
Machine Learning 2
DS 4420 - Spring 2020

Green AI
Byron C. Wallace

Today

• Green Artificial Intelligence: The surprisingly large carbon
footprint of modern ML models and what we might do
about this

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

The problem

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Model Hardware Power (W) Hours kWh·PUE CO2e Cloud compute cost

Transformerbase P100x8 1415.78 12 27 26 $41–$140
Transformerbig P100x8 1515.43 84 201 192 $289–$981
ELMo P100x3 517.66 336 275 262 $433–$1472
BERTbase V100x64 12,041.51 79 1507 1438 $3751–$12,571
BERTbase TPUv2x16 — 96 — — $2074–$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973–$3,201,722
NAS TPUv2x1 — 32,623 — — $44,055–$146,848
GPT-2 TPUv3x32 — 168 — — $12,902–$43,008

Table 3: Estimated cost of training a model in terms of CO2 emissions (lbs) and cloud compute cost (USD).7 Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

4 Experimental results

4.1 Cost of training

Table 3 lists CO2 emissions and estimated cost of
training the models described in §2.1. Of note is
that TPUs are more cost-efficient than GPUs on
workloads that make sense for that hardware (e.g.
BERT). We also see that models emit substan-
tial carbon emissions; training BERT on GPU is
roughly equivalent to a trans-American flight. So
et al. (2019) report that NAS achieves a new state-
of-the-art BLEU score of 29.7 for English to Ger-
man machine translation, an increase of just 0.1
BLEU at the cost of at least $150k in on-demand
compute time and non-trivial carbon emissions.

4.2 Cost of development: Case study

To quantify the computational requirements of
R&D for a new model we study the logs of
all training required to develop Linguistically-
Informed Self-Attention (Strubell et al., 2018), a
multi-task model that performs part-of-speech tag-
ging, labeled dependency parsing, predicate detec-
tion and semantic role labeling. This model makes
for an interesting case study as a representative
NLP pipeline and as a Best Long Paper at EMNLP.

Model training associated with the project
spanned a period of 172 days (approx. 6 months).
During that time 123 small hyperparameter grid
searches were performed, resulting in 4789 jobs
in total. Jobs varied in length ranging from a min-
imum of 3 minutes, indicating a crash, to a maxi-
mum of 9 days, with an average job length of 52
hours. All training was done on a combination of
NVIDIA Titan X (72%) and M40 (28%) GPUs.8

The sum GPU time required for the project
totaled 9998 days (27 years). This averages to

8We approximate cloud compute cost using P100 pricing.

Estimated cost (USD)
Models Hours Cloud compute Electricity

1 120 $52–$175 $5
24 2880 $1238–$4205 $118
4789 239,942 $103k–$350k $9870

Table 4: Estimated cost in terms of cloud compute and
electricity for training: (1) a single model (2) a single
tune and (3) all models trained during R&D.

about 60 GPUs running constantly throughout the
6 month duration of the project. Table 4 lists upper
and lower bounds of the estimated cost in terms
of Google Cloud compute and raw electricity re-
quired to develop and deploy this model.9 We see
that while training a single model is relatively in-
expensive, the cost of tuning a model for a new
dataset, which we estimate here to require 24 jobs,
or performing the full R&D required to develop
this model, quickly becomes extremely expensive.

5 Conclusions

Authors should report training time and

sensitivity to hyperparameters.

Our experiments suggest that it would be benefi-
cial to directly compare different models to per-
form a cost-benefit (accuracy) analysis. To ad-
dress this, when proposing a model that is meant
to be re-trained for downstream use, such as re-
training on a new domain or fine-tuning on a new
task, authors should report training time and com-
putational resources required, as well as model
sensitivity to hyperparameters. This will enable
direct comparison across models, allowing subse-
quent consumers of these models to accurately as-
sess whether the required computational resources

9Based on average U.S cost of electricity of $0.12/kWh.

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Cost of development

"The sum GPU time required for the project
totaled 9998 days (27 years)

Model Hardware Power (W) Hours kWh·PUE CO2e Cloud compute cost

Transformerbase P100x8 1415.78 12 27 26 $41–$140
Transformerbig P100x8 1515.43 84 201 192 $289–$981
ELMo P100x3 517.66 336 275 262 $433–$1472
BERTbase V100x64 12,041.51 79 1507 1438 $3751–$12,571
BERTbase TPUv2x16 — 96 — — $2074–$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973–$3,201,722
NAS TPUv2x1 — 32,623 — — $44,055–$146,848
GPT-2 TPUv3x32 — 168 — — $12,902–$43,008

Table 3: Estimated cost of training a model in terms of CO2 emissions (lbs) and cloud compute cost (USD).7 Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

4 Experimental results

4.1 Cost of training

Table 3 lists CO2 emissions and estimated cost of
training the models described in §2.1. Of note is
that TPUs are more cost-efficient than GPUs on
workloads that make sense for that hardware (e.g.
BERT). We also see that models emit substan-
tial carbon emissions; training BERT on GPU is
roughly equivalent to a trans-American flight. So
et al. (2019) report that NAS achieves a new state-
of-the-art BLEU score of 29.7 for English to Ger-
man machine translation, an increase of just 0.1
BLEU at the cost of at least $150k in on-demand
compute time and non-trivial carbon emissions.

4.2 Cost of development: Case study

To quantify the computational requirements of
R&D for a new model we study the logs of
all training required to develop Linguistically-
Informed Self-Attention (Strubell et al., 2018), a
multi-task model that performs part-of-speech tag-
ging, labeled dependency parsing, predicate detec-
tion and semantic role labeling. This model makes
for an interesting case study as a representative
NLP pipeline and as a Best Long Paper at EMNLP.

Model training associated with the project
spanned a period of 172 days (approx. 6 months).
During that time 123 small hyperparameter grid
searches were performed, resulting in 4789 jobs
in total. Jobs varied in length ranging from a min-
imum of 3 minutes, indicating a crash, to a maxi-
mum of 9 days, with an average job length of 52
hours. All training was done on a combination of
NVIDIA Titan X (72%) and M40 (28%) GPUs.8

The sum GPU time required for the project
totaled 9998 days (27 years). This averages to

8We approximate cloud compute cost using P100 pricing.

Estimated cost (USD)
Models Hours Cloud compute Electricity

1 120 $52–$175 $5
24 2880 $1238–$4205 $118
4789 239,942 $103k–$350k $9870

Table 4: Estimated cost in terms of cloud compute and
electricity for training: (1) a single model (2) a single
tune and (3) all models trained during R&D.

about 60 GPUs running constantly throughout the
6 month duration of the project. Table 4 lists upper
and lower bounds of the estimated cost in terms
of Google Cloud compute and raw electricity re-
quired to develop and deploy this model.9 We see
that while training a single model is relatively in-
expensive, the cost of tuning a model for a new
dataset, which we estimate here to require 24 jobs,
or performing the full R&D required to develop
this model, quickly becomes extremely expensive.

5 Conclusions

Authors should report training time and

sensitivity to hyperparameters.

Our experiments suggest that it would be benefi-
cial to directly compare different models to per-
form a cost-benefit (accuracy) analysis. To ad-
dress this, when proposing a model that is meant
to be re-trained for downstream use, such as re-
training on a new domain or fine-tuning on a new
task, authors should report training time and com-
putational resources required, as well as model
sensitivity to hyperparameters. This will enable
direct comparison across models, allowing subse-
quent consumers of these models to accurately as-
sess whether the required computational resources

9Based on average U.S cost of electricity of $0.12/kWh.

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Conclusions

• Researchers should report training time and hyper
parameter sensitivity

★ And practitioners should take these into consideration

• We need new, more efficient methods; not just ever
larger architectures!

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Conclusions

• Researchers should report training time and hyper
parameter sensitivity

★ And practitioners should take these into consideration

• We need new, more efficient methods; not just ever
larger architectures!

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Towards Green AI

Green AI

Roy Schwartz⇤ } Jesse Dodge⇤}| Noah A. Smith}~ Oren Etzioni}

}Allen Institute for AI, Seattle, Washington, USA
| Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

~ University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make AI both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green AI is an emerging focus at the Allen Institute for AI.

1 Introduction and Motivation

Since 2012, the field of artificial intelligence has reported remarkable progress on a broad range of capabilities in-
cluding object recognition, game playing, machine translation, and more [36]. This progress has been achieved by
increasingly large and computationally-intensive deep learning models.1 Figure 1 reproduced from [2] plots training
cost increase over time for state-of-the-art deep learning models starting with AlexNet in 2012 [20] to AlphaZero in
2017 [38]. The chart shows an overall increase of 300,000x, with training cost doubling every few months. An even
sharper trend can be observed in NLP word embedding approaches by looking at ELMo [29] followed by BERT [8],
openGPT-2 [30], and XLNet [48]. An important paper [40] has estimated the carbon footprint of several NLP models
and argued that this trend is both environmentally unfriendly (which we refer to as Red AI) and expensive, raising
barriers to participation in NLP research.

This trend is driven by the strong focus of the AI community on obtaining “state-of-the-art” results,2 as exemplified
by the rising popularity of leaderboards [46, 45], which typically report accuracy measures but omit any mention of
cost or efficiency (see, for example, leaderboards.allenai.org). Despite the clear benefits of improving
model accuracy in AI, the focus on this single metric ignores the economic, environmental, or social cost of reaching
the reported accuracy.

We advocate increasing research activity in Green AI—AI research that is more environmentally friendly and
inclusive. We emphasize that Red AI research has been yielding valuable contributions to the field of AI, but it’s been
overly dominant. We want to shift the balance towards the Green AI option—to ensure that any inspired undergraduate
with a laptop has the opportunity to write high-quality papers that could be accepted at premier research conferences.

⇤The first two authors contributed equally. The research was done at the Allen Institute for AI.
1For brevity, we refer to AI throughout this paper, but our focus is on AI research that relies on deep learning methods.
2Meaning, in practice, that a system’s accuracy on some benchmark is greater than any previously reported system’s accuracy.

1

ar
X

iv
:1

90
7.

10
59

7v
3

 [c
s.C

Y
]

13
 A

ug
 2

01
9

Towards Green AI

• Argues for a pivot toward research that is environmentally
friendly and inclusive; not just dominated by huge
corporations with unlimited compute

Green AI

Roy Schwartz⇤ } Jesse Dodge⇤}| Noah A. Smith}~ Oren Etzioni}

}Allen Institute for AI, Seattle, Washington, USA
| Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

~ University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make AI both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green AI is an emerging focus at the Allen Institute for AI.

