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What have we covered?



The fundamentals



Dependent Events

Conditional Probability 
P(fruit = apple | bin = red) = 2 / 8

12 1. INTRODUCTION

give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.

Red bin Blue bin
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Figure 5.3 The
average incline of a
function f between
x0 and x0 + �x is
the incline of the
secant (blue)
through f(x0) and
f(x0 + �x) and
given by �y/�x.�y
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vector calculus is one of the fundamental mathematical tools we need in
machine learning. Throughout this book, we assume that functions are
differentiable. With some additional technical definitions, which we do
not cover here, many of the approaches presented can be extended to
sub-differentials (functions that are continuous but not differentiable at
certain points). We will look at an extension to the case of functions with
constraints in Chapter 7.

5.1 Differentiation of Univariate Functions

In the following, we briefly revisit differentiation of a univariate function,
which may be familiar from high school mathematics. We start with the
difference quotient of a univariate function y = f(x), x, y 2 R, which we
will subsequently use to define derivatives.

Definition 5.1 (Difference Quotient). The difference quotient difference quotient

�y

�x
:=

f(x + �x) � f(x)

�x
(5.3)

computes the slope of the secant line through two points on the graph of
f . In Figure 5.3, these are the points with x-coordinates x0 and x0 + �x.

The difference quotient can also be considered the average slope of f
between x and x + �x if we assume f to be a linear function. In the limit
for �x ! 0, we obtain the tangent of f at x, if f is differentiable. The
tangent is then the derivative of f at x.

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of f derivative

at x is defined as the limit
df

dx
:= lim

h!0

f(x + h) � f(x)

h
, (5.4)

and the secant in Figure 5.3 becomes a tangent.

The derivative of f points in the direction of steepest ascent of f .

c�2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.
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computes the slope of the secant line through two points on the graph of
f . In Figure 5.3, these are the points with x-coordinates x0 and x0 + �x.

The difference quotient can also be considered the average slope of f
between x and x + �x if we assume f to be a linear function. In the limit
for �x ! 0, we obtain the tangent of f at x, if f is differentiable. The
tangent is then the derivative of f at x.

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of f derivative

at x is defined as the limit
df

dx
:= lim

h!0

f(x + h) � f(x)

h
, (5.4)

and the secant in Figure 5.3 becomes a tangent.

The derivative of f points in the direction of steepest ascent of f .
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where we used the power series representations power series
representation

cos(x) =
1X

k=0

(�1)k
1

(2k)!
x
2k
, (5.26)

sin(x) =
1X

k=0

(�1)k
1

(2k + 1)!
x
2k+1

. (5.27)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

Remark. A Taylor series is a special case of a power series

f(x) =
1X

k=0

ak(x � c)k (5.28)

where ak are coefficients and c is a constant, which has the special form
in Definition 5.4. }

5.1.2 Differentiation Rules

In the following, we briefly state basic differentiation rules, where we
denote the derivative of f by f

0.

Product rule: (f(x)g(x))0 = f
0(x)g(x) + f(x)g0(x) (5.29)

Quotient rule:
✓
f(x)

g(x)

◆0

=
f
0(x)g(x) � f(x)g0(x)

(g(x))2
(5.30)

Sum rule: (f(x) + g(x))0 = f
0(x) + g

0(x) (5.31)

Chain rule:
�
g(f(x))

�0
= (g � f)0(x) = g

0(f(x))f 0(x) (5.32)

Here, g � f denotes function composition x 7! f(x) 7! g(f(x)).

Example 5.5 (Chain rule)
Let us compute the derivative of the function h(x) = (2x + 1)4 using the
chain rule. With

h(x) = (2x + 1)4 = g(f(x)) , (5.33)
f(x) = 2x + 1 , (5.34)
g(f) = f

4
, (5.35)

we obtain the derivatives of f and g as

f
0(x) = 2 , (5.36)

g
0(f) = 4f3

, (5.37)
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where we used the power series representations power series
representation

cos(x) =
1X

k=0

(�1)k
1

(2k)!
x
2k
, (5.26)

sin(x) =
1X

k=0

(�1)k
1

(2k + 1)!
x
2k+1

. (5.27)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

Remark. A Taylor series is a special case of a power series

f(x) =
1X

k=0

ak(x � c)k (5.28)

where ak are coefficients and c is a constant, which has the special form
in Definition 5.4. }

5.1.2 Differentiation Rules

In the following, we briefly state basic differentiation rules, where we
denote the derivative of f by f

0.

