
Machine Learning 2
DS 4420 - Spring 2020

Bias and fairness
Byron C. Wallace
Material in this lecture modified from materials created by Jay Alammar (http://jalammar.github.io/
illustrated-transformer/) and Sasha Rush (https://nlp.seas.harvard.edu/2018/04/03/attention.html).

Intro

Today

• We will talk about bias and fairness, which are critically
important to understand if you go out and apply models
in real-world settings

Examples

• Early speech recognition systems failed on female voices.

• Models to predict criminal recidivism biased against
minorities.

[from CIML, Daume III]

Examples

• Early speech recognition systems failed on female voices.

• Models to predict criminal recidivism biased against
minorities.

[from CIML, Daume III]

Can word vectors be sexist?

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings

Tolga Bolukbasi1, Kai-Wei Chang2, James Zou2, Venkatesh Saligrama1,2, Adam Kalai2
1Boston University, 8 Saint Mary’s Street, Boston, MA

2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.

1

ar
X

iv
:1

60
7.

06
52

0v
1

 [c
s.C

L]
 2

1
Ju

l 2
01

6

Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.

2

Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.

2

Bolukbasi et al. ‘16
Slides: Adam Kalai

Figure from: https://towardsdatascience.com/named-entity-recognition-with-nltk-and-spacy-8c4a7d88e7da

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Country
(Huang et al., 2015) (Lample et al., 2016) (Devlin et al., 2019)

GloVe words GloVe words+chars BERT subwords
P R F1 P R F1 P R F1

Original 96.9 96.5 96.7 97.1 98.1 97.6 98.3 98.1 98.2
US 96.9 99.6 98.2 96.9 99.6 98.3 98.4 99.7 99.1
Russia 96.8 99.5 98.1 97.1 99.8 98.4 98.4 99.3 98.9
India 96.5 99.5 98.0 97.1 99.3 98.2 98.4 98.8 98.6
Mexico 96.7 98.9 97.8 97.1 98.9 98.0 98.4 99.2 98.8
China-Taiwan 95.4 93.2 93.9 97.0 94.9 95.6 98.3 92.0 94.8
US (Difficult) 95.9 87.4 90.2 96.6 87.9 90.7 98.1 88.5 92.3
Indonesia 95.3 84.6 88.7 96.5 91.0 93.3 97.8 85.8 92.0
Vietnam 94.6 78.2 84.2 96.0 78.5 84.5 98.0 84.2 89.8
Bangladesh 96.7 97.5 97.1 97.1 97.6 97.3 98.4 97.8 98.0
Brazil 96.6 96.8 96.6 97.1 96.2 96.5 98.4 96.7 97.5
China-Mainland 95.7 97.9 96.7 97.0 97.4 97.2 98.4 96.7 97.5
Egypt 96.6 99.2 97.8 97.0 98.2 97.6 98.4 97.4 97.9
Ethiopia 96.5 96.8 96.6 96.6 98.6 97.9 98.3 90.6 94.1
Japan 96.7 97.2 96.8 97.0 98.7 97.8 98.5 99.0 98.7
Nigeria 96.3 92.2 94.1 97.1 96.6 96.8 98.2 90.2 93.8
Pakistan 96.2 92.6 94.1 97.0 96.5 96.6 98.3 95.3 96.7
Philippines 97.3 97.9 97.5 97.5 98.9 98.2 98.6 94.7 96.4

Table 3: Performance of systems on PER entity of CoNLL 03 test data. Original refers to the unchanged data. The
rest of the rows are averages over 20 names typical for each country.

Country
(Huang et al., 2015) (Lample et al., 2016) (Devlin et al., 2019)

GloVe words GloVe words+chars BERT subwords
P R F1 P R F1 P R F1

Original 94.7 95.6 95.2 97.5 95.0 96.2 97.0 96.8 96.9
India 94.2 95.5 94.8 97.0 95.7 96.2 96.3 96.9 96.6
Vietnam 93.1 82.3 85.8 96.3 82.3 86.9 96.5 85.2 90.5

Table 4: Performance of systems on PER entity of Ontonotes newswire test data. Original refers to the unchanged
data. The rest of the rows are averages over 20 names typical for each country.

Highest performance Lowest performance
Name F1 Name F1
Jose Mari Andrada 98.8 Trinity Washington 37.8
Chris Collins 98.4 My On 37.9
Alex Mikhailov 98.4 Thien Thai 62.5
Kalpana Chawla 98.4 Thu Giang 64.9
Alejandro Garcia 98.4 Elaf Zahaar 69.9

Table 5: Names on which (Huang et al., 2015) achieved
highest and lowest F1 scores. The former was ob-
served on common American names, the latter on for-
eign names and names that contain ambiguous words
frequent in common nouns and/or other entity types.

20 versions of the dataset. We evaluate the word-
based biLSTM-CRF (Huang et al., 2015), word
& chararacter-based biLSTM-CRF (Lample et al.,
2016) and BERT (Devlin et al., 2019). For the
first two systems, we used 300-d cased GloVe (Pen-
nington et al., 2014) vectors trained on Common
Crawl7. For BERT, we use the original public large
uncased8 model with 24 layers9 and apply the de-
fault fine-tuning strategy. We use the IO labeling

7http://nlp.stanford.edu/data/glove.840B.zip
8uncased performed better than cased
9
uncased L-24 H-1024 A-16

scheme and evaluate the systems via micro-F1, at
the token level.

We present results in Table 3. The models
(across all representations) achieve higher perfor-
mance on typical American names and names from
Russia, India and Mexico than on the original
dataset (see the first set of rows). This finding
has important fairness implications, as it suggests
the system would work almost perfectly for names
from some countries while performance drops con-
siderably for many other countries of origin.

For the two GloVe models, performance drops by
up to ⇠10 points F1 for certain countries, as shown
in the second set of rows in the table. Names from
Indonesia and Vietnam fare the worst, with small
degradation of precision and a precipitous drop
of recall. The names with the highest and lowest
F1 with (Huang et al., 2015) are shown in Table
5. BERT exhibits a similar pattern, with stable
precision and varying recall which remains above
84% for all name origins. BERT results and those
using character-level representations are higher and
more stable, but it is nevertheless clear from this
table that one need not perform a completely out-of-

Recognizing names in text

Intermezzo 1
Before moving on to the next part of lecture,

let’s walk through this notebook tutorial
https://nbviewer.jupyter.org/github/Azure-Samples/learnAnalytics-DeepLearning-Azure/blob/master/
Students/12-biased-embeddings/how-to-make-a-racist-ai-without-really-trying.ipynb

Domain adaptation

One potential cause:
Train/test mismatch

• If the train set is drawn from a different distribution than the test
set, this introduces a bias such that the model will do better on
examples that look like train set instances

• If the speech recognition model has been trained on mostly male
voices and optimized well, it will tend to do better on male voices.