1 Introduction and Motivation

Since 2012, the field of artificial intelligence has reported remarkable progress on a broad range of capabilities in-
cluding object recognition, game playing, machine translation, and more [36]. This progress has been achieved by
increasingly large and computationally-intensive deep learning models.1 Figure 1 reproduced from [2] plots training
cost increase over time for state-of-the-art deep learning models starting with AlexNet in 2012 [20] to AlphaZero in
2017 [38]. The chart shows an overall increase of 300,000x, with training cost doubling every few months. An even
sharper trend can be observed in NLP word embedding approaches by looking at ELMo [29] followed by BERT [8],
openGPT-2 [30], and XLNet [48]. An important paper [40] has estimated the carbon footprint of several NLP models
and argued that this trend is both environmentally unfriendly (which we refer to as Red AI) and expensive, raising
barriers to participation in NLP research.

This trend is driven by the strong focus of the AI community on obtaining “state-of-the-art” results,2 as exemplified
by the rising popularity of leaderboards [46, 45], which typically report accuracy measures but omit any mention of
cost or efficiency (see, for example, leaderboards.allenai.org). Despite the clear benefits of improving
model accuracy in AI, the focus on this single metric ignores the economic, environmental, or social cost of reaching
the reported accuracy.

We advocate increasing research activity in Green AI—AI research that is more environmentally friendly and
inclusive. We emphasize that Red AI research has been yielding valuable contributions to the field of AI, but it’s been
overly dominant. We want to shift the balance towards the Green AI option—to ensure that any inspired undergraduate
with a laptop has the opportunity to write high-quality papers that could be accepted at premier research conferences.

⇤The first two authors contributed equally. The research was done at the Allen Institute for AI.
1For brevity, we refer to AI throughout this paper, but our focus is on AI research that relies on deep learning methods.
2Meaning, in practice, that a system’s accuracy on some benchmark is greater than any previously reported system’s accuracy.

1

ar
X

iv
:1

90
7.

10
59

7v
3

 [c
s.C

Y
]

13
 A

ug
 2

01
9

https://openai.com/blog/ai-and-compute/

(Log scaled)

https://openai.com/blog/ai-and-compute/

Does the community care about efficiency?Figure 2: AI papers tend to target accuracy rather than efficiency. The figure shows the proportion of papers that
target accuracy, efficiency, both or other from a sample of 60 papers from top AI conferences.

by pushing the boundaries of AI. Our exposition here is meant to highlight areas where computational expense is high,
and to present each as an opportunity for developing more efficient techniques.

To demonstrate the prevalence of Red AI, we sampled 60 papers from top AI conferences (ACL,3 NeurIPS,4 and
CVPR5). For each paper we noted whether the authors claim their main contribution to be (a) an improvement to
accuracy or some related measure, (b) an improvement to efficiency, (c) both, or (d) other. As shown in Figure 2, in all
conferences we considered, a large majority of the papers target accuracy (90% of ACL papers, 80% of NeurIPS papers
and 75% of CVPR papers). Moreover, for both empirical AI conferences (ACL and CVPR) only a small portion (10%
and 20% respectively) argue for a new efficiency result.6 This highlights the focus of the AI community on measures
of performance such as accuracy, at the expense of measures of efficiency such as speed or model size. In this paper
we argue that a larger weight should be given to the latter.

To better understand the different ways in which AI research can be red, consider an AI result reported in a scientific
paper. This result typically includes a model trained on a training dataset and evaluated on a test dataset. The process
of developing that model often involves multiple experiments to tune its hyperparameters. When considering the
different factors that increase the computational and environmental cost of producing such a result, three factors come
to mind: the cost of executing the model on a single (E)xample (either during training or at inference time); the size
of the training (D)ataset, which controls the number of times the model is executed during training, and the number of
(H)yperparameter experiments, which controls how many times the model is trained during model development. The
total cost of producing a (R)esult in machine learning increases linearly with each of these quantities. This cost can
be estimated as follows:

Cost(R) / E ·D ·H

Equation 1: The equation of Red AI: The cost of an AI (R)esult grows linearly with the cost of processing a single
(E)xample, the size of the training (D)ataset and the number of (H)yperparameter experiments.

Equation 1 is a simplification (e.g., different hyperparameter assignments can lead to different costs for processing
a single example). It also ignores other factors such as the number of training epochs. Nonetheless, it illustrates three

3
https://acl2018.org

4
https://nips.cc/Conferences/2018

5
http://cvpr2019.thecvf.com

6Interestingly, many NeurIPS papers included convergence rates or regret bounds which describe performance as a function of examples or
iterations, thus targeting efficiency (55%). This indicates an increased awareness of the importance of this concept, at least in theoretical analyses.

3

Green AI

Roy Schwartz⇤ } Jesse Dodge⇤}| Noah A. Smith}~ Oren Etzioni}

}Allen Institute for AI, Seattle, Washington, USA
| Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

~ University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make AI both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green AI is an emerging focus at the Allen Institute for AI.

1 Introduction and Motivation

Since 2012, the field of artificial intelligence has reported remarkable progress on a broad range of capabilities in-
cluding object recognition, game playing, machine translation, and more [36]. This progress has been achieved by
increasingly large and computationally-intensive deep learning models.1 Figure 1 reproduced from [2] plots training
cost increase over time for state-of-the-art deep learning models starting with AlexNet in 2012 [20] to AlphaZero in
2017 [38]. The chart shows an overall increase of 300,000x, with training cost doubling every few months. An even
sharper trend can be observed in NLP word embedding approaches by looking at ELMo [29] followed by BERT [8],
openGPT-2 [30], and XLNet [48]. An important paper [40] has estimated the carbon footprint of several NLP models
and argued that this trend is both environmentally unfriendly (which we refer to as Red AI) and expensive, raising
barriers to participation in NLP research.

This trend is driven by the strong focus of the AI community on obtaining “state-of-the-art” results,2 as exemplified
by the rising popularity of leaderboards [46, 45], which typically report accuracy measures but omit any mention of
cost or efficiency (see, for example, leaderboards.allenai.org). Despite the clear benefits of improving
model accuracy in AI, the focus on this single metric ignores the economic, environmental, or social cost of reaching
the reported accuracy.

We advocate increasing research activity in Green AI—AI research that is more environmentally friendly and
inclusive. We emphasize that Red AI research has been yielding valuable contributions to the field of AI, but it’s been
overly dominant. We want to shift the balance towards the Green AI option—to ensure that any inspired undergraduate
with a laptop has the opportunity to write high-quality papers that could be accepted at premier research conferences.

⇤The first two authors contributed equally. The research was done at the Allen Institute for AI.
1For brevity, we refer to AI throughout this paper, but our focus is on AI research that relies on deep learning methods.
2Meaning, in practice, that a system’s accuracy on some benchmark is greater than any previously reported system’s accuracy.

1

ar
X

iv
:1

90
7.

10
59

7v
3

 [c
s.C

Y
]

13
 A

ug
 2

01
9

Figure 2: AI papers tend to target accuracy rather than efficiency. The figure shows the proportion of papers that
target accuracy, efficiency, both or other from a sample of 60 papers from top AI conferences.

by pushing the boundaries of AI. Our exposition here is meant to highlight areas where computational expense is high,
and to present each as an opportunity for developing more efficient techniques.

To demonstrate the prevalence of Red AI, we sampled 60 papers from top AI conferences (ACL,3 NeurIPS,4 and
CVPR5). For each paper we noted whether the authors claim their main contribution to be (a) an improvement to
accuracy or some related measure, (b) an improvement to efficiency, (c) both, or (d) other. As shown in Figure 2, in all
conferences we considered, a large majority of the papers target accuracy (90% of ACL papers, 80% of NeurIPS papers
and 75% of CVPR papers). Moreover, for both empirical AI conferences (ACL and CVPR) only a small portion (10%
and 20% respectively) argue for a new efficiency result.6 This highlights the focus of the AI community on measures
of performance such as accuracy, at the expense of measures of efficiency such as speed or model size. In this paper
we argue that a larger weight should be given to the latter.

To better understand the different ways in which AI research can be red, consider an AI result reported in a scientific
paper. This result typically includes a model trained on a training dataset and evaluated on a test dataset. The process
of developing that model often involves multiple experiments to tune its hyperparameters. When considering the
different factors that increase the computational and environmental cost of producing such a result, three factors come
to mind: the cost of executing the model on a single (E)xample (either during training or at inference time); the size
of the training (D)ataset, which controls the number of times the model is executed during training, and the number of
(H)yperparameter experiments, which controls how many times the model is trained during model development. The
total cost of producing a (R)esult in machine learning increases linearly with each of these quantities. This cost can
be estimated as follows:

Cost(R) / E ·D ·H

Equation 1: The equation of Red AI: The cost of an AI (R)esult grows linearly with the cost of processing a single
(E)xample, the size of the training (D)ataset and the number of (H)yperparameter experiments.

Equation 1 is a simplification (e.g., different hyperparameter assignments can lead to different costs for processing
a single example). It also ignores other factors such as the number of training epochs. Nonetheless, it illustrates three

3
https://acl2018.org

4
https://nips.cc/Conferences/2018

5
http://cvpr2019.thecvf.com

6Interestingly, many NeurIPS papers included convergence rates or regret bounds which describe performance as a function of examples or
iterations, thus targeting efficiency (55%). This indicates an increased awareness of the importance of this concept, at least in theoretical analyses.

3 Green AI

Roy Schwartz⇤ } Jesse Dodge⇤}| Noah A. Smith}~ Oren Etzioni}

}Allen Institute for AI, Seattle, Washington, USA
| Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

~ University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make AI both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green AI is an emerging focus at the Allen Institute for AI.

1 Introduction and Motivation

Since 2012, the field of artificial intelligence has reported remarkable progress on a broad range of capabilities in-
cluding object recognition, game playing, machine translation, and more [36]. This progress has been achieved by
increasingly large and computationally-intensive deep learning models.1 Figure 1 reproduced from [2] plots training
cost increase over time for state-of-the-art deep learning models starting with AlexNet in 2012 [20] to AlphaZero in
2017 [38]. The chart shows an overall increase of 300,000x, with training cost doubling every few months. An even
sharper trend can be observed in NLP word embedding approaches by looking at ELMo [29] followed by BERT [8],
openGPT-2 [30], and XLNet [48]. An important paper [40] has estimated the carbon footprint of several NLP models
and argued that this trend is both environmentally unfriendly (which we refer to as Red AI) and expensive, raising
barriers to participation in NLP research.

This trend is driven by the strong focus of the AI community on obtaining “state-of-the-art” results,2 as exemplified
by the rising popularity of leaderboards [46, 45], which typically report accuracy measures but omit any mention of
cost or efficiency (see, for example, leaderboards.allenai.org). Despite the clear benefits of improving
model accuracy in AI, the focus on this single metric ignores the economic, environmental, or social cost of reaching
the reported accuracy.

