Machine Learning 2

DS 4420 - Spring 2020

Green Al Byron C. Wallace

Today

 Green Artificial Intelligence: The surprisingly large carbon footprint of modern ML models and what we might do about this

The problem

Energy and Policy Considerations for Deep Learning in NLP

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY \leftrightarrow SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000

Energy and Policy Considerations for Deep Learning in NLP

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155

Energy and Policy Considerations for Deep Learning in NLP

Model	Hardware	Power (W)	Hours	kWh·PUE	CO_2e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41-\$140
Transformer _{big}	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
BERT_{base}	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
BERT _{base}	TPUv2x16		96			\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1		32,623			\$44,055-\$146,848
GPT-2	TPUv3x32		168	_	—	\$12,902-\$43,008

Table 3: Estimated cost of training a model in terms of CO_2 emissions (lbs) and cloud compute cost (USD).⁷ Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

Energy and Policy Considerations for Deep Learning in NLP

Cost of development

"The sum GPU time required for the project totaled 9998 days (27 years)

		Estimated cost (USD)		
Models	Hours	Cloud compute	Electricity	
1	120	\$52-\$175	\$5	
24	2880	\$1238-\$4205	\$118	
4789	239,942	\$103k-\$350k	\$9870	

Table 4: Estimated cost in terms of cloud compute and electricity for training: (1) a single model (2) a single tune and (3) all models trained during R&D.

Energy and Policy Considerations for Deep Learning in NLP

Conclusions

- Researchers should report training time and hyper parameter sensitivity
 - ★ And practitioners should take these into consideration

Energy and Policy Considerations for Deep Learning in NLP

Conclusions

- Researchers should report training time and hyper parameter sensitivity
 - ★ And practitioners should take these into consideration

• We need new, more efficient methods; not just ever larger architectures! Energy and Policy Considerations for Deep Learning in NLP

Towards Green Al

Green AI Roy Schwartz^{*} ↓ Jesse Dodge^{*} ↓ Noah A. Smith^{\$\OV} ↓ Oren Etzioni^{\$} ^{\$}Allen Institute for AI, Seattle, Washington, USA ^{\$} Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ^{\$} University of Washington, Seattle, Washington, USA

Towards Green Al

 Argues for a pivot toward research that is environmentally friendly and inclusive; not just dominated by huge corporations with unlimited compute

https://openai.com/blog/ai-and-compute/

Dario Amodei & Danny Hernandez

(ORIGINAL POST)

Girish Sastry, Jack Clark, Greg Brockman & Ilya Sutskever

Does the community care about efficiency?

$Cost(R) \propto E \cdot D \cdot H$

Equation 1: The equation of Red AI: The cost of an AI (R)esult grows linearly with the cost of processing a single (E)xample, the size of the training (D)ataset and the number of (H)yperparameter experiments.

Large increase in FPO —> Small gains in acc

Model distillation/compression

Model distillation

Idea: Train a smaller model (**the student**) on the predictions/outputs of a larger model (**the teacher**)

Model distillation

Idea: Train a smaller model (**the student**) on the predictions/outputs of a larger model (**the teacher**)

https://towardsdatascience.com/knowledge-distillation-simplified-dd4973dbc764

Prakhar Ganesh

The idea

• Learn a "fast, compact" model (**learner**) that approximates the predictions of a big, inefficient model (**teacher**)

The idea

- Learn a "fast, compact" model (learner) that approximates the predictions of a big, inefficient model (teacher)
- Note that we have access to the teacher so can train the learner even on "unlabeled" data — we are trying to get the learner to mimic the teacher

The idea

- Learn a "fast, compact" model (learner) that approximates the predictions of a big, inefficient model (teacher)
- Note that we have access to the teacher so can train the learner even on "unlabeled" data — we are trying to get the learner to mimic the teacher
- This paper considers a bunch of ways we might generate synthetic "points" to pass through the **teacher** and use as training data for the **learner**. In many domains (e.g., language, vision) real unlabeled data is easy to find (so we do not need to generate synthetic samples)