One potential cause:
Train/test mismatch

• If the train set is drawn from a different distribution than the test
set, this introduces a bias such that the model will do better on
examples that look like train set instances

• If the speech recognition model has been trained on mostly male
voices and optimized well, it will tend to do better on male voices.

Unsupervised adaptation

• Given training data from distribution Dold, learn a classifier that
performs well on a related, but distinct, distribution Dnew

• Given training data from distribution Dold, learn a classifier that
performs well on a related, but distinct, distribution Dnew

• Assumption is that we have train data from Dold but what we
actually care about is loss on Dnew

Unsupervised adaptation

• Given training data from distribution Dold, learn a classifier that
performs well on a related, but distinct, distribution Dnew

• Assumption is that we have train data from Dold but what we
actually care about is loss on Dnew

• What can we do here?

Unsupervised adaptation

Importance sampling
(re-weighting)

106 a course in machine learning

8.2 Unsupervised Adaptation

The first type of adaptation we will cover is unsupervised adapta-
tion. The setting is the following. There are two distributions, Dold

and Dnew. We have labeled training data from Dold, say (x1, y1), . . . , (xN , yN)

totalling N examples. We also have M many unlabeled examples from
Dnew: z1, . . . , zM. We assume that the examples live in the same
space, RD. This is called unsupervised adaptation because we do not
have access to any labels in the new distribution.2 2 Sometimes this is called semi-super-

vised adaptation in the literature.Our goal is to learn a classifier f that achieves low expected loss
under the new distribution, Dnew. The challenge is that we do not have
access to any labeled data from Dnew. As a warm-up, let’s suppose
that we have a black box machine learning algorithm A that takes
in weighted examples and produces a classifier. At the very least,
this can be achieved using either undersampling or oversampling
(see Section 6.1). We’re going to attempt to reweigh the (old distri-
bution) labeled examples based on how similar they are to the new
distribution. This is justified using the importance sampling trick for
switching expectations:

test loss (8.1)

= E(x,y)⇠Dnew [`(y, f (x))] definition (8.2)

= Â
(x,y)

Dnew(x, y)`(y, f (x)) expand expectation (8.3)

= Â
(x,y)

Dnew(x, y)
Dold(x, y)
Dold(x, y)

`(y, f (x)) times one (8.4)

= Â
(x,y)

Dold(x, y)
Dnew(x, y)
Dold(x, y)

`(y, f (x)) rearrange (8.5)

= E(x,y)⇠Dold


Dnew(x, y)
Dold(x, y)

`(y, f (x))
�

definition (8.6)

What we have achieved here is rewriting the test loss, which is an
expectation over Dnew, as an expectation over Dold instead.3 This 3 In this example, we assumed a discrete

distribution; if the distributions are con-
tinuous, the sums are simply replaced
with integrals.

is useful because we have access to labeled examples from Dold

but not Dnew. The implicit suggested algorithm by this analysis
to to train a classifier using our learning algorithm A, but where
each training example (xn, yn) is weighted according to the ratio
Dnew(xn, yn)/Dold(xn, yn). Intuitively, this makes sense: the classifier
is being told to pay more attention to training examples that have
high probability under the new distribution, and less attention to
training that have low probability under the new distribution.

The problem with this approach is that we do not have access to
Dnew or Dold, so we cannot compute this ratio and therefore cannot
run this algorithm. One approach to this problem is to try to explic-

[from CIML, Daume III]

Test loss

Importance sampling
(re-weighting)

106 a course in machine learning

8.2 Unsupervised Adaptation

The first type of adaptation we will cover is unsupervised adapta-
tion. The setting is the following. There are two distributions, Dold

and Dnew. We have labeled training data from Dold, say (x1, y1), . . . , (xN , yN)

totalling N examples. We also have M many unlabeled examples from
Dnew: z1, . . . , zM. We assume that the examples live in the same
space, RD. This is called unsupervised adaptation because we do not
have access to any labels in the new distribution.2 2 Sometimes this is called semi-super-

vised adaptation in the literature.Our goal is to learn a classifier f that achieves low expected loss
under the new distribution, Dnew. The challenge is that we do not have
access to any labeled data from Dnew. As a warm-up, let’s suppose
that we have a black box machine learning algorithm A that takes
in weighted examples and produces a classifier. At the very least,
this can be achieved using either undersampling or oversampling
(see Section 6.1). We’re going to attempt to reweigh the (old distri-
bution) labeled examples based on how similar they are to the new
distribution. This is justified using the importance sampling trick for
switching expectations:

test loss (8.1)

= E(x,y)⇠Dnew [`(y, f (x))] definition (8.2)

= Â
(x,y)

Dnew(x, y)`(y, f (x)) expand expectation (8.3)

= Â
(x,y)

Dnew(x, y)
Dold(x, y)
Dold(x, y)

`(y, f (x)) times one (8.4)

= Â
(x,y)

Dold(x, y)
Dnew(x, y)
Dold(x, y)

`(y, f (x)) rearrange (8.5)

= E(x,y)⇠Dold


Dnew(x, y)
Dold(x, y)

`(y, f (x))
�

definition (8.6)

What we have achieved here is rewriting the test loss, which is an
expectation over Dnew, as an expectation over Dold instead.3 This 3 In this example, we assumed a discrete

distribution; if the distributions are con-
tinuous, the sums are simply replaced
with integrals.

is useful because we have access to labeled examples from Dold

but not Dnew. The implicit suggested algorithm by this analysis
to to train a classifier using our learning algorithm A, but where
each training example (xn, yn) is weighted according to the ratio
Dnew(xn, yn)/Dold(xn, yn). Intuitively, this makes sense: the classifier
is being told to pay more attention to training examples that have
high probability under the new distribution, and less attention to
training that have low probability under the new distribution.