We advocate increasing research activity in Green AI—AI research that is more environmentally friendly and
inclusive. We emphasize that Red AI research has been yielding valuable contributions to the field of AI, but it’s been
overly dominant. We want to shift the balance towards the Green AI option—to ensure that any inspired undergraduate
with a laptop has the opportunity to write high-quality papers that could be accepted at premier research conferences.

⇤The first two authors contributed equally. The research was done at the Allen Institute for AI.
1For brevity, we refer to AI throughout this paper, but our focus is on AI research that relies on deep learning methods.
2Meaning, in practice, that a system’s accuracy on some benchmark is greater than any previously reported system’s accuracy.

1

ar
X

iv
:1

90
7.

10
59

7v
3

 [c
s.C

Y
]

13
 A

ug
 2

01
9

(a) Different models. (b) Different layers of the ResNet model.

Figure 4: Increase in FPO results in diminishing return for object detection top-1 accuracy. Plots (bottom to top):
model parameters (in million), FPO (in billions), top-1 accuracy on ImageNet. (4a): Different models: AlexNet
[20], ResNet [14], ResNext [47], DPN107 [5], SENet154 [17]. (4b): Comparison of different sizes (measured by the
number of layers) of the ResNet model [14].

Discussion Efficient machine learning approaches have received attention in the research community, but are gener-
ally not motivated by being green. For example, a significant amount of work in the computer vision community has
addressed efficient inference, which is necessary for real-time processing of images for applications like self-driving
cars [24, 31, 22], or for placing models on devices such as mobile phones [16, 34]. Most of these approaches target ef-
ficient model inference [32, 50, 12],15 and thus only minimize the cost of processing a single example, while ignoring
the other two red practices discussed in Section 2.16

The above examples indicate that the path to making AI green depends on how it is used. When developing a new
model, much of the research process involves training many model variants on a training set and performing inference
on a small development set. In such a setting, more efficient training procedures can lead to greater savings, while in
a production setting more efficient inference can be more important. We advocate for a holistic view of computational
savings which doesn’t sacrifice in some areas to make advances in others.

FPO has some limitations. First, it targets the electricity consumption of a model, while ignoring other potential
limiting factors for researchers such as the memory consumption by the model, which can often lead to additional
energy and monetary costs [24]. Second, the amount of work done by a model largely depends on the model imple-
mentation, as two different implementations of the same model could result in very different amounts of processing
work. Due to the focus on the modeling contribution, the AI community has traditionally ignored the quality or ef-
ficiency of models’ implementation.17 We argue that the time to reverse this norm has come, and that exceptionally
good implementations that lead to efficient models should be credited by the AI community.

3.2 FPO Cost of Existing Models

To demonstrate the importance of reporting the amount of work, we present FPO costs for several existing models.18

Figure 4a shows the number of parameters and FPO of several leading object recognition models, as well as their
15Some very recent work also targeted efficient training [7].
16In fact, creating smaller models often results in longer running time, so mitigating the different trends might be at odds [44].
17We consider this exclusive focus on the final prediction another symptom of Red AI.
18These numbers represent FPO per inference, i.e., the work required to process a single example.

7

Floating Point Operations

Large increase in FPO —> Small gains in acc

Model distillation/compression
ar

X
iv

:1
50

3.
02

53
1v

1
 [s

ta
t.M

L]
 9

 M
ar

 2
01

5

Distilling the Knowledge in a Neural Network
Geoffrey Hinton∗†Google Inc.Mountain Viewgeoffhinton@google.com

Oriol Vinyals†Google Inc.Mountain Viewvinyals@google.com

Jeff Dean
Google Inc.Mountain Viewjeff@google.com

AbstractA very simple way to improve the performance of almost any machine learning

algorithm is to train many different models on the same data and then to average

their predictions [3]. Unfortunately, making predictions using a whole ensemble

of models is cumbersome and may be too computationally expensive to allow de-

ployment to a large number of users, especially if the individual models are large

neural nets. Caruana and his collaborators [1] have shown that it is possible to

compress the knowledge in an ensemble into a single model which is much eas-

ier to deploy and we develop this approach further using a different compression

technique. We achieve some surprising results on MNIST and we show that we

can significantly improve the acoustic model of a heavily used commercial system

by distilling the knowledge in an ensemble of models into a single model. We also

introduce a new type of ensemble composed of one or more full models and many

specialist models which learn to distinguish fine-grained classes that the full mod-

els confuse. Unlike a mixture of experts, these specialist models can be trained

rapidly and in parallel.

1 Introduction
Many insects have a larval form that is optimized for extracting energy and nutrients from the envi-

ronment and a completely different adult form that is optimized for the very different requirements

of traveling and reproduction. In large-scale machine learning, we typically use very similar models

for the training stage and the deployment stage despite their very different requirements: For tasks

like speech and object recognition, training must extract structure from very large, highly redundant

datasets but it does not need to operate in real time and it can use a huge amount of computation.

Deployment to a large number of users, however, has much more stringent requirements on latency

and computational resources. The analogy with insects suggests that we should be willing to train

very cumbersome models if that makes it easier to extract structure from the data. The cumbersome

model could be an ensemble of separately trained models or a single very large model trained with

a very strong regularizer such as dropout [9]. Once the cumbersome model has been trained, we

can then use a different kind of training, which we call “distillation” to transfer the knowledge from

the cumbersome model to a small model that is more suitable for deployment. A version of this

strategy has already been pioneered by Rich Caruana and his collaborators [1]. In their important

paper they demonstrate convincingly that the knowledge acquired by a large ensemble of models

can be transferred to a single small model.A conceptual block that may have prevented more investigation of this very promising approach is

that we tend to identify the knowledge in a trained model with the learned parameter values and this

makes it hard to see how we can change the form of the model but keep the same knowledge. A more

abstract view of the knowledge, that frees it from any particular instantiation, is that it is a learned

∗Also affiliated with the University of Toronto and the Canadian Institute for Advanced Research.

†Equal contribution.

1

Model Com
pression

Cristian Bu
cilă

Computer S
cience

Cornell Un
iversity

cristi@cs.cornell.e
du

Rich Carua
na

Computer S
cience

Cornell Un
iversity

caruana@cs.cornell.e
du

Alexandru
Niculescu-M

izil

Computer S
cience

Cornell Un
iversity

alexn@cs.cornell.e
du

ABSTRAC
T

Often the best performing supervised learning models are

ensembles of hundreds or thousands of base-level classifiers.

Unfortunately, the space required to store this many clas-

sifiers, and the time required to execute them at run-time,

prohibits their use in applications where test sets are large

(e.g. Google), where storage
space is at a premium (e.g.

PDAs), and where computational power is limited (e.g. hea-

ring aids). We present a method for “compressing” large,

complex ensembles into smaller, faster models, usually with-

out significant loss in performance.

Categori
es and Subject Descriptors: I.5.1 [Pattern Re-

cognition]: Models – Neural nets.

General Terms: Algorithms, Experimentation, Measure-

ment, Performance, Reliability.

Keywords: Supervised Learning, Model Compression

1. INTRODU
CTION

An ensemble is a collectio
n of models whose predictions

are combined by weighted averaging or voting. Ensemble

methods have been the focus of significant research
in the

past decade, and a variety of ensemble methods have been

introduced. Well known ensemble methods include bagging

[2], boosting [14], random forests[3
], Bayesian averaging [9]

and stacking [17]. Much of the interest in ensemble methods

has been fueled by their excellent empirical performance.

Ensembles, however, have one disadvantage that often

is overlooked: many ensembles are large and slow. This

makes ensemble methods unusable for applications with lim-

ited memory, storage
space, or computational power such as

portable devices or sensor networks, and for applications in

which real-tim
e predictions are needed. Consider, for exam-

ple, boosted decision trees, bagged decision trees or random

forests.
These models often contain hundreds or thousands

of decision trees, each of which must be stored, and executed

at run-time to make predictions. Executing a single tree is

fast, but executing a thousand trees is not.

Permission
to make di

gital or har
d copies of

all or part
of this wor

k for

personal or
classroom

use is gran
ted withou

t fee provid
ed that cop

ies are

not made o
r distribute

d for profit
or commer

cial advant
age and tha

t copies

bear this no
tice and the

full citation
on the first

page. To co
py otherwis

e, to

republish, t
o post on se

rvers or to r
edistribute

to lists, req
uires prior

specific

permission
and/or a fee

.

KDD’06, A
ugust 20–2

3, 2006, Ph
iladelphia,

Pennsylvan
ia, USA.

Copyright 2
006 ACM 1-59593-33

9-5/06/000
8 ...$5.00.

In this paper we show how to compress the function that

is learned by a complex model into a much smaller, faster

model that has comparable performance. Specifically, we

show how to train compact artificial neural nets to mimic the

function learned by ensemble selection
, an ensemble learning

method introduced by Caruana et al. [5]. To achieve this,

we take advantage of the well known property of artificial

neural nets, namely that they are universal approximators:

given enough training data, and a large enough hidden layer,

a neural net can approximate any function to arbitrary pre-

cision. Instead of training the neural net on the original

(often small) training set used to train the ensemble, we use

the ensemble to label a large unlabeled data set and then

train the neural net on this much larger, ensemble labeled,

data set. This yields a neural net that makes predictions

similar to the ensemble, and which performs much better

than a neural net trained on the original training set.

The key difficulty when compressing complex ensembles

into simpler models this way is the need for a large unla-

beled data set. In some domains, unlabeled data is easy to

obtain. In other domains, however, large data sets (labeled

or unlabeled) are not available. In these domains, we gen-

erate synthetic cases that as closely as possible match the

distribution of the original training set. We introduce a new

method for generating synthetic cases called MUNGE that

outperforms other methods to which we have compared it.

Using MUNGE, we are able to train neural nets that are a

thousand times smaller and faster than ensemble selection

ensembles, but which have nearly the same performance as

the far more complex ensembles.

2. MODEL C
OMPRESS

ION

In some situations, it is not enough for a classifier or re-

gressor
to be highly accurate, it also has to meet stringent

time and space requirements. In many cases, however, the

best performing model is too slow and too large to meet

these requirements, while fast and compact models are less

accurate, because either they are not expressive enough, or

they overfit to the limited training data. For such situations,

we propose using model compression
to obtain fast, compact

yet highly accurate models.

The main idea behind model compression is to use a fast

and compact model to approximate the function learned by

a slower, larger, but better performing model. Unlike the

true function that is unknown, the function learned by a

high performing model is available and can be used to label

large amounts of pseudo data. A fast, compact and expres-

sive model trained on enough pseudo data will not overfit

Model distillation
Idea: Train a smaller model (the student) on the predictions/outputs of a
larger model (the teacher)

Model distillation

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Idea: Train a smaller model (the student) on the predictions/outputs of a
larger model (the teacher)

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Model Com
pression

Cristian Bu
cilă

Computer S
cience

Cornell Un
iversity

cristi@cs.cornell.e
du

Rich Carua
na

Computer S
cience

Cornell Un
iversity

caruana@cs.cornell.e
du

Alexandru
Niculescu-M

izil

Computer S
cience

Cornell Un
iversity

alexn@cs.cornell.e
du

ABSTRAC
T

Often the best performing supervised learning models are

ensembles of hundreds or thousands of base-level classifiers.