Product rule: (f(x)g(x))0 = f
0(x)g(x) + f(x)g0(x) (5.29)

Quotient rule:
✓
f(x)

g(x)

◆0

=
f
0(x)g(x) � f(x)g0(x)

(g(x))2
(5.30)

Sum rule: (f(x) + g(x))0 = f
0(x) + g

0(x) (5.31)

Chain rule:
�
g(f(x))

�0
= (g � f)0(x) = g

0(f(x))f 0(x) (5.32)

Here, g � f denotes function composition x 7! f(x) 7! g(f(x)).

Example 5.5 (Chain rule)
Let us compute the derivative of the function h(x) = (2x + 1)4 using the
chain rule. With

h(x) = (2x + 1)4 = g(f(x)) , (5.33)
f(x) = 2x + 1 , (5.34)
g(f) = f

4
, (5.35)

we obtain the derivatives of f and g as

f
0(x) = 2 , (5.36)

g
0(f) = 4f3

, (5.37)
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where we used the power series representations power series
representation

cos(x) =
1X

k=0

(�1)k
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(2k)!
x
2k
, (5.26)

sin(x) =
1X

k=0

(�1)k
1

(2k + 1)!
x
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. (5.27)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

Remark. A Taylor series is a special case of a power series

f(x) =
1X

k=0

ak(x � c)k (5.28)

where ak are coefficients and c is a constant, which has the special form
in Definition 5.4. }

5.1.2 Differentiation Rules

In the following, we briefly state basic differentiation rules, where we
denote the derivative of f by f

0.

Product rule: (f(x)g(x))0 = f
0(x)g(x) + f(x)g0(x) (5.29)

Quotient rule:
✓
f(x)

g(x)

◆0

=
f
0(x)g(x) � f(x)g0(x)

(g(x))2
(5.30)

Sum rule: (f(x) + g(x))0 = f
0(x) + g

0(x) (5.31)

Chain rule:
�
g(f(x))

�0
= (g � f)0(x) = g

0(f(x))f 0(x) (5.32)

Here, g � f denotes function composition x 7! f(x) 7! g(f(x)).

Example 5.5 (Chain rule)
Let us compute the derivative of the function h(x) = (2x + 1)4 using the
chain rule. With

h(x) = (2x + 1)4 = g(f(x)) , (5.33)
f(x) = 2x + 1 , (5.34)
g(f) = f

4
, (5.35)

we obtain the derivatives of f and g as

f
0(x) = 2 , (5.36)

g
0(f) = 4f3

, (5.37)
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such that the derivative of h is given as

h
0(x) = g

0(f)f 0(x) = (4f3) · 2
(5.34)
= 4(2x + 1)3 · 2 = 8(2x + 1)3 , (5.38)

where we used the chain rule (5.32) and substituted the definition of f
in (5.34) in g

0(f).

5.2 Partial Differentiation and Gradients

Differentiation as discussed in Section 5.1 applies to functions f of a
scalar variable x 2 R. In the following, we consider the general case
where the function f depends on one or more variables x 2 Rn, e.g.,
f(x) = f(x1, x2). The generalization of the derivative to functions of sev-
eral variables is the gradient.

We find the gradient of the function f with respect to x by varying one
variable at a time and keeping the others constant. The gradient is then
the collection of these partial derivatives.

Definition 5.5 (Partial Derivative). For a function f : Rn
! R, x 7!

f(x), x 2 Rn of n variables x1, . . . , xn we define the partial derivatives aspartial derivative

@f

@x1
= lim

h!0

f(x1 + h, x2, . . . , xn) � f(x)

h

...
@f

@xn
= lim

h!0

f(x1, . . . , xn�1, xn + h) � f(x)

h

(5.39)

and collect them in the row vector

rxf = gradf =
df

dx
=


@f(x)

@x1

@f(x)

@x2
· · ·

@f(x)

@xn

�
2 R1⇥n

, (5.40)

where n is the number of variables and 1 is the dimension of the image/
range/codomain of f . Here, we defined the column vector x = [x1, . . . , xn]>

2 Rn. The row vector in (5.40) is called the gradient of f or the Jacobiangradient

Jacobian and is the generalization of the derivative from Section 5.1.