The problem with this approach is that we do not have access to
Dnew or Dold, so we cannot compute this ratio and therefore cannot
run this algorithm. One approach to this problem is to try to explic-

[from CIML, Daume III]

Test loss

Importance sampling
(re-weighting)

106 a course in machine learning

8.2 Unsupervised Adaptation

The first type of adaptation we will cover is unsupervised adapta-
tion. The setting is the following. There are two distributions, Dold

and Dnew. We have labeled training data from Dold, say (x1, y1), . . . , (xN , yN)

totalling N examples. We also have M many unlabeled examples from
Dnew: z1, . . . , zM. We assume that the examples live in the same
space, RD. This is called unsupervised adaptation because we do not
have access to any labels in the new distribution.2 2 Sometimes this is called semi-super-

vised adaptation in the literature.Our goal is to learn a classifier f that achieves low expected loss
under the new distribution, Dnew. The challenge is that we do not have
access to any labeled data from Dnew. As a warm-up, let’s suppose
that we have a black box machine learning algorithm A that takes
in weighted examples and produces a classifier. At the very least,
this can be achieved using either undersampling or oversampling
(see Section 6.1). We’re going to attempt to reweigh the (old distri-
bution) labeled examples based on how similar they are to the new
distribution. This is justified using the importance sampling trick for
switching expectations:

test loss (8.1)

= E(x,y)⇠Dnew [`(y, f (x))] definition (8.2)

= Â
(x,y)

Dnew(x, y)`(y, f (x)) expand expectation (8.3)

= Â
(x,y)

Dnew(x, y)
Dold(x, y)
Dold(x, y)

`(y, f (x)) times one (8.4)

= Â
(x,y)

Dold(x, y)
Dnew(x, y)
Dold(x, y)

`(y, f (x)) rearrange (8.5)

= E(x,y)⇠Dold


Dnew(x, y)
Dold(x, y)

`(y, f (x))
�

definition (8.6)

What we have achieved here is rewriting the test loss, which is an
expectation over Dnew, as an expectation over Dold instead.3 This 3 In this example, we assumed a discrete

distribution; if the distributions are con-
tinuous, the sums are simply replaced
with integrals.

is useful because we have access to labeled examples from Dold

but not Dnew. The implicit suggested algorithm by this analysis
to to train a classifier using our learning algorithm A, but where
each training example (xn, yn) is weighted according to the ratio
Dnew(xn, yn)/Dold(xn, yn). Intuitively, this makes sense: the classifier
is being told to pay more attention to training examples that have
high probability under the new distribution, and less attention to
training that have low probability under the new distribution.

The problem with this approach is that we do not have access to
Dnew or Dold, so we cannot compute this ratio and therefore cannot
run this algorithm. One approach to this problem is to try to explic-

[from CIML, Daume III]

Test loss

Note: Does this look familiar?!

Importance sampling
(re-weighting)

106 a course in machine learning

8.2 Unsupervised Adaptation

The first type of adaptation we will cover is unsupervised adapta-
tion. The setting is the following. There are two distributions, Dold

and Dnew. We have labeled training data from Dold, say (x1, y1), . . . , (xN , yN)

totalling N examples. We also have M many unlabeled examples from
Dnew: z1, . . . , zM. We assume that the examples live in the same
space, RD. This is called unsupervised adaptation because we do not
have access to any labels in the new distribution.2 2 Sometimes this is called semi-super-

vised adaptation in the literature.Our goal is to learn a classifier f that achieves low expected loss
under the new distribution, Dnew. The challenge is that we do not have
access to any labeled data from Dnew. As a warm-up, let’s suppose
that we have a black box machine learning algorithm A that takes
in weighted examples and produces a classifier. At the very least,
this can be achieved using either undersampling or oversampling
(see Section 6.1). We’re going to attempt to reweigh the (old distri-
bution) labeled examples based on how similar they are to the new
distribution. This is justified using the importance sampling trick for
switching expectations:

test loss (8.1)

= E(x,y)⇠Dnew [`(y, f (x))] definition (8.2)

= Â
(x,y)

Dnew(x, y)`(y, f (x)) expand expectation (8.3)

= Â
(x,y)

Dnew(x, y)
Dold(x, y)
Dold(x, y)

`(y, f (x)) times one (8.4)

= Â
(x,y)

Dold(x, y)
Dnew(x, y)
Dold(x, y)

`(y, f (x)) rearrange (8.5)

= E(x,y)⇠Dold


Dnew(x, y)
Dold(x, y)

`(y, f (x))
�

definition (8.6)

What we have achieved here is rewriting the test loss, which is an
expectation over Dnew, as an expectation over Dold instead.3 This 3 In this example, we assumed a discrete

distribution; if the distributions are con-
tinuous, the sums are simply replaced
with integrals.

is useful because we have access to labeled examples from Dold

but not Dnew. The implicit suggested algorithm by this analysis
to to train a classifier using our learning algorithm A, but where
each training example (xn, yn) is weighted according to the ratio
Dnew(xn, yn)/Dold(xn, yn). Intuitively, this makes sense: the classifier
is being told to pay more attention to training examples that have
high probability under the new distribution, and less attention to
training that have low probability under the new distribution.

The problem with this approach is that we do not have access to
Dnew or Dold, so we cannot compute this ratio and therefore cannot
run this algorithm. One approach to this problem is to try to explic-

[from CIML, Daume III]

Test loss

Importance sampling
(re-weighting)

106 a course in machine learning

8.2 Unsupervised Adaptation

The first type of adaptation we will cover is unsupervised adapta-
tion. The setting is the following. There are two distributions, Dold

and Dnew. We have labeled training data from Dold, say (x1, y1), . . . , (xN , yN)

totalling N examples. We also have M many unlabeled examples from
Dnew: z1, . . . , zM. We assume that the examples live in the same
space, RD. This is called unsupervised adaptation because we do not
have access to any labels in the new distribution.2 2 Sometimes this is called semi-super-

vised adaptation in the literature.Our goal is to learn a classifier f that achieves low expected loss
under the new distribution, Dnew. The challenge is that we do not have
access to any labeled data from Dnew. As a warm-up, let’s suppose
that we have a black box machine learning algorithm A that takes
in weighted examples and produces a classifier. At the very least,
this can be achieved using either undersampling or oversampling
(see Section 6.1). We’re going to attempt to reweigh the (old distri-
bution) labeled examples based on how similar they are to the new
distribution. This is justified using the importance sampling trick for
switching expectations:

test loss (8.1)

= E(x,y)⇠Dnew [`(y, f (x))] definition (8.2)

= Â
(x,y)

Dnew(x, y)`(y, f (x)) expand expectation (8.3)

= Â
(x,y)

Dnew(x, y)
Dold(x, y)
Dold(x, y)

`(y, f (x)) times one (8.4)

= Â
(x,y)

Dold(x, y)
Dnew(x, y)
Dold(x, y)

`(y, f (x)) rearrange (8.5)

= E(x,y)⇠Dold


Dnew(x, y)
Dold(x, y)

`(y, f (x))
�

definition (8.6)

What we have achieved here is rewriting the test loss, which is an
expectation over Dnew, as an expectation over Dold instead.3 This 3 In this example, we assumed a discrete

distribution; if the distributions are con-
tinuous, the sums are simply replaced
with integrals.

is useful because we have access to labeled examples from Dold

but not Dnew. The implicit suggested algorithm by this analysis
to to train a classifier using our learning algorithm A, but where
each training example (xn, yn) is weighted according to the ratio
Dnew(xn, yn)/Dold(xn, yn). Intuitively, this makes sense: the classifier
is being told to pay more attention to training examples that have
high probability under the new distribution, and less attention to
training that have low probability under the new distribution.