Unfortunately, the space required to store this many clas-

sifiers, and the time required to execute them at run-time,

prohibits their use in applications where test sets are large

(e.g. Google), where storage
space is at a premium (e.g.

PDAs), and where computational power is limited (e.g. hea-

ring aids). We present a method for “compressing” large,

complex ensembles into smaller, faster models, usually with-

out significant loss in performance.

Categori
es and Subject Descriptors: I.5.1 [Pattern Re-

cognition]: Models – Neural nets.

General Terms: Algorithms, Experimentation, Measure-

ment, Performance, Reliability.

Keywords: Supervised Learning, Model Compression

1. INTRODU
CTION

An ensemble is a collectio
n of models whose predictions

are combined by weighted averaging or voting. Ensemble

methods have been the focus of significant research
in the

past decade, and a variety of ensemble methods have been

introduced. Well known ensemble methods include bagging

[2], boosting [14], random forests[3
], Bayesian averaging [9]

and stacking [17]. Much of the interest in ensemble methods

has been fueled by their excellent empirical performance.

Ensembles, however, have one disadvantage that often

is overlooked: many ensembles are large and slow. This

makes ensemble methods unusable for applications with lim-

ited memory, storage
space, or computational power such as

portable devices or sensor networks, and for applications in

which real-tim
e predictions are needed. Consider, for exam-

ple, boosted decision trees, bagged decision trees or random

forests.
These models often contain hundreds or thousands

of decision trees, each of which must be stored, and executed

at run-time to make predictions. Executing a single tree is

fast, but executing a thousand trees is not.

Permission
to make di

gital or har
d copies of

all or part
of this wor

k for

personal or
classroom

use is gran
ted withou

t fee provid
ed that cop

ies are

not made o
r distribute

d for profit
or commer

cial advant
age and tha

t copies

bear this no
tice and the

full citation
on the first

page. To co
py otherwis

e, to

republish, t
o post on se

rvers or to r
edistribute

to lists, req
uires prior

specific

permission
and/or a fee

.

KDD’06, A
ugust 20–2

3, 2006, Ph
iladelphia,

Pennsylvan
ia, USA.

Copyright 2
006 ACM 1-59593-33

9-5/06/000
8 ...$5.00.

In this paper we show how to compress the function that

is learned by a complex model into a much smaller, faster

model that has comparable performance. Specifically, we

show how to train compact artificial neural nets to mimic the

function learned by ensemble selection
, an ensemble learning

method introduced by Caruana et al. [5]. To achieve this,

we take advantage of the well known property of artificial

neural nets, namely that they are universal approximators:

given enough training data, and a large enough hidden layer,

a neural net can approximate any function to arbitrary pre-

cision. Instead of training the neural net on the original

(often small) training set used to train the ensemble, we use

the ensemble to label a large unlabeled data set and then

train the neural net on this much larger, ensemble labeled,

data set. This yields a neural net that makes predictions

similar to the ensemble, and which performs much better

than a neural net trained on the original training set.

The key difficulty when compressing complex ensembles

into simpler models this way is the need for a large unla-

beled data set. In some domains, unlabeled data is easy to

obtain. In other domains, however, large data sets (labeled

or unlabeled) are not available. In these domains, we gen-

erate synthetic cases that as closely as possible match the

distribution of the original training set. We introduce a new

method for generating synthetic cases called MUNGE that

outperforms other methods to which we have compared it.

Using MUNGE, we are able to train neural nets that are a

thousand times smaller and faster than ensemble selection

ensembles, but which have nearly the same performance as

the far more complex ensembles.

2. MODEL C
OMPRESS

ION

In some situations, it is not enough for a classifier or re-

gressor
to be highly accurate, it also has to meet stringent

time and space requirements. In many cases, however, the

best performing model is too slow and too large to meet

these requirements, while fast and compact models are less

accurate, because either they are not expressive enough, or

they overfit to the limited training data. For such situations,

we propose using model compression
to obtain fast, compact

yet highly accurate models.

The main idea behind model compression is to use a fast

and compact model to approximate the function learned by

a slower, larger, but better performing model. Unlike the

true function that is unknown, the function learned by a

high performing model is available and can be used to label

large amounts of pseudo data. A fast, compact and expres-

sive model trained on enough pseudo data will not overfit

KDD, 2006

The idea
• Learn a "fast, compact” model (learner) that approximates the

predictions of a big, inefficient model (teacher)

The idea
• Learn a "fast, compact” model (learner) that approximates the

predictions of a big, inefficient model (teacher)

• Note that we have access to the teacher so can train the learner even
on “unlabeled” data — we are trying to get the learner to mimic the
teacher

The idea
• Learn a "fast, compact” model (learner) that approximates the

predictions of a big, inefficient model (teacher)

• Note that we have access to the teacher so can train the learner even
on “unlabeled” data — we are trying to get the learner to mimic the
teacher

• This paper considers a bunch of ways we might generate synthetic
“points” to pass through the teacher and use as training data for the
learner. In many domains (e.g., language, vision) real unlabeled data
is easy to find (so we do not need to generate synthetic samples)

TRUE DIST RANDOM

NBE MUNGE

Figure 1: Synthetic data generated for a simple 2D
problem.

probability p, ea is assigned a random value drawn from a
normal distribution with mean e′a and standard deviation
sd = |ea − e′a|/s, and e′a is assigned a random value drawn
from the normal distribution with mean ea and the same
standard deviation sd. We call this approach to generating
artificial data by swapping values between neighboring cases
MUNGE.2 The method is presented in Algorithm 1.

Figure 1 shows samples generated from a simple 2D dis-
tribution (TRUE DIST), and the distributions learned by
RANDOM, NBE and MUNGE from a train set of 4000
points drawn from TRUE DIST. As expected, the samples
generated by RANDOM cover an area much larger than the
true distribution, so only relatively few of the samples over-
lap with the region of interest. NBE does a better job at
approximating the true distribution, but still has problems,
especially in the “corners”. Of the three methods, MUNGE
clearly approximates the true distribution the best.

3. EXPERIMENTAL EVALUATION
We evaluate the effectiveness of model compression on

eight binary classification problems. ADULT, COVTYPE
and LETTER are from the UCI Repository [1]. COVTYPE
has been converted to a binary problem by treating the
largest class as positive and the rest as negative. We con-
verted LETTER to a binary problem in two ways. LET-
TER.p1 treats the letter ”O” as positive and the remaining
25 letters as negative, yielding a very unbalanced binary
problem. LETTER.p2 uses letters A-M as positives and
the rest as negatives, yielding a difficult, but well balanced,
problem. HS is the IndianPine92 data set [10] where the dif-
ficult class Soybean-mintill is the positive class. SLAC is a
problem from the Stanford Linear Accelerator. MEDIS and
MG are medical data sets. See Table 1 for characteristics of
these problems.

3.1 Experimental Setup
We experiment with using neural networks to compress

the models built using the ensemble selection algorithm pro-
posed by Caruana et al. in [5]. The ensemble models gener-
ated by ensemble selection are very large, complex models
that have very good generalization performance, thus they
are a perfect candidate for model compression.

2The dictionary defines munge as “To imperfectly transform
information” or “To modify data in a way that cannot be
described succinctly”.

Table 1: Description of problems.

problem #attr train size test size %poz

adult 14/104 4000 35222 25%
covtype 54 4000 25000 36%
hs 200 4000 4366 24%
letter.p1 16 4000 14000 3%
letter.p2 16 4000 14000 53%
medis 63 4000 8199 11%
mg 124 4000 12807 17%
slac 59 4000 25000 50%

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

4k 10k 25k 50k 100k 200k 400k

R
M

SE

training size

RAND
NBE

MUNGE
ensemble selection

best single model
best neural net

Figure 2: Average perf. over the eight problems.

Ensemble selection first builds a library of diverse base-
level modes using many different learning algorithms and
parameter settings. After the library is built, the basic en-
semble selection procedure builds the ensemble model by
greedily selecting at each iteration the model from the li-
brary that when added to the ensemble improves the per-
formance of the ensemble the most. Caruana et al. also
propose a number of enhancements to the basic ensemble
selection algorithm that improve its performance, but as a
side effect increase the size of the ensemble by increasing the
number of base-level models it contains.

For all problems, a training set of 4000 points is used
to train the base-level models, and a validation set of 1000
points is used as hill climb set for ensemble selection. For
compression, the 4000 training points are used as a training
set for the three algorithms for producing artificial data:
RANDOM, NBE and MUNGE. The artificial data generated
with each algorithm is then labeled by the ensemble model
and used to train a neural net model that will mimic the
ensemble. When necessary, the 1000 points validation set is
used for early stopping.

We compare the performance of the compressed models
with the performance of the target ensemble selection mod-
els on the eight test problems. We also show the perfor-
mance of the best single base-level model from the ensemble
selection library, selected using the same 1000 points valida-
tion sets, and the best neural network that could be trained
on the original 4000 points training sets, using the 1000
points validation sets for early stopping and for selecting
the number of hidden units. All the reported results reflect
the root-mean-squared-error (RMSE) of models predictions
to the binary 0/1 targets on large independent final test sets.

TRUE DIST RANDOM

NBE MUNGE

Figure 1: Synthetic data generated for a simple 2D
problem.

probability p, ea is assigned a random value drawn from a
normal distribution with mean e′a and standard deviation
sd = |ea − e′a|/s, and e′a is assigned a random value drawn
from the normal distribution with mean ea and the same
standard deviation sd. We call this approach to generating
artificial data by swapping values between neighboring cases
MUNGE.2 The method is presented in Algorithm 1.

Figure 1 shows samples generated from a simple 2D dis-
tribution (TRUE DIST), and the distributions learned by
RANDOM, NBE and MUNGE from a train set of 4000
points drawn from TRUE DIST. As expected, the samples
generated by RANDOM cover an area much larger than the
true distribution, so only relatively few of the samples over-
lap with the region of interest. NBE does a better job at
approximating the true distribution, but still has problems,
especially in the “corners”. Of the three methods, MUNGE
clearly approximates the true distribution the best.