Remark. This definition of the Jacobian is a special case of the general
definition of the Jacobian for vector-valued functions as the collection of
partial derivatives. We will get back to this in Section 5.3. }

We can use results
from scalar
differentiation: Each
partial derivative is
a derivative with
respect to a scalar.

Example 5.6 (Partial Derivatives Using the Chain Rule)
For f(x, y) = (x + 2y3)2, we obtain the partial derivatives

@f(x, y)

@x
= 2(x + 2y3)

@

@x
(x + 2y3) = 2(x + 2y3) , (5.41)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are

@f(x1, x2)

@x1
= 2x1x2 + x

3
2 (5.43)

@f(x1, x2)

@x2
= x

2
1 + 3x1x

2
2 (5.44)

and the gradient is then

df

dx
=


@f(x1, x2)

@x1

@f(x1, x2)

@x2

�
=

⇥
2x1x2 + x

3
2 x

2
1 + 3x1x

2
2

⇤
2 R1⇥2

.

(5.45)

5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
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3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are
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3
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= x
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2
2 (5.44)

and the gradient is then

df

dx
=
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@x1
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@x2

�
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3
2 x

2
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2
2
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.

(5.45)

5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
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2 2 R, the partial derivatives (i.e., the deriva-
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3
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2
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
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! Rm (then
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f
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g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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where we used the chain rule (5.32) to compute the partial derivatives.
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! Rm (then
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=
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g(x) + f(x)

@g

@x
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Chain rule:
@

@x
(g � f)(x) =

@

@x

�
g(f(x))

�
=

@g

@f

@f

@x
(5.48)

Let us have a closer look at the chain rule. The chain rule (5.48) resem-This is only an
intuition, but not
mathematically
correct since the
partial derivative is
not a fraction.

bles to some degree the rules for matrix multiplication where we said that
neighboring dimensions have to match for matrix multiplication to be de-
fined; see Section 2.2.1. If we go from left to right, the chain rule exhibits
similar properties: @f shows up in the “denominator” of the first factor
and in the “numerator” of the second factor. If we multiply the factors to-
gether, multiplication is defined, i.e., the dimensions of @f match, and @f

“cancels”, such that @g/@x remains.

5.2.2 Chain Rule

Consider a function f : R2
! R of two variables x1, x2. Furthermore,

x1(t) and x2(t) are themselves functions of t. To compute the gradient of
f with respect to t, we need to apply the chain rule (5.48) for multivariate
functions as

df

dt
=

h
@f
@x1

@f
@x2

i "@x1(t)
@t

@x2(t)
@t

#

=
@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.49)

where d denotes the gradient and @ partial derivatives.

Example 5.8
Consider f(x1, x2) = x

2
1 + 2x2, where x1 = sin t and x2 = cos t, then

df

dt
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
(5.50a)

= 2 sin t
@ sin t

@t
+ 2

@ cos t

@t
(5.50b)

= 2 sin t cos t � 2 sin t = 2 sin t(cos t � 1) (5.50c)

is the corresponding derivative of f with respect to t.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are
themselves functions of two variables s and t, the chain rule yields the
partial derivatives

@f

@s
=

@f

@x1

@x1

@s
+

@f

@x2

@x2

@s
, (5.51)

@f

@t
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.52)
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MLE Framework

Observe some data X = x1, ..., xn
<latexit sha1_base64="uXb6RcYPs450r4ZTCVMypVFMTJc=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q0vBRQlJFXQjFN24rGIf0MYwmUzaoZNJmJlIS+jejb/ixoUibv0Bd/6NSZuFth64cDjnXu69x40Ylco0v7XCyura+kZxs7S1vbO7p+8ftGUYC0xaOGSh6LpIEkY5aSmqGOlGgqDAZaTjjq4yv/NAhKQhv1OTiNgBGnDqU4xUKjl6uQsvYDJ2rBo0DKMGxw6fwlJ17FDYpxze3nslR6+YhjkDXCZWTiogR9PRv/peiOOAcIUZkrJnmZGyEyQUxYxMS/1YkgjhERqQXko5Coi0k9kvU1hNFQ/6oUiLKzhTf08kKJByErhpZ4DUUC56mfif14uVf24nlEexIhzPF/kxgyqEWTDQo4JgxSYpQVjQ9FaIh0ggrNL4shCsxZeXSbtuWCdG/ea00rjM4yiCI1AGx8ACZ6ABrkETtAAGj+AZvII37Ul70d61j3lrQctnDsEfaJ8/N3+XXw==</latexit>