The problem with this approach is that we do not have access to
Dnew or Dold, so we cannot compute this ratio and therefore cannot
run this algorithm. One approach to this problem is to try to explic-

[from CIML, Daume III]

Test loss

Importance weighting

• So we have re-expressed the test loss as an expectation over Dold,
which is good because that’s what we have for training data

• But we do not have access to Dold or Dnew directly

Ratio estimation

bias and fairness 107

itly estimate these distributions, a task known as density estimation.
This is an incredibly difficult problem; far harder than the original
adaptation problem.

A solution to this problem is to try to estimate the ratio directly,
rather than separately estimating the two probability distributions4. 4 Bickel et al. 2007

The key idea is to think of the adaptation as follows. All examples
are drawn according to some fixed base distribution Dbase. Some
of these are selected to go into the new distribution, and some of
them are selected to go into the old distribution. The mechanism for
deciding which ones are kept and which are thrown out is governed
by a selection variable, which we call s. The choice of selection-or-
not, s, is based only on the input example x and not on it’s label. In What could go wrong if s got to

look at the label, too??particular, we define:

Dold(x, y) _ Dbase(x, y)p(s = 1 | x) (8.7)

Dnew(x, y) _ Dbase(x, y)p(s = 0 | x) (8.8)

That is, the probability of drawing some pair (x, y) in the old distri-
bution is proportional to the probability of first drawing that example
according to the base distribution, and then the probability of se-
lecting that particular example into the old distribution. If we can
successfully estimate p(s = 1 | x), then the ratio that we sought, then
we can compute the importance ratio as:

Dnew(x, y)
Dold(x, y)

=
1

Znew Dbase(x, y)p(s = 0 | x)
1

Zold Dbase(x, y)p(s = 1 | x)
definition (8.9)

=
1

Znew p(s = 0 | x)
1

Zold p(s = 1 | x)
cancel base (8.10)

= Z
p(s = 0 | x)
p(s = 1 | x)

consolidate (8.11)

= Z
1 � p(s = 1 | x)

p(s = 1 | x)
binary selection (8.12)

= Z


1
p(s = 1 | x)

� 1
�

rearrange (8.13)

This means that if we can estimate the selection probability p(s =

1 | x), we’re done. We can therefore use 1/p(s = 1 | xn) � 1 as an
example weight on example (xn, yn) when feeding these examples
into our learning algorithm A. As a check: make sure that these

weights are always non-negative.
Furthermore, why is it okay to
ignore the Z factor?

?The remaining question is how to estimate p(s = 1 | xn). Recall
that s = 1 denotes the case that x is selected into the old distribution
and s = 0 denotes the case that x is selected into the new distribution.
This means that predicting s is exactly a binary classification problem,
where the “positive” class is the set of N examples from the old
distribution and the “negative” class is the set of M examples from
the new distribution.

Assume all examples drawn from an underlying shared
distribution (base), and then sorted into Dold / Dnew with some
probability depending on x

Ratio estimation

Supposing we can estimate p… we can reweight examples:

bias and fairness 107

itly estimate these distributions, a task known as density estimation.
This is an incredibly difficult problem; far harder than the original
adaptation problem.

A solution to this problem is to try to estimate the ratio directly,
rather than separately estimating the two probability distributions4. 4 Bickel et al. 2007

The key idea is to think of the adaptation as follows. All examples
are drawn according to some fixed base distribution Dbase. Some
of these are selected to go into the new distribution, and some of
them are selected to go into the old distribution. The mechanism for
deciding which ones are kept and which are thrown out is governed
by a selection variable, which we call s. The choice of selection-or-
not, s, is based only on the input example x and not on it’s label. In What could go wrong if s got to

look at the label, too??particular, we define:

Dold(x, y) _ Dbase(x, y)p(s = 1 | x) (8.7)

Dnew(x, y) _ Dbase(x, y)p(s = 0 | x) (8.8)

That is, the probability of drawing some pair (x, y) in the old distri-
bution is proportional to the probability of first drawing that example
according to the base distribution, and then the probability of se-
lecting that particular example into the old distribution. If we can
successfully estimate p(s = 1 | x), then the ratio that we sought, then
we can compute the importance ratio as:

Dnew(x, y)
Dold(x, y)

=
1

Znew Dbase(x, y)p(s = 0 | x)
1

Zold Dbase(x, y)p(s = 1 | x)
definition (8.9)

=
1

Znew p(s = 0 | x)
1

Zold p(s = 1 | x)
cancel base (8.10)

= Z
p(s = 0 | x)
p(s = 1 | x)

consolidate (8.11)

= Z
1 � p(s = 1 | x)

p(s = 1 | x)
binary selection (8.12)

= Z


1
p(s = 1 | x)

� 1
�

rearrange (8.13)

This means that if we can estimate the selection probability p(s =

1 | x), we’re done. We can therefore use 1/p(s = 1 | xn) � 1 as an
example weight on example (xn, yn) when feeding these examples
into our learning algorithm A. As a check: make sure that these

weights are always non-negative.
Furthermore, why is it okay to
ignore the Z factor?

?The remaining question is how to estimate p(s = 1 | xn). Recall
that s = 1 denotes the case that x is selected into the old distribution
and s = 0 denotes the case that x is selected into the new distribution.
This means that predicting s is exactly a binary classification problem,
where the “positive” class is the set of N examples from the old
distribution and the “negative” class is the set of M examples from
the new distribution.

bias and fairness 107

itly estimate these distributions, a task known as density estimation.
This is an incredibly difficult problem; far harder than the original
adaptation problem.