3. EXPERIMENTAL EVALUATION
We evaluate the effectiveness of model compression on

eight binary classification problems. ADULT, COVTYPE
and LETTER are from the UCI Repository [1]. COVTYPE
has been converted to a binary problem by treating the
largest class as positive and the rest as negative. We con-
verted LETTER to a binary problem in two ways. LET-
TER.p1 treats the letter ”O” as positive and the remaining
25 letters as negative, yielding a very unbalanced binary
problem. LETTER.p2 uses letters A-M as positives and
the rest as negatives, yielding a difficult, but well balanced,
problem. HS is the IndianPine92 data set [10] where the dif-
ficult class Soybean-mintill is the positive class. SLAC is a
problem from the Stanford Linear Accelerator. MEDIS and
MG are medical data sets. See Table 1 for characteristics of
these problems.

3.1 Experimental Setup
We experiment with using neural networks to compress

the models built using the ensemble selection algorithm pro-
posed by Caruana et al. in [5]. The ensemble models gener-
ated by ensemble selection are very large, complex models
that have very good generalization performance, thus they
are a perfect candidate for model compression.

2The dictionary defines munge as “To imperfectly transform
information” or “To modify data in a way that cannot be
described succinctly”.

Table 1: Description of problems.

problem #attr train size test size %poz

adult 14/104 4000 35222 25%
covtype 54 4000 25000 36%
hs 200 4000 4366 24%
letter.p1 16 4000 14000 3%
letter.p2 16 4000 14000 53%
medis 63 4000 8199 11%
mg 124 4000 12807 17%
slac 59 4000 25000 50%

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

4k 10k 25k 50k 100k 200k 400k

R
M

SE

training size

RAND
NBE

MUNGE
ensemble selection

best single model
best neural net

Figure 2: Average perf. over the eight problems.

Ensemble selection first builds a library of diverse base-
level modes using many different learning algorithms and
parameter settings. After the library is built, the basic en-
semble selection procedure builds the ensemble model by
greedily selecting at each iteration the model from the li-
brary that when added to the ensemble improves the per-
formance of the ensemble the most. Caruana et al. also
propose a number of enhancements to the basic ensemble
selection algorithm that improve its performance, but as a
side effect increase the size of the ensemble by increasing the
number of base-level models it contains.

For all problems, a training set of 4000 points is used
to train the base-level models, and a validation set of 1000
points is used as hill climb set for ensemble selection. For
compression, the 4000 training points are used as a training
set for the three algorithms for producing artificial data:
RANDOM, NBE and MUNGE. The artificial data generated
with each algorithm is then labeled by the ensemble model
and used to train a neural net model that will mimic the
ensemble. When necessary, the 1000 points validation set is
used for early stopping.

We compare the performance of the compressed models
with the performance of the target ensemble selection mod-
els on the eight test problems. We also show the perfor-
mance of the best single base-level model from the ensemble
selection library, selected using the same 1000 points valida-
tion sets, and the best neural network that could be trained
on the original 4000 points training sets, using the 1000
points validation sets for early stopping and for selecting
the number of hidden units. All the reported results reflect
the root-mean-squared-error (RMSE) of models predictions
to the binary 0/1 targets on large independent final test sets.

We can train a neural network student to mimic a big ensemble
— this does much better than net trained on labeled data only

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

2561286432168421

RM
SE

number of hidden units

ADULT

MUNGE
ensemble selection

best single model
best neural net

 0.33
 0.34
 0.35
 0.36
 0.37
 0.38
 0.39

 0.4

2561286432168421

number of hidden units

COVTYPE

MUNGE
ensemble selection

best single model
best neural net

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

2561286432168421

number of hidden units

HS

MUNGE
ensemble selection

best single model
best neural net

 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18

2561286432168421

RM
SE

number of hidden units

LETTER.P1

MUNGE
ensemble selection

best single model
best neural net

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2561286432168421

number of hidden units

LETTER.P2

MUNGE
ensemble selection

best single model
best neural net

 0.276
 0.278
 0.28

 0.282
 0.284
 0.286
 0.288
 0.29

 0.292
 0.294
 0.296

2561286432168421

number of hidden units

MEDIS

MUNGE
ensemble selection

best single model
best neural net

 0.29

 0.295

 0.3

 0.305

2561286432168421

RM
SE

number of hidden units

MG

MUNGE
ensemble selection

best single model
best neural net

 0.422
 0.424
 0.426
 0.428
 0.43

 0.432
 0.434
 0.436

2561286432168421

number of hidden units

SLAC

MUNGE
ensemble selection

best single model
best neural net

 0.26
 0.27
 0.28
 0.29

 0.3
 0.31
 0.32
 0.33
 0.34

2561286432168421

number of hidden units

AVERAGE

MUNGE
ensemble selection

best single model
best neural net

Figure 3: Performance of compressed models vs compressed models complexity.

3.2 Results
Figure 2 shows the average RMSE performance on the

eight test problems. Lower RMSE represents better per-
formance. The top horizontal line in the figure shows the
performance of the best neural nets we could train on the
original 4k train set. The bottom horizontal line shows the
performance of ensemble selection trained on the same data.
Note that the models trained with ensemble selection per-
form considerably better than the neural net models. The
horizontal line in the middle is the average performance of
the best single base-level models from the ensemble selec-
tion libraries, before an ensemble has been selected. This
line represents the best performance we could achieve with
any of the following learning methods: SVMs, bagged trees,
boosted trees, boosted stumps, simple decision trees, ran-
dom forests, neural nets, logistic regression, k-nearest neigh-
bor, and naive Bayes.

The other lines in Figure 2 show the performance of mimic
neural nets trained on different amounts of pseudo data la-
beled by the ensemble models. The lines for RANDOM,
NBE, and MUNGE correspond to neural nets with 128 hid-
den units trained on pseudo data generated using the three
methods described in Section 2. The graph starts at 4k
where there is no pseudo data added to the train sets. Be-
cause of this, the performance of all three methods is similar
to the performance of the best neural nets we could train on

the original train set. Performance of the mimic nets is
slightly worse because they are restricted to using only 128
hidden units, which is not always optimal.

As the size of the train data increases beyond 4k, more
pseudo data is being added to the train sets. At 400k, the
train set contains 396k of pseudo data and the original 4k
train data. For mimic nets trained with pseudo data gen-
erated by RANDOM, performance improves slightly at 10k,
and at 100k and beyond performs worse than a neural net
trained on just the original 4k train set. The mimic neu-
ral nets trained on pseudo data generated by NBE perform
better, though the overall pattern is similar to the graph for
RANDOM. The peak performance of the NBE trained nets
occurs when the train set contains about 20k of pseudo data
and 4k of the original data, then degrades as more artificial
data is added to the train set.

The mimic neural nets trained on pseudo data generated
with MUNGE dominate the nets trained with RANDOM
and NBE data. Moreover, the performance with MUNGE
does not degrade as more data is added to the pseudo train
set. On average, once the pseudo training set contains 100k
or more data, the mimic neural nets perform considerably
better than the best individual models in the ensemble li-
braries, and nearly as well as the target ensemble itself.
This is remarkable given that the mimic neural nets are 100-
100,000 times smaller than the ensembles, and 100 to 10,000

Performance vs complexity

Table 2: RMSE results.

munge ensemble ann single ratio

adult 0.325 0.317 0.328 0.319 0.29
covtype 0.340 0.334 0.378 0.349 0.84
hs 0.204 0.213 0.231 0.231 1.47
letter.p1 0.075 0.075 0.092 0.092 1.01
letter.p2 0.179 0.178 0.228 0.203 0.98
medis 0.277 0.278 0.279 0.279 2.29
mg 0.288 0.287 0.295 0.290 0.88
slac 0.422 0.424 0.428 0.427 1.69

average 0.264 0.263 0.282 0.274 0.97

times faster to execute. It suggests that much smaller high
performing models are possible if we only knew how to train
them on the original training data. In summary, it appears
that MUNGE is the preferred method for generating pseudo
data. In the experiments in the remainder of this section we
will examine results for MUNGE only.

Figure 3 presents the performance of the mimic neural
nets trained with MUNGE data as a function of the num-
ber of hidden units in the trained network. Performance
is shown for all eight problems. The graph in the bottom
right shows the average performance across all eight prob-
lems. All MUNGE neural nets are trained on pseudo data
containing 100k samples (4k original data + 96k MUNGE
data). The graphs also show the performance of the best
neural nets trained on the original data, the performance of
the best single models from the ensemble libraries and the
performance of the target ensemble selection models.3

Looking at the graph that averages the eight problems, the
overall trend is that performance improves until around 128
hidden units when it levels off. Looking at graphs for each
individual problem, we see that for some of the problems a
small number of hidden units is enough for obtaining good
performance. For MEDIS and MG, performance does not
improve if we use networks with more than 2 hidden units,
and for SLAC 16 hidden units are enough. Since the training
set is large enough to prevent overfitting, performance does
not degrade as more hidden units are added.

The ADULT and COVTYPE problems are the only ones
where there is a significant difference between the perfor-
mance of the MUNGE neural nets and the performance of
the ensemble selection models. A more detailed discussion of
the results on these datasets will follow later in this section,
and in Section 4.

Figures 2 and 3 show that, on average, performance of
the mimic networks trained on the MUNGE data improves
with more hidden units and more pseudo data. As a final
experiment, we compress the ensemble selection models us-
ing 256 hidden unit nets and 400k MUNGE data for every
problem. Table 2 shows, for each of the eight problems, the
performance of mimic neural nets trained on the MUNGE
data, the target ensemble selection model, the best neural
net trained on the original data, and the best single model
from the ensemble library. The performance of the mimic
neural nets is as good as or better than the performance of
the ensemble models they are trained to mimic on six of the

3On HS, LETTER.p1 and MEDIS problems the best single
model from the ensemble library is actually a neural net so
the lines for best neural net and best single model overlap.

Table 3: Time in seconds to classify 10k cases.

munge ensemble ann single

adult 7.88 8560.61 3.94 48.31
covtype 4.46 3440.99 1.05 37.31
hs 12.09 1817.17 3.85 3.85
letter.p1 2.59 1630.21 0.25 0.25
letter.p2 2.59 2651.95 0.74 526.34
medis 4.78 190.18 2.85 2.85
mg 6.98 1220.04 1.80 53.58
slac 3.60 23659.03 2.85 74.48

average 5.62 5396.27 2.17 93.37

eight problems, and always better than the performance of
neural nets trained on the original 4k data.