xi 2 Rd
<latexit sha1_base64="hvMP8mJi0DY3s8koZv1E5qXOghU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ac0sWw2m3bpZhN2N2IJ/RtePCji1T/jzX/jps1BWx8MPN6bYWaen3CmtG1/W6WV1bX1jfJmZWt7Z3evun/QUXEqCW2TmMey52NFORO0rZnmtJdIiiOf064/vs797iOVisXiXk8S6kV4KFjICNZGcp8GDLlMoLuHoDKo1uy6PQNaJk5BalCgNah+uUFM0ogKTThWqu/YifYyLDUjnE4rbqpogskYD2nfUIEjqrxsdvMUnRglQGEsTQmNZurviQxHSk0i33RGWI/UopeL/3n9VIeXXsZEkmoqyHxRmHKkY5QHgAImKdF8YggmkplbERlhiYk2MeUhOIsvL5NOo+6c1Ru357XmVRFHGY7gGE7BgQtowg20oA0EEniGV3izUuvFerc+5q0lq5g5hD+wPn8AqFOQxw==</latexit>

We assume this is a random draw (sample) 
from some parameterized distribution P✓

<latexit sha1_base64="ku/fJtRQSMHGItdbUoA6IPPChsI=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ae2oWy2k3bpZhN2J0IJ/RdePCji1X/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2E2gjYvWAkwT8iA2VCAVnaKXHRj/r4QiQTfvlilt156CrxMtJheRo9MtfvUHM0wgUcsmM6Xpugn7GNAouYVrqpQYSxsdsCF1LFYvA+Nn84ik9s8qAhrG2pZDO1d8TGYuMmUSB7YwYjsyyNxP/87ophtd+JlSSIii+WBSmkmJMZ+/TgdDAUU4sYVwLeyvlI6YZRxtSyYbgLb+8Slq1qndRrd1fVuo3eRxFckJOyTnxyBWpkzvSIE3CiSLP5JW8OcZ5cd6dj0VrwclnjskfOJ8/xemQ+w==</latexit>

Goal: find ✓
<latexit sha1_base64="VRbFNfU2yJrhxTioHNG9u2eQ22g=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSqlW9i2rt/rJSv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/pUWPLA==</latexit>

In MLE we pick 
✓MLE = argmax✓P (X|✓)

<latexit sha1_base64="KS+dP4MOjiQUlGf4IPkYhsmjQWw=">AAACIXicbVDLSgNBEJz1GeMr6tHLYBD0EnajYC6CKIIHhQhGA0lYZiedZMjsg5leMaz7K178FS8eFMlN/BknyR7UWDBQXdVNT5cXSaHRtj+tmdm5+YXF3FJ+eWV1bb2wsXmrw1hxqPFQhqruMQ1SBFBDgRLqkQLmexLuvP7ZyL+7B6VFGNzgIIKWz7qB6AjO0EhuodLEHiBzkybCAyZXl+dpSo9pVjLV9dlDmrqTLlrdqz9O6L5bKNoleww6TZyMFEmGqlsYNtshj30IkEumdcOxI2yZFSi4hDTfjDVEjPdZFxqGBswH3UrGF6Z01yht2gmVeQHSsfpzImG+1gPfM50+w57+643E/7xGjJ1KKxFBFCMEfLKoE0uKIR3FRdtCAUc5MIRxJcxfKe8xxTiaUPMmBOfvydPktlxyDkrl68PiyWkWR45skx2yRxxyRE7IBamSGuHkibyQN/JuPVuv1oc1nLTOWNnMFvkF6+sb156khQ==</latexit>

P (X|✓) =
Y

i

P (xi|✓)
<latexit sha1_base64="RQCeB0FfPfleezVu8FgrLUwyx9Q=">AAACDHicbVDLSsNAFJ34rPVVdelmsAh1U5Iq6EYounFZwT6gCWEymbRDJw9mbsQS+wFu/BU3LhRx6we482+cthG09cDA4ZxzuXOPlwiuwDS/jIXFpeWV1cJacX1jc2u7tLPbUnEqKWvSWMSy4xHFBI9YEzgI1kkkI6EnWNsbXI799i2TisfRDQwT5oSkF/GAUwJackvlRqVzb0OfATnC59hOZOy7HDcqdy7/0XXKrJoT4Hli5aSMcjTc0qftxzQNWQRUEKW6lpmAkxEJnAo2KtqpYgmhA9JjXU0jEjLlZJNjRvhQKz4OYqlfBHii/p7ISKjUMPR0MiTQV7PeWPzP66YQnDkZj5IUWESni4JUYIjxuBnsc8koiKEmhEqu/4ppn0hCQfdX1CVYsyfPk1atah1Xa9cn5fpFXkcB7aMDVEEWOkV1dIUaqIkoekBP6AW9Go/Gs/FmvE+jC0Y+s4f+wPj4BtThmjk=</latexit>