A solution to this problem is to try to estimate the ratio directly,
rather than separately estimating the two probability distributions4. 4 Bickel et al. 2007

The key idea is to think of the adaptation as follows. All examples
are drawn according to some fixed base distribution Dbase. Some
of these are selected to go into the new distribution, and some of
them are selected to go into the old distribution. The mechanism for
deciding which ones are kept and which are thrown out is governed
by a selection variable, which we call s. The choice of selection-or-
not, s, is based only on the input example x and not on it’s label. In What could go wrong if s got to

look at the label, too??particular, we define:

Dold(x, y) _ Dbase(x, y)p(s = 1 | x) (8.7)

Dnew(x, y) _ Dbase(x, y)p(s = 0 | x) (8.8)

That is, the probability of drawing some pair (x, y) in the old distri-
bution is proportional to the probability of first drawing that example
according to the base distribution, and then the probability of se-
lecting that particular example into the old distribution. If we can
successfully estimate p(s = 1 | x), then the ratio that we sought, then
we can compute the importance ratio as:

Dnew(x, y)
Dold(x, y)

=
1

Znew Dbase(x, y)p(s = 0 | x)
1

Zold Dbase(x, y)p(s = 1 | x)
definition (8.9)

=
1

Znew p(s = 0 | x)
1

Zold p(s = 1 | x)
cancel base (8.10)

= Z
p(s = 0 | x)
p(s = 1 | x)

consolidate (8.11)

= Z
1 � p(s = 1 | x)

p(s = 1 | x)
binary selection (8.12)

= Z


1
p(s = 1 | x)

� 1
�

rearrange (8.13)

This means that if we can estimate the selection probability p(s =

1 | x), we’re done. We can therefore use 1/p(s = 1 | xn) � 1 as an
example weight on example (xn, yn) when feeding these examples
into our learning algorithm A. As a check: make sure that these

weights are always non-negative.
Furthermore, why is it okay to
ignore the Z factor?

?The remaining question is how to estimate p(s = 1 | xn). Recall
that s = 1 denotes the case that x is selected into the old distribution
and s = 0 denotes the case that x is selected into the new distribution.
This means that predicting s is exactly a binary classification problem,
where the “positive” class is the set of N examples from the old
distribution and the “negative” class is the set of M examples from
the new distribution.

Train pair Weight

P that this example
assigned to Dold

Intuitively: Upweights instances likely to be from Dnew

How should we estimate p?

Want to estimate:

bias and fairness 107

itly estimate these distributions, a task known as density estimation.
This is an incredibly difficult problem; far harder than the original
adaptation problem.

A solution to this problem is to try to estimate the ratio directly,
rather than separately estimating the two probability distributions4. 4 Bickel et al. 2007

The key idea is to think of the adaptation as follows. All examples
are drawn according to some fixed base distribution Dbase. Some
of these are selected to go into the new distribution, and some of
them are selected to go into the old distribution. The mechanism for
deciding which ones are kept and which are thrown out is governed
by a selection variable, which we call s. The choice of selection-or-
not, s, is based only on the input example x and not on it’s label. In What could go wrong if s got to

look at the label, too??particular, we define:

Dold(x, y) _ Dbase(x, y)p(s = 1 | x) (8.7)

Dnew(x, y) _ Dbase(x, y)p(s = 0 | x) (8.8)

That is, the probability of drawing some pair (x, y) in the old distri-
bution is proportional to the probability of first drawing that example
according to the base distribution, and then the probability of se-
lecting that particular example into the old distribution. If we can
successfully estimate p(s = 1 | x), then the ratio that we sought, then
we can compute the importance ratio as:

Dnew(x, y)
Dold(x, y)

=
1

Znew Dbase(x, y)p(s = 0 | x)
1

Zold Dbase(x, y)p(s = 1 | x)
definition (8.9)

=
1

Znew p(s = 0 | x)
1

Zold p(s = 1 | x)
cancel base (8.10)

= Z
p(s = 0 | x)
p(s = 1 | x)

consolidate (8.11)

= Z
1 � p(s = 1 | x)

p(s = 1 | x)
binary selection (8.12)

= Z


1
p(s = 1 | x)

� 1
�

rearrange (8.13)

This means that if we can estimate the selection probability p(s =

1 | x), we’re done. We can therefore use 1/p(s = 1 | xn) � 1 as an
example weight on example (xn, yn) when feeding these examples
into our learning algorithm A. As a check: make sure that these

weights are always non-negative.
Furthermore, why is it okay to
ignore the Z factor?

?The remaining question is how to estimate p(s = 1 | xn). Recall
that s = 1 denotes the case that x is selected into the old distribution
and s = 0 denotes the case that x is selected into the new distribution.
This means that predicting s is exactly a binary classification problem,
where the “positive” class is the set of N examples from the old
distribution and the “negative” class is the set of M examples from
the new distribution.

This is just a binary classification task!

108 a course in machine learning

Algorithm 23 SelectionAdaptation(h(xn, yn)iNn=1, hzmiMm=1, A)

1: Ddist h(xn,+1)iNn=1
S h(zm,�1)iMm=1 // assemble data for distinguishing

// between old and new distributions
2: p̂ train logistic regression on Ddist

3: Dweighted
D
(xn, yn, 1

p̂(xn)
� 1)

EN

n=1
// assemble weight classification

// data using selector
4: return A(Dweighted) // train classifier

This analysis gives rise to Algorithm 8.2, which consists of essen-
tially two steps. The first is to train a logistic regression classifier5 to 5 The use of logistic regression is arbi-

trary: it need only be a classification
algorithm that can produce probabili-
ties.

distinguish between old and new distributions. The second is to use
that classifier to produce weights on the labeled examples from the
old distribution and then train whatever learning algorithm you wish
on that.

In terms of the questions posed at the beginning of this chapter,
this approach to adaptation measures nearness of the two distribu-
tions by the degree to which the selection probability is constant. In
particular, if the selection probability is independent of x, then the
two distributions are identical. If the selection probabilities vary sigi-
ficantly as x changes, then the two distributions are considered very
different. More generally, if it is easy to train a classifier to distin-
guish between the old and new distributions, then they are very
different.

In the case of speech recognition failing as a function of gender, a
core issue is that speech from men was massively over-represented
in the training data but not the test data. When the selection logistic
regression is trained, it is likely to say “old” on speech from men and
“new” on other speakers, thereby downweighting the significance of
male speakers and upweighting the significance of speakers of other
genders on the final learned model. This would (hopefully) address
many of the issues confounding that system. Make up percentages for fraction

of speakers who are male in the
old and new distributions; estimate
(you’ll have to make some assump-
tions) what the importance weights
would look like in this case.

?
8.3 Supervised Adaptation

Unsupervised adaptation is very challenging because we never get to
see try labels in the new distribution. In many ways, unsupervised
adaptation attempts to guard against bad things happening. That is,
if an old distribution training example looks very unlike the new
distribution, it (and consequently it’s features) are downweighted so
much as to be ignored. In supervised adaptation, we can hope for
more: we can hope to actually do better on the new distribution than
the old because we have labeled data there.

