hierar-
chical models of ‘worker communities’ (Venanzi
et al., 2014) or correlations between confusion ma-
trix entries (Nguyen et al., 2016). Although ef-
fective, these methods are also quite computation-
ally expensive. For our models, to keep parame-
ter estimation efficient, we use a simpler solution
of ‘collapsing’ the confusion matrix into a ‘confu-
sion vector’. For worker j, instead of having the
n ⇥ n matrix C(j), we use the n ⇥ 1 vector C0(j)

where C0(j)
k is the probability of worker j labeling

a word with true class k correctly. We also smooth
the estimate of C0 with prior counts as in (Liu and
Wang, 2012; Kim and Ghahramani, 2012).
Learning: We use the Expectation Maximization
(EM) algorithm (Dempster et al., 1977) to learn
the parameters (⌧ ,⌦,C0), given the observations
(all the words V and all the worker labels L).

In the E-step, given the current estimates of the
parameters, we take a forward and a backward
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Abstract

We consider a finite-pool data categorization scenario

which requires exhaustively classifying a given set of

examples with a limited budget. We adopt a hybrid

human-machine approach which blends automatic ma-

chine learning with human labeling across a tiered

workforce composed of domain experts and crowd

workers. To effectively achieve high-accuracy labels

over the instances in the pool at minimal cost, we de-

velop a novel approach based on decision-theoretic ac-

tive learning. On the important task of biomedical ci-

tation screening for systematic reviews, results on real

data show that our method achieves consistent improve-

ments over baseline strategies. To foster further research

by others, we have made our data available online.

Introduction

We investigate finite-pool data categorization (Wallace et al.

2010a), in which the objective is to exhaustively and accu-

rately categorize a set of examples while minimizing cost.

These categorizations will be performed either manually

or using a classifier induced over the annotated examples.

Training data thus serve a dual purpose: acquired labeled

instances will be used not only to induce an accurate classi-

fication model, but also to reliably annotate some portion of

the data. Because there is no separate training data, labeling

errors are costly not only because they hamper performance

of the learned classifier, but also because they are, by defini-

tion, misclassified items.
The defining characteristic of the finite-pool scenario is

the focus on using a hybrid system – here composed of

crowd workers, experts and a classification model – to label

a specific, fixed set of instances. Thus this while a classifi-

cation model is trained to reduce labeling effort, this learned

model is not the primary output of interest. This scenario

thus differs from much of the previous work in active learn-

ing, which has sought primarily to achieve strong classifier

generalizability at low cost; in that case, misclassified train-

ing instances incur cost only insofar as they exacerbate clas-

sifier errors on unseen examples.

Crowdsourcing (Lease 2011; Lease and Alonso 2014) is

an increasingly popular approach to acquiring annotations

Copyright c� 2015, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

at low cost, often used to subsequently train classifiers. De-

spite demonstrated utility in this respect (Snow et al. 2008),

the quality of annotations acquired from the crowd remains

a concern. This is particularly true in domains in which la-

bel quality is paramount. In practice, this often results in a

trade-off between cost and quality: one aims to make the

best possible use of pricey domain experts and to efficiently

capitalize on low-cost crowd annotations.

Active learning (Settles 2012), in which unlabeled items

are selected for labeling cleverly (rather than at random)

in an iterative and interactive process, is a natural fit for

this scenario. By intelligently selecting items to label, active

learning can economize annotator effort and realize greater

predictive accuracy at lower cost.

In this paper, we aim to select both the item to be labeled

and the expert to label it at each step in the learning pro-

cess. In particular, we extend prior work to develop a de-

cision theoretic active learning framework that jointly con-

siders querying the crowd and domain experts for labels on

examples deemed likely to be informative. Our contributions

in this work can be summarized follows:

• As far as we are aware, this is the first empirical ex-

ploration of active learning with labels from both crowd

workers and domain experts that uses real data (i.e., data

collected for a real task from both types of labelers).