The values in the last column of the table indicate how
effective compression is at retaining the performance of the
target ensemble selection models. These values are the ra-
tio between the improvement in performance the mimic nets
provide over the best neural nets and the improvement in
performance the target ensemble selection models provide
over the best neural nets. For example, if the mimic neural
net has performance half way between the original neural
net and the ensemble, the ratio is 0.5. If the mimic neural
net has performance equal to the target ensemble, the ratio
is 1.0. The only problem on which the ratio is less than
0.8 is ADULT. (The results on this problem are discussed
in the next paragraph.) For a few problems the ratio is
better than 1.0, indicating that the mimic neural net out-
performs the ensemble. Note, however, that in two of the
cases where the ratio is much larger than 1 (SLAC at 1.69
and MEDIS at 2.29), the range in performance is very small
so this large ratio does not actually indicate a very large
increase in performance. The ratio in the bottom row is the
ratio calculated for the average RMSE performances in the
table (not the average of the ratios, which would be inflated
by the two problems with artificially high ratios). On aver-
age, model compression with MUNGE is able to achieve 97%
of the performance increase that could at best be expected.

The only problem for which compression is ineffective is
ADULT. On this problem the mimic net performs only a
little better than a neural net trained on the original 4k
data, and the mimic net does not perform as well as the best
single model in the ensemble selection library. Interestingly,
ADULT is the only data set that has high-arity nominal
attributes. The three attributes with the highest arity have
14, 16, 41 unique values. To train a neural net on ADULT,
these attributes must first be converted to 14, 16, and 41
distinct binary attributes. The ADULT problem has only
14 attributes to begin with, yet these three attributes alone
expand to 71 sparsely coded binary inputs. It is possible
that neural nets are not well suited to this kind of problem,
and this may prevent the mimic neural net from learning
the ensemble target function. An alternate possibility is
that the MUNGE procedure is not effective at generating
pseudo data for this kind of problem.

Table 3 shows the time in seconds required to classify
10,000 test cases for the mimic neural nets with 256 hidden
units, the target ensemble models trained by ensemble se-
lection, the best neural nets trained on the original 4k train
set and the single best model in the ensemble library. There

Time (a proxy for energy)

teacher

ar
X

iv
:1

50
3.

02
53

1v
1

 [s
ta

t.M
L]

 9
 M

ar
 2

01
5

Distilling the Knowledge in a Neural Network

Geoffrey Hinton∗†
Google Inc.

Mountain View
geoffhinton@google.com

Oriol Vinyals†
Google Inc.

Mountain View
vinyals@google.com

Jeff Dean
Google Inc.

Mountain View
jeff@google.com

Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel.

1 Introduction

Many insects have a larval form that is optimized for extracting energy and nutrients from the envi-
ronment and a completely different adult form that is optimized for the very different requirements
of traveling and reproduction. In large-scale machine learning, we typically use very similar models
for the training stage and the deployment stage despite their very different requirements: For tasks
like speech and object recognition, training must extract structure from very large, highly redundant
datasets but it does not need to operate in real time and it can use a huge amount of computation.
Deployment to a large number of users, however, has much more stringent requirements on latency
and computational resources. The analogy with insects suggests that we should be willing to train
very cumbersome models if that makes it easier to extract structure from the data. The cumbersome
model could be an ensemble of separately trained models or a single very large model trained with
a very strong regularizer such as dropout [9]. Once the cumbersome model has been trained, we
can then use a different kind of training, which we call “distillation” to transfer the knowledge from
the cumbersome model to a small model that is more suitable for deployment. A version of this
strategy has already been pioneered by Rich Caruana and his collaborators [1]. In their important
paper they demonstrate convincingly that the knowledge acquired by a large ensemble of models
can be transferred to a single small model.

A conceptual block that may have prevented more investigation of this very promising approach is
that we tend to identify the knowledge in a trained model with the learned parameter values and this
makes it hard to see how we can change the form of the model but keep the same knowledge. A more
abstract view of the knowledge, that frees it from any particular instantiation, is that it is a learned

∗Also affiliated with the University of Toronto and the Canadian Institute for Advanced Research.
†Equal contribution.

1

NeurIPs (workshop), 2014

Soft targets

• The key idea is to fit the learner on soft targets
(i.e., raw outputs or logits) from the teacher model

Outline Yosinski,NIPS’14 Hinton, NIPS’14 DL workshop

Distillation

Neural networks for multi-class classification: a “softmax”output layer

qi =
exp(zi/T)

P
j exp(zj/T)

zi : the logit, i.e. the input to the softmax layer

qi : the class probability computed by the softmax layer

T : a temperature that is normally set to 1

Cumbersome models ! the distilled model:

• training the distilled model on a transfer set

• using a soft target distribution for each case in the transfer set that
is produced by using the cumbersome model with a high temperature
in its softmax

• The same high temperature is used when training the distilled model,
but after it has been trained it uses a temperature of 1.

Image from Yangyang

Soft targets

• The key idea is to fit the learner on soft targets
(i.e., raw outputs or logits) from the teacher model

Outline Yosinski,NIPS’14 Hinton, NIPS’14 DL workshop

Introduction(cont.)

• Models are usually trained to optimize performance on the training data when the
real objective is to generalize well to new data.

• Information about the correct way to generalize is not normally available.

Distillation:
transfer the generalization ability of the cumbersome model to a small model

• use the class probabilities produced by the cumbersome model as “soft targets”
for training the small model8

• use the same training set or a separate “transfer” set for the transfer stage

8Caruana et al., SIGKDD’06: using the using the logits (the inputs to the final softmax) for transferringteacher learner Image from Yangyang

System Test Frame Accuracy WER
Baseline 58.9% 10.9%

10xEnsemble 61.1% 10.7%
Distilled Single model 60.8% 10.7%

Table 1: Frame classification accuracy and WER showing that the distilled single model performs
about as well as the averaged predictions of 10 models that were used to create the soft targets.

4.1 Results

We trained 10 separate models to predict P (ht|st; θ), using exactly the same architecture and train-
ing procedure as the baseline. The models are randomly initialized with different initial parameter
values and we find that this creates sufficient diversity in the trained models to allow the averaged
predictions of the ensemble to significantly outperform the individual models. We have explored
adding diversity to the models by varying the sets of data that each model sees, but we found this
to not significantly change our results, so we opted for the simpler approach. For the distillation we
tried temperatures of [1,2, 5, 10] and used a relative weight of 0.5 on the cross-entropy for the hard
targets, where bold font indicates the best value that was used for table 1 .

Table 1 shows that, indeed, our distillation approach is able to extract more useful information from
the training set than simply using the hard labels to train a single model. More than 80% of the
improvement in frame classification accuracy achieved by using an ensemble of 10 models is trans-
ferred to the distilled model which is similar to the improvement we observed in our preliminary
experiments on MNIST. The ensemble gives a smaller improvement on the ultimate objective of
WER (on a 23K-word test set) due to the mismatch in the objective function, but again, the im-
provement in WER achieved by the ensemble is transferred to the distilled model.

We have recently become aware of related work on learning a small acoustic model by matching
the class probabilities of an already trained larger model [8]. However, they do the distillation at a
temperature of 1 using a large unlabeled dataset and their best distilled model only reduces the error
rate of the small model by 28% of the gap between the error rates of the large and small models
when they are both trained with hard labels.

5 Training ensembles of specialists on very big datasets

Training an ensemble of models is a very simple way to take advantage of parallel computation and
the usual objection that an ensemble requires too much computation at test time can be dealt with
by using distillation. There is, however, another important objection to ensembles: If the individual
models are large neural networks and the dataset is very large, the amount of computation required
at training time is excessive, even though it is easy to parallelize.

In this section we give an example of such a dataset and we show how learning specialist models that
each focus on a different confusable subset of the classes can reduce the total amount of computation
required to learn an ensemble. The main problem with specialists that focus on making fine-grained
distinctions is that they overfit very easily and we describe how this overfitting may be prevented by
using soft targets.

5.1 The JFT dataset

JFT is an internal Google dataset that has 100 million labeled images with 15,000 labels. When we
did this work, Google’s baseline model for JFT was a deep convolutional neural network [7] that had
been trained for about six months using asynchronous stochastic gradient descent on a large number
of cores. This training used two types of parallelism [2]. First, there were many replicas of the
neural net running on different sets of cores and processing different mini-batches from the training
set. Each replica computes the average gradient on its current mini-batch and sends this gradient
to a sharded parameter server which sends back new values for the parameters. These new values
reflect all of the gradients received by the parameter server since the last time it sent parameters
to the replica. Second, each replica is spread over multiple cores by putting different subsets of
the neurons on each core. Ensemble training is yet a third type of parallelism that can be wrapped

5

Let’s implement this…
(“in class” exercise on distillation:

Pruning models

Pruning models

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Figure 2: Three-Step Training Pipeline.

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3: Synapses and neurons before and after
pruning.

3 Learning Connections in Addition to Weights

Our pruning method employs a three-step process, as illustrated in Figure 2, which begins by learning
the connectivity via normal network training. Unlike conventional training, however, we are not
learning the final values of the weights, but rather we are learning which connections are important.

The second step is to prune the low-weight connections. All connections with weights below a
threshold are removed from the network — converting a dense network into a sparse network, as
shown in Figure 3. The final step retrains the network to learn the final weights for the remaining
sparse connections. This step is critical. If the pruned network is used without retraining, accuracy is
significantly impacted.

3.1 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regulariza-
tion penalizes non-zero parameters resulting in more parameters near zero. This gives better accuracy
after pruning, but before retraining. However, the remaining connections are not as good as with L2
regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives the best
pruning results. This is further discussed in experiment section.

3.2 Dropout Ratio Adjustment

Dropout [23] is widely used to prevent over-fitting, and this also applies to retraining. During
retraining, however, the dropout ratio must be adjusted to account for the change in model capacity.
In dropout, each parameter is probabilistically dropped during training, but will come back during
inference. In pruning, parameters are dropped forever after pruning and have no chance to come back
during both training and inference. As the parameters get sparse, the classifier will select the most
informative predictors and thus have much less prediction variance, which reduces over-fitting. As
pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir for
the network after retraining, Ni be the number of neurons in layer i. Since dropout works on neurons,
and Ci varies quadratically with Ni, according to Equation 1 thus the dropout ratio after pruning the
parameters should follow Equation 2, where Do represent the original dropout rate, Dr represent the
dropout rate during retraining.

Ci = NiNi�1 (1) Dr = Do

r
Cir

Cio
(2)

3.3 Local Pruning and Parameter Co-adaptation

During retraining, it is better to retain the weights from the initial training phase for the connections
that survived pruning than it is to re-initialize the pruned layers. CNNs contain fragile co-adapted
features [24]: gradient descent is able to find a good solution when the network is initially trained,
but not after re-initializing some layers and retraining them. So when we retrain the pruned layers,
we should keep the surviving parameters instead of re-initializing them.

3

Image from Han et al. NeurIPs 2015

Image from Han et al. NeurIPs 2015

7UDLQ�&RQQHFWLYLW\

3UXQH�&RQQHFWLRQV

7UDLQ�:HLJKWV

Figure 2: Three-Step Training Pipeline.

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3: Synapses and neurons before and after
pruning.