The typical setup is similar to the unsupervised case. There are

[from CIML, Daume III]

Supervised adaptation

• We were supposing that we had access to labels only in Dold, but
wanted to learn a model for Dnew

• In some cases we might have at least some labels from Dnew as well

Supervised adaptation

• We were supposing that we had access to labels only in Dold, but
wanted to learn a model for Dnew

• In some cases we might have at least some labels from Dnew as well

Supervised adaptation via
feature augmentation

bias and fairness 109

Algorithm 24 EasyAdapt(h(x(old)

n , y(old)

n)iNn=1, h(x(new)

m , y(new)

m)iMm=1, A)

1: D
D
(hx(old)

n , x(old)
n , 0i, y(old)

n)
EN

n=1

SD
(hx(new)

m , 0, x(new)
m i, y(new)

m)
EM

m=1
// union

// of transformed data
2: return A(D) // train classifier

two distributions, Dold and Dnew, and our goal is to learn a classi-
fier that does well in expectation on Dnew. However, now we have
labeled data from both distributions: N labeled examples from Dold

and M labeled examples from Dnew. Call them hx(old)
n , y(old)

n iNn=1 from
Dold and hx(new)

m , y(new)
m iMm=1 from Dnew. Again, suppose that both x(old)

n
and x(new)

m both live in RD.
One way of answer the question of “how do we share informa-

tion between the two distributions” is to say: when the distributions
agree on the value of a feature, let them share it, but when they dis-
agree, allow them to learn separately. For instance, in a sentiment
analysis task, Dold might be reviews of electronics and Dnew might
be reviews of hotel rooms. In both cases, if the review contains the
word “awesome” then it’s probably a positive review, regardless of
which distribution we’re in. We would want to share this information
across distributions. On the other hand, “small” might be positive
in electronics and negative in hotels, and we would like the learning
algorithm to be able to learn separate information for that feature.

A very straightforward way to accomplish this is the feature aug-
mentation approach6. This is a simple preprocessing step after which 6 Daumé III 2007

one can apply any learning algorithm. The idea is to create three ver-
sions of every feature: one that’s shared (for words like “awesome”),
one that’s old-distribution-specific and one that’s new-distribution-
specific. The mapping is:

shared old-only new-only

x(old)
n 7!

D
x(old)

n , x(old)
n , 0, 0, . . . , 0| {z }

D-many

E
(8.14)

x(new)
m 7!

D
x(new)

m , 0, 0, . . . , 0| {z }
D-many

, x(new)
m

E
(8.15)

Once you’ve applied this transformation, you can take the union
of the (transformed) old and new labeled examples and feed the en-
tire set into your favorite classification algorithm. That classification
algorithm can then choose to share strength between the two distri-
butions by using the “shared” features, if possible; or, if not, it can
learn distribution-specific properties on the old-only or new-only
parts. This is summarized in Algorithm 8.3.

Note that this algorithm can be combined with the instance weight-

Supervised adaptation via
feature augmentation

bias and fairness 109

Algorithm 24 EasyAdapt(h(x(old)

n , y(old)

n)iNn=1, h(x(new)

m , y(new)

m)iMm=1, A)

1: D
D
(hx(old)

n , x(old)
n , 0i, y(old)

n)
EN

n=1

SD
(hx(new)

m , 0, x(new)
m i, y(new)

m)
EM

m=1
// union

// of transformed data
2: return A(D) // train classifier

two distributions, Dold and Dnew, and our goal is to learn a classi-
fier that does well in expectation on Dnew. However, now we have
labeled data from both distributions: N labeled examples from Dold

and M labeled examples from Dnew. Call them hx(old)
n , y(old)

n iNn=1 from
Dold and hx(new)

m , y(new)
m iMm=1 from Dnew. Again, suppose that both x(old)

n
and x(new)

m both live in RD.
One way of answer the question of “how do we share informa-

tion between the two distributions” is to say: when the distributions
agree on the value of a feature, let them share it, but when they dis-
agree, allow them to learn separately. For instance, in a sentiment
analysis task, Dold might be reviews of electronics and Dnew might
be reviews of hotel rooms. In both cases, if the review contains the
word “awesome” then it’s probably a positive review, regardless of
which distribution we’re in. We would want to share this information
across distributions. On the other hand, “small” might be positive
in electronics and negative in hotels, and we would like the learning
algorithm to be able to learn separate information for that feature.

A very straightforward way to accomplish this is the feature aug-
mentation approach6. This is a simple preprocessing step after which 6 Daumé III 2007

one can apply any learning algorithm. The idea is to create three ver-
sions of every feature: one that’s shared (for words like “awesome”),
one that’s old-distribution-specific and one that’s new-distribution-
specific. The mapping is:

shared old-only new-only

x(old)
n 7!

D
x(old)

n , x(old)
n , 0, 0, . . . , 0| {z }

D-many

E
(8.14)

x(new)
m 7!

D
x(new)

m , 0, 0, . . . , 0| {z }
D-many

, x(new)
m

E
(8.15)

Once you’ve applied this transformation, you can take the union
of the (transformed) old and new labeled examples and feed the en-
tire set into your favorite classification algorithm. That classification
algorithm can then choose to share strength between the two distri-
butions by using the “shared” features, if possible; or, if not, it can
learn distribution-specific properties on the old-only or new-only
parts. This is summarized in Algorithm 8.3.

Note that this algorithm can be combined with the instance weight-

Supervised adaptation via
feature augmentation

bias and fairness 109

Algorithm 24 EasyAdapt(h(x(old)

n , y(old)

n)iNn=1, h(x(new)

m , y(new)

m)iMm=1, A)

1: D
D
(hx(old)

n , x(old)
n , 0i, y(old)

n)
EN

n=1

SD
(hx(new)

m , 0, x(new)
m i, y(new)

m)
EM

m=1
// union

// of transformed data
2: return A(D) // train classifier

two distributions, Dold and Dnew, and our goal is to learn a classi-
fier that does well in expectation on Dnew. However, now we have
labeled data from both distributions: N labeled examples from Dold

and M labeled examples from Dnew. Call them hx(old)
n , y(old)

n iNn=1 from
Dold and hx(new)

m , y(new)
m iMm=1 from Dnew. Again, suppose that both x(old)

n
and x(new)

m both live in RD.
One way of answer the question of “how do we share informa-

tion between the two distributions” is to say: when the distributions
agree on the value of a feature, let them share it, but when they dis-
agree, allow them to learn separately. For instance, in a sentiment
analysis task, Dold might be reviews of electronics and Dnew might
be reviews of hotel rooms. In both cases, if the review contains the
word “awesome” then it’s probably a positive review, regardless of
which distribution we’re in. We would want to share this information
across distributions. On the other hand, “small” might be positive
in electronics and negative in hotels, and we would like the learning
algorithm to be able to learn separate information for that feature.