• We present and evaluate a new decision theoretic ap-

proach for this task that selects the labeler type (crowd

worker or domain expert) to explicitly minimize the ex-

pected loss. Our approach is general, but here designed for

scenarios in which one class is rare and misclassification

costs are asymmetric (i.e., False Negatives are expensive).

The remainder of this paper is structured as follows. In the

next section, we discuss our motivating scenario: citation1

screening for biomedical systematic reviews. We then dis-

cuss related work to place our contributions in context. This

is followed by presentation of our method and the baseline

approaches to which we compare this to. We present our em-

pirical setup and results in the subsequent section, and end

with a discussion of future work.

1Citation here refers to paper abstracts and associated meta-data

such as titles, author information and keywords.
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Abstract

Modern NLP systems require high-quality an-notated data. In specialized domains, expertannotations may be prohibitively expensive.An alternative is to rely on crowdsourcing toreduce costs at the risk of introducing noise. Inthis paper we demonstrate that directly model-ing instance difficulty can be used to improvemodel performance, and to route instances toappropriate annotators. Our difficulty predic-tion model combines two learned representa-tions: a ‘universal’ encoder trained on out-of-domain data, and a task-specific encoder. Ex-periments on a complex biomedical informa-tion extraction task using expert and lay anno-tators show that: (i) simply excluding from thetraining data instances predicted to be difficultyields a small boost in performance; (ii) us-ing difficulty scores to weight instances duringtraining provides further, consistent gains; (iii)assigning instances predicted to be difficult todomain experts is an effective strategy for taskrouting. Our experiments confirm the expec-tation that for specialized tasks expert annota-tions are higher quality than crowd labels, andhence preferable to obtain if practical. More-over, augmenting small amounts of expert datawith a larger set of lay annotations leads to fur-ther improvements in model performance.
1 Introduction
Assembling training corpora of annotated naturallanguage examples in specialized domains suchas biomedicine poses considerable challenges. Ex-perts with the requisite domain knowledge to per-form high-quality annotation tend to be expen-sive, while lay annotators may not have the nec-essary knowledge to provide high-quality annota-tions. A practical approach for collecting a suf-

ficiently large corpus would be to use crowd-sourcing platforms like Amazon Mechanical Turk(MTurk). However, crowd workers in general arelikely to provide noisy annotations (Abad andMoschitti, 2016; Plank et al., 2014; Alonso et al.,2015), an issue exacerbated by the technical na-ture of specialized content. Some of this noise mayreflect worker quality and can be modeled (Abadand Moschitti, 2016; Plank et al., 2014; Cohn andSpecia, 2013; Nguyen et al., 2017), but for someinstances lay people may simply lack the domainknowledge to provide useful annotation.In this paper we report experiments on theEBM-NLP corpus comprising crowdsourced an-notations of medical literature (Nye et al., 2018).We operationalize the concept of annotation dif-ficulty and show how it can be exploited duringtraining to improve information extraction mod-els. We then obtain expert annotations for the ab-stracts predicted to be most difficult, as well as fora similar number of randomly selected abstracts.The annotation of highly specialized data and theuse of lay and expert annotators allow us to exam-ine the following key questions related to lay andexpert annotations in specialized domains:Can we predict item difficulty? We define atraining instance as difficult if a lay annotator oran automated model disagree on its labeling. Weshow that difficulty can be predicted, and that itis distinct from inter-annotator agreement. Further,such predictions can be used during training to im-prove information extraction models.Are there systematic differences between expertand lay annotations? We observe decidedly loweragreement between lay workers as compared todomain experts. Lay annotations have high preci-sion but low recall with respect to expert annota-



Crowdsourcing takeaways

•  If you’re in a position of needing to acquire supervision (annotations), 
you’ll probably want to use crowdsourcing 

•  Invest in good task design and think about how you will aggregate 
individual annotations 

•  It may be worth investing in a small set of “expert” annotations as well