3 Learning Connections in Addition to Weights

Our pruning method employs a three-step process, as illustrated in Figure 2, which begins by learning
the connectivity via normal network training. Unlike conventional training, however, we are not
learning the final values of the weights, but rather we are learning which connections are important.

The second step is to prune the low-weight connections. All connections with weights below a
threshold are removed from the network — converting a dense network into a sparse network, as
shown in Figure 3. The final step retrains the network to learn the final weights for the remaining
sparse connections. This step is critical. If the pruned network is used without retraining, accuracy is
significantly impacted.

3.1 Regularization

Choosing the correct regularization impacts the performance of pruning and retraining. L1 regulariza-
tion penalizes non-zero parameters resulting in more parameters near zero. This gives better accuracy
after pruning, but before retraining. However, the remaining connections are not as good as with L2
regularization, resulting in lower accuracy after retraining. Overall, L2 regularization gives the best
pruning results. This is further discussed in experiment section.

3.2 Dropout Ratio Adjustment

Dropout [23] is widely used to prevent over-fitting, and this also applies to retraining. During
retraining, however, the dropout ratio must be adjusted to account for the change in model capacity.
In dropout, each parameter is probabilistically dropped during training, but will come back during
inference. In pruning, parameters are dropped forever after pruning and have no chance to come back
during both training and inference. As the parameters get sparse, the classifier will select the most
informative predictors and thus have much less prediction variance, which reduces over-fitting. As
pruning already reduced model capacity, the retraining dropout ratio should be smaller.

Quantitatively, let Ci be the number of connections in layer i, Cio for the original network, Cir for
the network after retraining, Ni be the number of neurons in layer i. Since dropout works on neurons,
and Ci varies quadratically with Ni, according to Equation 1 thus the dropout ratio after pruning the
parameters should follow Equation 2, where Do represent the original dropout rate, Dr represent the
dropout rate during retraining.

Ci = NiNi�1 (1) Dr = Do

r
Cir

Cio
(2)

3.3 Local Pruning and Parameter Co-adaptation

During retraining, it is better to retain the weights from the initial training phase for the connections
that survived pruning than it is to re-initialize the pruned layers. CNNs contain fragile co-adapted
features [24]: gradient descent is able to find a good solution when the network is initially trained,
but not after re-initializing some layers and retraining them. So when we retrain the pruned layers,
we should keep the surviving parameters instead of re-initializing them.

3

Table 1: Network pruning can save 9⇥ to 13⇥ parameters with no drop in predictive performance.

Network Top-1 Error Top-5 Error Parameters Compression
Rate

LeNet-300-100 Ref 1.64% - 267K
LeNet-300-100 Pruned 1.59% - 22K 12⇥
LeNet-5 Ref 0.80% - 431K
LeNet-5 Pruned 0.77% - 36K 12⇥
AlexNet Ref 42.78% 19.73% 61M
AlexNet Pruned 42.77% 19.67% 6.7M 9⇥
VGG-16 Ref 31.50% 11.32% 138M
VGG-16 Pruned 31.34% 10.88% 10.3M 13⇥

Retraining the pruned layers starting with retained weights requires less computation because we
don’t have to back propagate through the entire network. Also, neural networks are prone to suffer
the vanishing gradient problem [25] as the networks get deeper, which makes pruning errors harder to
recover for deep networks. To prevent this, we fix the parameters for CONV layers and only retrain
the FC layers after pruning the FC layers, and vice versa.

3.4 Iterative Pruning

Learning the right connections is an iterative process. Pruning followed by a retraining is one iteration,
after many such iterations the minimum number connections could be found. Without loss of accuracy,
this method can boost pruning rate from 5⇥ to 9⇥ on AlexNet compared with single-step aggressive
pruning. Each iteration is a greedy search in that we find the best connections. We also experimented
with probabilistically pruning parameters based on their absolute value, but this gave worse results.

3.5 Pruning Neurons

After pruning connections, neurons with zero input connections or zero output connections may be
safely pruned. This pruning is furthered by removing all connections to or from a pruned neuron.
The retraining phase automatically arrives at the result where dead neurons will have both zero input
connections and zero output connections. This occurs due to gradient descent and regularization.
A neuron that has zero input connections (or zero output connections) will have no contribution
to the final loss, leading the gradient to be zero for its output connection (or input connection),
respectively. Only the regularization term will push the weights to zero. Thus, the dead neurons will
be automatically removed during retraining.

4 Experiments

We implemented network pruning in Caffe [26]. Caffe was modified to add a mask which disregards
pruned parameters during network operation for each weight tensor. The pruning threshold is chosen
as a quality parameter multiplied by the standard deviation of a layer’s weights. We carried out the
experiments on Nvidia TitanX and GTX980 GPUs.

We pruned four representative networks: Lenet-300-100 and Lenet-5 on MNIST, together with
AlexNet and VGG-16 on ImageNet. The network parameters and accuracy 1 before and after pruning
are shown in Table 1.

4.1 LeNet on MNIST

We first experimented on MNIST dataset with the LeNet-300-100 and LeNet-5 networks [4]. LeNet-
300-100 is a fully connected network with two hidden layers, with 300 and 100 neurons each, which
achieves 1.6% error rate on MNIST. LeNet-5 is a convolutional network that has two convolutional
layers and two fully connected layers, which achieves 0.8% error rate on MNIST. After pruning,
the network is retrained with 1/10 of the original network’s original learning rate. Table 1 shows

1Reference model is from Caffe model zoo, accuracy is measured without data augmentation

4

-4.5%
-4.0%
-3.5%
-3.0%
-2.5%
-2.0%
-1.5%
-1.0%
-0.5%
0.0%
0.5%

40% 50% 60% 70% 80% 90% 100%

Ac
cu

ra
cy

 L
os

s

Parametes Pruned Away

L2 regularization w/o retrain L1 regularization w/o retrain
L1 regularization w/ retrain L2 regularization w/ retrain
L2 regularization w/ iterative prune and retrain

Figure 5: Trade-off curve for parameter reduction and loss in top-5 accuracy. L1 regularization
performs better than L2 at learning the connections without retraining, while L2 regularization
performs better than L1 at retraining. Iterative pruning gives the best result.

-20%

-15%

-10%

-5%

0%

0% 25% 50% 75% 100%

Ac
cu

ra
cy

 L
os

s

#Parameters

conv1 conv2 conv3 conv4 conv5

-20%

-15%

-10%

-5%

0%

0% 25% 50% 75% 100%

Ac
cu

ra
cy

 L
os

s

#Parameters

fc1 fc2 fc3

Figure 6: Pruning sensitivity for CONV layer (left) and FC layer (right) of AlexNet.

L1 regularization gives better accuracy than L2 directly after pruning (dotted blue and purple lines)
since it pushes more parameters closer to zero. However, comparing the yellow and green lines shows
that L2 outperforms L1 after retraining, since there is no benefit to further pushing values towards
zero. One extension is to use L1 regularization for pruning and then L2 for retraining, but this did not
beat simply using L2 for both phases. Parameters from one mode do not adapt well to the other.

The biggest gain comes from iterative pruning (solid red line with solid circles). Here we take the
pruned and retrained network (solid green line with circles) and prune and retrain it again. The
leftmost dot on this curve corresponds to the point on the green line at 80% (5⇥ pruning) pruned to
8⇥. There’s no accuracy loss at 9⇥. Not until 10⇥ does the accuracy begin to drop sharply.

Two green points achieve slightly better accuracy than the original model. We believe this accuracy
improvement is due to pruning finding the right capacity of the network and hence reducing overfitting.

Both CONV and FC layers can be pruned, but with different sensitivity. Figure 6 shows the sensitivity
of each layer to network pruning. The figure shows how accuracy drops as parameters are pruned on
a layer-by-layer basis. The CONV layers (on the left) are more sensitive to pruning than the fully
connected layers (on the right). The first convolutional layer, which interacts with the input image
directly, is most sensitive to pruning. We suspect this sensitivity is due to the input layer having only
3 channels and thus less redundancy than the other convolutional layers. We used the sensitivity
results to find each layer’s threshold: for example, the smallest threshold was applied to the most
sensitive layer, which is the first convolutional layer.

Storing the pruned layers as sparse matrices has a storage overhead of only 15.6%. Storing relative
rather than absolute indices reduces the space taken by the FC layer indices to 5 bits. Similarly,
CONV layer indices can be represented with only 8 bits.

7

The lottery-ticket hypothesis

Published as a conference paper at ICLR 2019

Figure 1: The iteration at which early-stopping would occur (left) and the test accuracy at that iteration
(right) of the Lenet architecture for MNIST and the Conv-2, Conv-4, and Conv-6 architectures for
CIFAR10 (see Figure 2) when trained starting at various sizes. Dashed lines are randomly sampled
sparse networks (average of ten trials). Solid lines are winning tickets (average of five trials).

In this paper, we show that there consistently exist smaller subnetworks that train from the start and
learn at least as fast as their larger counterparts while reaching similar test accuracy. Solid lines in
Figure 1 show networks that we find. Based on these results, we state the lottery ticket hypothesis.
The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

More formally, consider a dense feed-forward neural network f(x; ✓) with initial parameters ✓ =
✓0 ⇠ D✓. When optimizing with stochastic gradient descent (SGD) on a training set, f reaches
minimum validation loss l at iteration j with test accuracy a . In addition, consider training f(x;m�✓)
with a mask m 2 {0, 1}|✓| on its parameters such that its initialization is m� ✓0. When optimizing
with SGD on the same training set (with m fixed), f reaches minimum validation loss l0 at iteration j0

with test accuracy a0. The lottery ticket hypothesis predicts that 9m for which j0  j (commensurate
training time), a0 � a (commensurate accuracy), and kmk0 ⌧ |✓| (fewer parameters).

We find that a standard pruning technique automatically uncovers such trainable subnetworks from
fully-connected and convolutional feed-forward networks. We designate these trainable subnetworks,
f(x;m � ✓0), winning tickets, since those that we find have won the initialization lottery with a
combination of weights and connections capable of learning. When their parameters are randomly
reinitialized (f(x;m� ✓00) where ✓00 ⇠ D✓), our winning tickets no longer match the performance of
the original network, offering evidence that these smaller networks do not train effectively unless
they are appropriately initialized.

Identifying winning tickets. We identify a winning ticket by training a network and pruning its
smallest-magnitude weights. The remaining, unpruned connections constitute the architecture of the
winning ticket. Unique to our work, each unpruned connection’s value is then reset to its initialization
from original network before it was trained. This forms our central experiment:

1. Randomly initialize a neural network f(x; ✓0) (where ✓0 ⇠ D✓).
2. Train the network for j iterations, arriving at parameters ✓j .
3. Prune p% of the parameters in ✓j , creating a mask m.
4. Reset the remaining parameters to their values in ✓0, creating the winning ticket f(x;m�✓0).