A very straightforward way to accomplish this is the feature aug-
mentation approach6. This is a simple preprocessing step after which 6 Daumé III 2007

one can apply any learning algorithm. The idea is to create three ver-
sions of every feature: one that’s shared (for words like “awesome”),
one that’s old-distribution-specific and one that’s new-distribution-
specific. The mapping is:

shared old-only new-only

x(old)
n 7!

D
x(old)

n , x(old)
n , 0, 0, . . . , 0| {z }

D-many

E
(8.14)

x(new)
m 7!

D
x(new)

m , 0, 0, . . . , 0| {z }
D-many

, x(new)
m

E
(8.15)

Once you’ve applied this transformation, you can take the union
of the (transformed) old and new labeled examples and feed the en-
tire set into your favorite classification algorithm. That classification
algorithm can then choose to share strength between the two distri-
butions by using the “shared” features, if possible; or, if not, it can
learn distribution-specific properties on the old-only or new-only
parts. This is summarized in Algorithm 8.3.

Note that this algorithm can be combined with the instance weight-

Supervised adaptation via
feature augmentation

bias and fairness 109

Algorithm 24 EasyAdapt(h(x(old)

n , y(old)

n)iNn=1, h(x(new)

m , y(new)

m)iMm=1, A)

1: D
D
(hx(old)

n , x(old)
n , 0i, y(old)

n)
EN

n=1

SD
(hx(new)

m , 0, x(new)
m i, y(new)

m)
EM

m=1
// union

// of transformed data
2: return A(D) // train classifier

two distributions, Dold and Dnew, and our goal is to learn a classi-
fier that does well in expectation on Dnew. However, now we have
labeled data from both distributions: N labeled examples from Dold

and M labeled examples from Dnew. Call them hx(old)
n , y(old)

n iNn=1 from
Dold and hx(new)

m , y(new)
m iMm=1 from Dnew. Again, suppose that both x(old)

n
and x(new)

m both live in RD.
One way of answer the question of “how do we share informa-

tion between the two distributions” is to say: when the distributions
agree on the value of a feature, let them share it, but when they dis-
agree, allow them to learn separately. For instance, in a sentiment
analysis task, Dold might be reviews of electronics and Dnew might
be reviews of hotel rooms. In both cases, if the review contains the
word “awesome” then it’s probably a positive review, regardless of
which distribution we’re in. We would want to share this information
across distributions. On the other hand, “small” might be positive
in electronics and negative in hotels, and we would like the learning
algorithm to be able to learn separate information for that feature.

A very straightforward way to accomplish this is the feature aug-
mentation approach6. This is a simple preprocessing step after which 6 Daumé III 2007

one can apply any learning algorithm. The idea is to create three ver-
sions of every feature: one that’s shared (for words like “awesome”),
one that’s old-distribution-specific and one that’s new-distribution-
specific. The mapping is:

shared old-only new-only

x(old)
n 7!

D
x(old)

n , x(old)
n , 0, 0, . . . , 0| {z }

D-many

E
(8.14)

x(new)
m 7!

D
x(new)

m , 0, 0, . . . , 0| {z }
D-many

, x(new)
m

E
(8.15)

Once you’ve applied this transformation, you can take the union
of the (transformed) old and new labeled examples and feed the en-
tire set into your favorite classification algorithm. That classification
algorithm can then choose to share strength between the two distri-
butions by using the “shared” features, if possible; or, if not, it can
learn distribution-specific properties on the old-only or new-only
parts. This is summarized in Algorithm 8.3.

Note that this algorithm can be combined with the instance weight-

We have seen this
trick before!!

[from CIML, Daume III]

bias and fairness 109

Algorithm 24 EasyAdapt(h(x(old)

n , y(old)

n)iNn=1, h(x(new)

m , y(new)

m)iMm=1, A)

1: D
D
(hx(old)

n , x(old)
n , 0i, y(old)

n)
EN

n=1

SD
(hx(new)

m , 0, x(new)
m i, y(new)

m)
EM

m=1
// union

// of transformed data
2: return A(D) // train classifier

two distributions, Dold and Dnew, and our goal is to learn a classi-
fier that does well in expectation on Dnew. However, now we have
labeled data from both distributions: N labeled examples from Dold

and M labeled examples from Dnew. Call them hx(old)
n , y(old)

n iNn=1 from
Dold and hx(new)

m , y(new)
m iMm=1 from Dnew. Again, suppose that both x(old)

n
and x(new)

m both live in RD.
One way of answer the question of “how do we share informa-

tion between the two distributions” is to say: when the distributions
agree on the value of a feature, let them share it, but when they dis-
agree, allow them to learn separately. For instance, in a sentiment
analysis task, Dold might be reviews of electronics and Dnew might
be reviews of hotel rooms. In both cases, if the review contains the
word “awesome” then it’s probably a positive review, regardless of
which distribution we’re in. We would want to share this information
across distributions. On the other hand, “small” might be positive
in electronics and negative in hotels, and we would like the learning
algorithm to be able to learn separate information for that feature.

A very straightforward way to accomplish this is the feature aug-
mentation approach6. This is a simple preprocessing step after which 6 Daumé III 2007

one can apply any learning algorithm. The idea is to create three ver-
sions of every feature: one that’s shared (for words like “awesome”),
one that’s old-distribution-specific and one that’s new-distribution-
specific. The mapping is:

shared old-only new-only

x(old)
n 7!

D
x(old)

n , x(old)
n , 0, 0, . . . , 0| {z }

D-many

E
(8.14)

x(new)
m 7!

D
x(new)

m , 0, 0, . . . , 0| {z }
D-many

, x(new)
m

E
(8.15)

Once you’ve applied this transformation, you can take the union
of the (transformed) old and new labeled examples and feed the en-
tire set into your favorite classification algorithm. That classification
algorithm can then choose to share strength between the two distri-
butions by using the “shared” features, if possible; or, if not, it can
learn distribution-specific properties on the old-only or new-only
parts. This is summarized in Algorithm 8.3.

Note that this algorithm can be combined with the instance weight-

Subtler bias

• What if the distribution is not different, but rather the train data simply
reflects biases in society?

• Training models on this and then using them can magnify biases that
already exist!

Sensitive attributes

• In many settings, there may be certain fields/attributes that we know a
priori we don’t want to exploit. Great: Let’s just remove these!