We can train a neural network student to mimic a big ensemble — this does much better than net trained on labeled data only

Performance vs complexity

Time (a proxy for energy)

Table 3: Time in seconds to classify 10k cases.				
	MUNGE	ENSEMBLE	ANN	SINGLE
ADULT COVTYPE HS LETTER.P1 LETTER.P2 MEDIS MG SLAC	$7.88 \\ 4.46 \\ 12.09 \\ 2.59 \\ 2.59 \\ 4.78 \\ 6.98 \\ 3.60$	$\begin{array}{c} 8560.61\\ 3440.99\\ 1817.17\\ 1630.21\\ 2651.95\\ 190.18\\ 1220.04\\ 23659.03\end{array}$	$\begin{array}{c} 3.94 \\ 1.05 \\ 3.85 \\ 0.25 \\ 0.74 \\ 2.85 \\ 1.80 \\ 2.85 \end{array}$	$\begin{array}{r} 48.31\\ 37.31\\ 3.85\\ 0.25\\ 526.34\\ 2.85\\ 53.58\\ 74.48\end{array}$
AVERAGE	5.62	5396.27	2.17	93.37

teacher

Distilling the Knowledge in a Neural Network

Geoffrey Hinton^{*†} Google Inc. Mountain View geoffhinton@google.com Oriol Vinyals[†] Google Inc. Mountain View vinyals@google.com Jeff Dean Google Inc. Mountain View jeff@google.com

NeurIPs (workshop), 2014

Soft targets

 The key idea is to fit the learner on soft targets (i.e., raw outputs or *logits*) from the teacher model

$$q_i = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

- z_i : the logit, i.e. the input to the softmax layer
- q_i : the class probability computed by the softmax layer
- T: a temperature that is normally set to 1

Image from Yangyang

Soft targets

 The key idea is to fit the learner on soft targets (i.e., raw outputs or *logits*) from the teacher model

Image from Yangyang

System	Test Frame Accuracy
Baseline	58.9%
10xEnsemble	61.1%
Distilled Single model	60.8%

Let's implement this... ("in class" exercise on distillation:

"In class" exercise 3/19

Availability: Item is hidden from students. It will be available after Mar 19, 2020 12:30 PM. Starter notebook: <u>https://colab.research.google.com/drive/1XymnfdS4wMY3Q6aEuFedoh5ISIR-Uzrh</u>

Pruning models

Pruning models

Image from Han et al. NeurIPs 2015

Image from Han et al. NeurIPs 2015

Network	Top-1 Error	Top-5 Error	Parameters	Compression Rate
LeNet-300-100 Ref	1.64%	-	267K	
LeNet-300-100 Pruned	1.59%	-	22K	12 imes
LeNet-5 Ref	0.80%	-	431K	
LeNet-5 Pruned	0.77%	-	36K	12 imes
AlexNet Ref	42.78%	19.73%	61M	
AlexNet Pruned	42.77%	19.67%	6.7M	$9 \times$
VGG-16 Ref	31.50%	11.32%	138M	
VGG-16 Pruned	31.34%	10.88%	10.3M	13 imes
			- -	- -

The lottery-ticket hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

> THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL jfrankle@csail.mit.edu

Michael Carbin MIT CSAIL mcarbin@csail.mit.edu

Finding winning tickets

- 1. Randomly initialize a neural network $f(x; \theta_0)$ (where $\theta_0 \sim \mathcal{D}_{\theta}$).
- 2. Train the network for j iterations, arriving at parameters θ_j .
- 3. Prune p% of the parameters in θ_j , creating a mask m.
- 4. Reset the remaining parameters to their values in θ_0 , creating the winning ticket $f(x; m \odot \theta_0)$.

THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL jfrankle@csail.mit.edu Michael Carbin MIT CSAIL mcarbin@csail.mit.edu

Results

- Consistently find winning tickets (less than 10-20% size of original models)
- These actually often yield **higher** test accuracy!
- Very much an ongoing research topic...

THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL jfrankle@csail.mit.edu Michael Carbin MIT CSAIL mcarbin@csail.mit.edu