As described, this pruning approach is one-shot: the network is trained once, p% of weights are
pruned, and the surviving weights are reset. However, in this paper, we focus on iterative pruning,
which repeatedly trains, prunes, and resets the network over n rounds; each round prunes p 1

n% of the
weights that survive the previous round. Our results show that iterative pruning finds winning tickets
that match the accuracy of the original network at smaller sizes than does one-shot pruning.

Results. We identify winning tickets in a fully-connected architecture for MNIST and convolutional
architectures for CIFAR10 across several optimization strategies (SGD, momentum, and Adam) with
techniques like dropout, weight decay, batchnorm, and residual connections. We use an unstructured
pruning technique, so these winning tickets are sparse. In deeper networks, our pruning-based strategy
for finding winning tickets is sensitive to the learning rate: it requires warmup to find winning tickets
at higher learning rates. The winning tickets we find are 10-20% (or less) of the size of the original

2

Published as a conference paper at ICLR 2019

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle
MIT CSAIL
jfrankle@csail.mit.edu

Michael Carbin
MIT CSAIL
mcarbin@csail.mit.edu

ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.

1 INTRODUCTION

Techniques for eliminating unnecessary weights from neural networks (pruning) (LeCun et al., 1990;
Hassibi & Stork, 1993; Han et al., 2015; Li et al., 2016) can reduce parameter-counts by more than
90% without harming accuracy. Doing so decreases the size (Han et al., 2015; Hinton et al., 2015)
or energy consumption (Yang et al., 2017; Molchanov et al., 2016; Luo et al., 2017) of the trained
networks, making inference more efficient. However, if a network can be reduced in size, why do we
not train this smaller architecture instead in the interest of making training more efficient as well?
Contemporary experience is that the architectures uncovered by pruning are harder to train from the
start, reaching lower accuracy than the original networks.1

Consider an example. In Figure 1, we randomly sample and train subnetworks from a fully-connected
network for MNIST and convolutional networks for CIFAR10. Random sampling models the effect
of the unstructured pruning used by LeCun et al. (1990) and Han et al. (2015). Across various levels
of sparsity, dashed lines trace the iteration of minimum validation loss2 and the test accuracy at that
iteration. The sparser the network, the slower the learning and the lower the eventual test accuracy.

1“Training a pruned model from scratch performs worse than retraining a pruned model, which may indicate
the difficulty of training a network with a small capacity.” (Li et al., 2016) “During retraining, it is better to retain
the weights from the initial training phase for the connections that survived pruning than it is to re-initialize the
pruned layers...gradient descent is able to find a good solution when the network is initially trained, but not after
re-initializing some layers and retraining them.” (Han et al., 2015)

2As a proxy for the speed at which a network learns, we use the iteration at which an early-stopping criterion
would end training. The particular early-stopping criterion we employ throughout this paper is the iteration of
minimum validation loss during training. See Appendix C for more details on this choice.

1

ar
X

iv
:1

80
3.

03
63

5v
5

 [c
s.L

G
]

4
M

ar
 2

01
9

Published as a conference paper at ICLR 2019

Figure 1: The iteration at which early-stopping would occur (left) and the test accuracy at that iteration
(right) of the Lenet architecture for MNIST and the Conv-2, Conv-4, and Conv-6 architectures for
CIFAR10 (see Figure 2) when trained starting at various sizes. Dashed lines are randomly sampled
sparse networks (average of ten trials). Solid lines are winning tickets (average of five trials).

In this paper, we show that there consistently exist smaller subnetworks that train from the start and
learn at least as fast as their larger counterparts while reaching similar test accuracy. Solid lines in
Figure 1 show networks that we find. Based on these results, we state the lottery ticket hypothesis.
The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

More formally, consider a dense feed-forward neural network f(x; ✓) with initial parameters ✓ =
✓0 ⇠ D✓. When optimizing with stochastic gradient descent (SGD) on a training set, f reaches
minimum validation loss l at iteration j with test accuracy a . In addition, consider training f(x;m�✓)
with a mask m 2 {0, 1}|✓| on its parameters such that its initialization is m� ✓0. When optimizing
with SGD on the same training set (with m fixed), f reaches minimum validation loss l0 at iteration j0

with test accuracy a0. The lottery ticket hypothesis predicts that 9m for which j0  j (commensurate
training time), a0 � a (commensurate accuracy), and kmk0 ⌧ |✓| (fewer parameters).

We find that a standard pruning technique automatically uncovers such trainable subnetworks from
fully-connected and convolutional feed-forward networks. We designate these trainable subnetworks,
f(x;m � ✓0), winning tickets, since those that we find have won the initialization lottery with a
combination of weights and connections capable of learning. When their parameters are randomly
reinitialized (f(x;m� ✓00) where ✓00 ⇠ D✓), our winning tickets no longer match the performance of
the original network, offering evidence that these smaller networks do not train effectively unless
they are appropriately initialized.

Identifying winning tickets. We identify a winning ticket by training a network and pruning its
smallest-magnitude weights. The remaining, unpruned connections constitute the architecture of the
winning ticket. Unique to our work, each unpruned connection’s value is then reset to its initialization
from original network before it was trained. This forms our central experiment:

1. Randomly initialize a neural network f(x; ✓0) (where ✓0 ⇠ D✓).
2. Train the network for j iterations, arriving at parameters ✓j .
3. Prune p% of the parameters in ✓j , creating a mask m.
4. Reset the remaining parameters to their values in ✓0, creating the winning ticket f(x;m�✓0).

As described, this pruning approach is one-shot: the network is trained once, p% of weights are
pruned, and the surviving weights are reset. However, in this paper, we focus on iterative pruning,
which repeatedly trains, prunes, and resets the network over n rounds; each round prunes p 1

n% of the
weights that survive the previous round. Our results show that iterative pruning finds winning tickets
that match the accuracy of the original network at smaller sizes than does one-shot pruning.

Results. We identify winning tickets in a fully-connected architecture for MNIST and convolutional
architectures for CIFAR10 across several optimization strategies (SGD, momentum, and Adam) with
techniques like dropout, weight decay, batchnorm, and residual connections. We use an unstructured
pruning technique, so these winning tickets are sparse. In deeper networks, our pruning-based strategy
for finding winning tickets is sensitive to the learning rate: it requires warmup to find winning tickets
at higher learning rates. The winning tickets we find are 10-20% (or less) of the size of the original

2

Finding winning tickets

Published as a conference paper at ICLR 2019

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle
MIT CSAIL
jfrankle@csail.mit.edu

Michael Carbin
MIT CSAIL
mcarbin@csail.mit.edu

ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.

1 INTRODUCTION

Techniques for eliminating unnecessary weights from neural networks (pruning) (LeCun et al., 1990;
Hassibi & Stork, 1993; Han et al., 2015; Li et al., 2016) can reduce parameter-counts by more than
90% without harming accuracy. Doing so decreases the size (Han et al., 2015; Hinton et al., 2015)
or energy consumption (Yang et al., 2017; Molchanov et al., 2016; Luo et al., 2017) of the trained
networks, making inference more efficient. However, if a network can be reduced in size, why do we
not train this smaller architecture instead in the interest of making training more efficient as well?
Contemporary experience is that the architectures uncovered by pruning are harder to train from the
start, reaching lower accuracy than the original networks.1

Consider an example. In Figure 1, we randomly sample and train subnetworks from a fully-connected
network for MNIST and convolutional networks for CIFAR10. Random sampling models the effect
of the unstructured pruning used by LeCun et al. (1990) and Han et al. (2015). Across various levels
of sparsity, dashed lines trace the iteration of minimum validation loss2 and the test accuracy at that
iteration. The sparser the network, the slower the learning and the lower the eventual test accuracy.

1“Training a pruned model from scratch performs worse than retraining a pruned model, which may indicate
the difficulty of training a network with a small capacity.” (Li et al., 2016) “During retraining, it is better to retain
the weights from the initial training phase for the connections that survived pruning than it is to re-initialize the
pruned layers...gradient descent is able to find a good solution when the network is initially trained, but not after
re-initializing some layers and retraining them.” (Han et al., 2015)

2As a proxy for the speed at which a network learns, we use the iteration at which an early-stopping criterion
would end training. The particular early-stopping criterion we employ throughout this paper is the iteration of
minimum validation loss during training. See Appendix C for more details on this choice.

1

ar
X

iv
:1

80
3.

03
63

5v
5

 [c
s.L

G
]

4
M

ar
 2

01
9

Results

• Consistently find winning tickets (less than 10-20%
size of original models)

• These actually often yield higher test accuracy!

• Very much an ongoing research topic…
Published as a conference paper at ICLR 2019

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle
MIT CSAIL
jfrankle@csail.mit.edu

Michael Carbin
MIT CSAIL
mcarbin@csail.mit.edu

ABSTRACT

Neural network pruning techniques can reduce the parameter counts of trained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.

1 INTRODUCTION

Techniques for eliminating unnecessary weights from neural networks (pruning) (LeCun et al., 1990;
Hassibi & Stork, 1993; Han et al., 2015; Li et al., 2016) can reduce parameter-counts by more than
90% without harming accuracy. Doing so decreases the size (Han et al., 2015; Hinton et al., 2015)
or energy consumption (Yang et al., 2017; Molchanov et al., 2016; Luo et al., 2017) of the trained
networks, making inference more efficient. However, if a network can be reduced in size, why do we
not train this smaller architecture instead in the interest of making training more efficient as well?
Contemporary experience is that the architectures uncovered by pruning are harder to train from the
start, reaching lower accuracy than the original networks.1

Consider an example. In Figure 1, we randomly sample and train subnetworks from a fully-connected
network for MNIST and convolutional networks for CIFAR10. Random sampling models the effect
of the unstructured pruning used by LeCun et al. (1990) and Han et al. (2015). Across various levels
of sparsity, dashed lines trace the iteration of minimum validation loss2 and the test accuracy at that
iteration. The sparser the network, the slower the learning and the lower the eventual test accuracy.

1“Training a pruned model from scratch performs worse than retraining a pruned model, which may indicate
the difficulty of training a network with a small capacity.” (Li et al., 2016) “During retraining, it is better to retain
the weights from the initial training phase for the connections that survived pruning than it is to re-initialize the
pruned layers...gradient descent is able to find a good solution when the network is initially trained, but not after
re-initializing some layers and retraining them.” (Han et al., 2015)

2As a proxy for the speed at which a network learns, we use the iteration at which an early-stopping criterion
would end training. The particular early-stopping criterion we employ throughout this paper is the iteration of
minimum validation loss during training. See Appendix C for more details on this choice.

1

ar
X

iv
:1

80
3.

03
63

5v
5

 [c
s.L

G
]

4
M

ar
 2

01
9