• Why is this not enough?

Sensitive attributes

• In many settings, there may be certain fields/attributes that we know a
priori we don’t want to exploit. Great: Let’s just remove these!

• Why is this not enough?

Sensitive attributes

• In many settings, there may be certain fields/attributes that we know a
priori we don’t want to exploit. Great: Let’s just remove these!

• Why is this not enough?

Because other features may correlate strongly with the protected feature!

https://mrtz.org/nips17

Let’s consider a concrete example: Hiring

Following slides derived from:

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

 Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

 Credit: Barocas and Hardt

Credit: Barocas and Hardt

 Credit: Barocas and Hardt

 Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Credit: Barocas and Hardt

Achieving Fairness through Adversarial Learning: an Application to Recidivism Prediction

Figure 1. Diagram of our adversarial model structure.

A, we back-propagate Ly through A. However, we need to
train N to be good at predicting Ŷ and bad at predicting
a logit that is highly correlated with D. If we subtract Ld

from Ly, N will be encouraged to maximize Ld, which
will produce a logit that cannot be used to predict race and
Ŷ values that are closer to achieving parity. We train our
model N with the following loss function:

L = Ly � ↵ ⇤ Ld

4. Experiments and Results

Data We apply our adversarial model to recidivism predic-
tion. To do so, we used public criminal records data from
Broward County, Florida that was compiled and published
by ProPublica. Much of recidivism research in the past two
years has been conducted on this dataset. The dataset also
includes COMPAS scores for Broward County inmates, so
we are able to compare our results to the performance of
COMPAS. Our training set is size 8230 and our test set size
2213. We only use data from white and black inmates, of
which 41% represents white inmates and 59% black inmates.
Beutel et al. (2017) showed that a more obviously skewed
distribution on demographic D can affect how helpful the
adversary is. We found that despite our slight skew, the
adversary was just as effective.

Model Predictor N has 2 256-unit ReLU hidden layers.
Adversary A has a single 100-unit ReLU hidden layer. We
used a learning rate of e

�4, binary cross entropy loss, a
sigmoid output layer, an Adam optimizer, and an alpha
value of 1. To settle on these hyper parameters, we tuned
a number of hidden layers and hidden layer size for both
the predictor and adversary, alpha, and learning rate. Figure
2 shows tuning for number and size of hidden layers for
N . When tuning alpha, we wanted to maximize Ld, then
minimize Ly. This allows for fairness to be satisfied first,
then for our predictor N to be as accurate as possible.

Metrics To evaluate accuracy, we use area under ROC
curve. We also define metrics that can be used to compare
demographic parity and equality of odds:

High Risk Gap: |HighRiskwhite �HighRiskblack|
False Positive Gap: |FPwhite � FPblack|

False Negative Gap: |FNwhite � FNblack|

Figure 2. Model structure tuning.

If High Risk Gap is zero, demographic parity is satisfied.
False Positive Gap and False Negative Gap are used to
assess equality of odds. If both are zero, equality of odds is
satisfied. Also included are conditional probability graphs
to compare evaluations on the fairness metric calibration.

Experiments Outlined are the models used to conduct exper-
iments on our COMPAS dataset for recidivism prediction:
Recidivism Prediction: We trained a regular recidivism
predictor without any type of adversary to compare our ad-
versarial models to a baseline and to confirm that bias is
perpetuated in machine learning models.
Adversarial Models: We then trained two variants of the
adversarial recidivism predictor. One adversary accepted
the logit as input and the other accepted the logit and true
recidivism value Y . We tried an additional variation of the
model that accepted a hidden layer as input instead of the
logit. This model was less stable and required more hyper
parameter tuning to see a decent result. As such, we con-
tinued most of our research with our models that accept the
logit because the adversary was just as powerful and less
finicky. In our results section, we present the model that
accepted just the logit as input as our adversarial model.

MODEL HIGH RISK GAP FN GAP FP GAP

COMPAS SCORES (OUR TEST SET) 0.18 0.22 0.17
OUR RECIDIVISM MODEL 0.21 0.27 0.15
OUR CHOSEN ADVERSARIAL MODEL 0.02 0.02 0.01

Table 1. Comparison of High Risk Gap, False Negative Gap (FN
Gap), and False Positive Gap (FP Gap), across models.

MODEL AUC

COMPAS SCORES (OUR TEST SET) 0.66
OUR RECIDIVISM MODEL 0.72
OUR CHOSEN ADVERSARIAL MODEL 0.70

Table 2. Comparison of AUC for ROC curves across models.

Results Our regular recidivism predictor is similarly biased
against black inmates with respect to parity and equality
of odds, which suggests that biases can be learned and
perpetuated by machine learning models. However, the
results in Table 1 show that our chosen adversarial model is

Adversarial Learning for Fairness
Beutel et al., 2017; Edwards and Storkey, 2015

Figure from Wadsworth et al., 2018

Credit: Barocas and Hardt

 Credit: Barocas and Hardt

Credit: Barocas and Hardt

So does this solve it?

q Drawbacks to independence as our criterion? Is this the right
objective?
o May rule out best possible model due to actual correlations in the

real-world. Could rule out C = Y (perfect predictor).
o Can satisfy by just selecting random people form the minority

group as “positive” – will not dramatically lower error rate (since
they are a minority) but will satisfy constraint.

q Other criteria exist – let’s look at one more: separation

So does this solve it?

q Drawbacks to independence as our criterion? Is this the right
objective?
o May rule out best possible model due to actual correlations in the

real-world. Could rule out C = Y (perfect predictor).
o Can satisfy by just selecting random people form the minority

group as “positive” – will not dramatically lower error rate (since
they are a minority) but will satisfy constraint.

q Other criteria exist – let’s look at one more: separation

So does this solve it?

q Drawbacks to independence as our criterion? Is this the right
objective?
o May rule out best possible model due to actual correlations in the

real-world. Could rule out C = Y (perfect predictor).
o Can satisfy by just selecting random people form the minority

group as “positive” – will not dramatically lower error rate (since
they are a minority) but will satisfy constraint.

q Other criteria exist – let’s look at one more: separation

So does this solve it?

q Drawbacks to independence as our criterion? Is this the right
objective?
o May rule out best possible model due to actual correlations in the

real-world. Could rule out C = Y (perfect predictor).
o Can satisfy by just selecting random people form the minority

group as “positive” – will not dramatically lower error rate (since
they are a minority) but will satisfy constraint.

q Other criteria exist – let’s look at one more: separation

Separation

Credit: Barocas and Hardt

Separation

One way of achieving

Post-Processing

