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e Green Artificial Intelligence: The surprisingly large carbon
footprint of modern ML models and what we might do
about this



The problem
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Consumption COse (Ibs)

Air travel, 1 passenger, NY <+SF 1984
Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
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Consumption

COse (Ibs)

Air travel, 1 passenger, NY <+SF
Human life, avg, 1 year
American life, avg, 1 year

Car, avg incl. fuel, 1 lifetime

Training one model (GPU)

1984
11,023
36,156

126,000

NLP pipeline (parsing, SRL)
w/ tuning & experimentation
Transformer (big)
w/ neural architecture search

39
78,468
192
626,155
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Model Hardware = Power (W) Hours kWh-PUE CO2e Cloud compute cost

Transformery,s. P100x8 1415.78 12 27 26 $41-$140
Transformer,;;,  P100x8 1515.43 84 201 192  $289-$981

ELMo P100x3 517.66 336 275 262  $433-$1472

BERT s V100x64 12,041.51 79 1507 1438 $3751-$12,571
BERT .0 TPUv2x16 — 96 — —  $2074-$6912

NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 — —  $44,055-$146,848
GPT-2 TPUv3x32 — 168 — —  $12,902-$43,008

Table 3: Estimated cost of training a model in terms of CO, emissions (Ibs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.
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Cost of development

"The sum GPU time required for the project
totaled 9998 days (27 years)

Estimated cost (USD)
Models Hours Cloud compute Electricity
1 120 $52-$175 $5
24 2880 $1238-$4205 $118

4789 239,942 $103k-$350k  $9870

Table 4: Estimated cost in terms of cloud compute and
electricity for training: (1) a single model (2) a single
tune and (3) all models trained during R&D.
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Conclusions

* Researchers should report training time and hyper
parameter sensitivity

* And practitioners should take these into consideration
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Conclusions

* Researchers should report training time and hyper
parameter sensitivity

* And practitioners should take these into consideration

* We need new, more efficient methods; not just ever
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Towards Green Al

e Argues for a pivot toward research that is environmentally
friendly and inclusive; not just dominated by huge
corporations with unlimited compute
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Does the community care about efficiency?
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Cost(R)x E-D-H

Equation 1: The equation of Red Al: The cost of an Al (R)esult grows linearly with the cost of processing a single
(I/)xample, the size of the training ())ataset and the number of (H )yperparameter experiments.
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Model distillation

|dea: Train a smaller model (the student) on the predictions/outputs of a
larger model (the teacher)



Model distillation

|dea: Train a smaller model (the student) on the predictions/outputs of a
larger model (the teacher)

Teacher Model
(large neural network)

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764 e  Prakhar Ganesh
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The idea

e | earn a "fast, compact” model (learner) that approximates the
predictions of a big, inefficient model (teacher)



The idea

e | earn a "fast, compact” model (learner) that approximates the
predictions of a big, inefficient model (teacher)

* Note that we have access to the teacher so can train the learner even
on “unlabeled” data — we are trying to get the learner to mimic the

teacher



The idea

e | earn a "fast, compact” model (learner) that approximates the
predictions of a big, inefficient model (teacher)

* Note that we have access to the teacher so can train the learner even
on “unlabeled” data — we are trying to get the learner to mimic the

teacher

* This paper considers a bunch of ways we might generate synthetic
‘points” to pass through the teacher and use as training data for the
learner. In many domains (e.g., language, vision) real unlabeled data
IS easy to find (so we do not need to generate synthetic samples)
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Performance vs complexity
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Time (a proxy for energy)

Table 3: Time in seconds to classify 10k cases.

MUNGE ENSEMBLE ANN SINGLE
ADULT 7.88 8560.61 3.94 48.31
COVTYPE 4.46 3440.99 1.05 37.31
HS 12.09 1817.17 3.85 3.85

LETTER.P1 2.99 1630.21 0.25 0.25

LETTER.P2 2.99 2651.95 0.74 526.34
MEDIS 4.78 190.18 2.85 2.85

MG 6.98 1220.04 1.80 53.58
SLAC 3.60 23659.03 2.85 74.48
AVERAGE 5.62 5396.27 2.17 93.37

teacher



Distilling the Knowledge in a Neural Network

Geoffrey Hinton* Oriol Vinyals' Jeff Dean
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
geoffhinton@google.com vinyals@google.com jeff@google.com

NeurlPs (workshop), 2014



Soft targets

* The key idea is to fit the learner on soft targets
(i.e., raw outputs or logits) from the teacher model

soft target Pij eXp(Z@'/T)
x 4 =
softma Zj exp(zj /T)

z; : the logit, i.e. the input to the softmax layer

* q; : the class probability computed by the softmax layer

T : a temperature that is normally set to 1

logit Z;

Image from Yangyang



Soft targets

* The key idea is to fit the learner on soft targets
(i.e., raw outputs or logits) from the teacher model

matching soft targets

o emm—

Distillation )

the cumbersome model the distilled model

teacher learner Image from Yangyang

input



System

Test Frame Accuracy

Baseline
10xEnsemble

Distilled Single model

58.9%
61.1%
60.8%




Let's implement this...
(“Iin class” exercise on distillation:

"In class" exercise 3/19

Availability: Item is hidden from students. It will be available after Mar 19, 2020 12:30 PM.
Starter notebook: https://colab.research.google.com/drive/1XymnfdS4wMY3Q6aEuFedohSISIR-Uzrh




Pruning models



Pruning models

after pruning
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Image from Han et al. NeurlPs 2015
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Compression

Network Top-1 Error  Top-5 Error | Parameters Rate
LeNet-300-100 Ref 1.64% - 267K
LeNet-300-100 Pruned | 1.59% - 22K 12 x
LeNet-5 Ref 0.80% - 431K

LeNet-5 Pruned 0.77% - 36K 12 x
AlexNet Ref 42.78% 19.73% 61M

AlexNet Pruned 42.77% 19.67% 6.7M 9 x
VGG-16 Ref 31.50% 11.32% 138M

VGG-16 Pruned 31.34% 10.88% 10.3M 13 x
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The lottery-ticket hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@csail.mit.edu mcarbin@csail.mit.edu




FiInding winning tickets

1. Randomly initialize a neural network f(x;6g) (Where 6y ~ Dy).
2. Train the network for j iterations, arriving at parameters 6.
3. Prune p% of the parameters in 6, creating a mask m.

4. Reset the remaining parameters to their values in 0, creating the winning ticket f(x; m®6fp).
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Results

o Consistently find winning tickets (less than 10-20%
size of original models)

* [hese actually often yield higher test accuracy!

e Very much an ongoing research topic...
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