Maximum Likelihood Estimation
Likelihood of N independent events:

<latexit sha1_base64="l/DHCkeC2h0DxIwAQSBlfi6S8R4="></latexit>

p✓ (xn) =
KY

k=1

✓
xn,k

k
<latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI="></latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI=">AAAGLXicfZTNbtNAEIC3pYES/lo4conIpUhR5E1DYw6VqqIKJC6l6h+KU2ttTxwr9tqs123a1T4TL4DEU3BAQtwQN3gF1okRsddiLVmjmW9+dmd2nSQMUm4YX1dWb601bt9Zv9u8d//Bw0cbm49P0zhjLpy4cRizc4ekEAYUTnjAQzhPGJDICeHMmb7K7WeXwNIgpsf8OoFRRHwajAOXcKWyN94Lax5kyHxnJIzuzuAFNs2O0e2Z2MR9JRgvt/GgJxPb4hPgZGtm0+et3ZaVsNizxXQXy4u3rYXNnl6ImS1oZyqltDfaynm+WrqAC6G9hxbr0N5c+2R5sZtFQLkbkjQdYiPhI0EYD9wQZNPKUkiIOyU+DJVISQTpSMzLl62S9RiPxDimHKhbchMkSiPCJ5oyh9Oy1p2oxMDKaQvlSORRPEgDn5a9nEg2m5YHY9WPeWXCc8IMpDh6vS+F0dnZ7uDeQFYQBl5BYNPoqK8K+AyAFojZ7+AdU2eSjCUh/IOMHMurYUDhyo2jiFBPWJfgyqE6HwtomjHINyIsJxJtrJqmwQtU+cztTWvZOJOimJ6/BVqXYiar2PUSlm9UQdcadFMX60bDPtRhi+GrqZ7X0ySrYTONzXSIaRCrVgi1OSFJgzCm2n7GS/R8TsZ60nCJKXqchwzVJfeIFjGZ1OPJJNDYo0pnjmQ+LssEYX5EVJ+tOAFGeMzyS3cV8EkYRAFPRWGXuldA/++l7NVkB7I8lPnfccSB1EjXCeeDWT47fUJd5pW5fJc1mM/K2KJxNWBSAYsDzkn13uHq66YLp70uNrr4Xb+9t1+8fOvoKXqGthBGA7SH3qBDdIJc9Bn9QL/Q78bHxpfGt8b3Bbq6Uvg8QaXV+PkHfvtCbQ==</latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI="></latexit><latexit sha1_base64="308eaHTzjRXEzH1u4jAvOVY4MdA="></latexit><latexit sha1_base64="RJQePAG+tFa7ZYy1MPEH2nfQPVs="></latexit><latexit sha1_base64="RJQePAG+tFa7ZYy1MPEH2nfQPVs="></latexit><latexit sha1_base64="6a7/5LVpSV6SrNupn8EZLjXw4AA="></latexit><latexit sha1_base64="NRZgFrrwlSEtVu8MK5bhsaZoWWA="></latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI=">AAAGLXicfZTNbtNAEIC3pYES/lo4conIpUhR5E1DYw6VqqIKJC6l6h+KU2ttTxwr9tqs123a1T4TL4DEU3BAQtwQN3gF1okRsddiLVmjmW9+dmd2nSQMUm4YX1dWb601bt9Zv9u8d//Bw0cbm49P0zhjLpy4cRizc4ekEAYUTnjAQzhPGJDICeHMmb7K7WeXwNIgpsf8OoFRRHwajAOXcKWyN94Lax5kyHxnJIzuzuAFNs2O0e2Z2MR9JRgvt/GgJxPb4hPgZGtm0+et3ZaVsNizxXQXy4u3rYXNnl6ImS1oZyqltDfaynm+WrqAC6G9hxbr0N5c+2R5sZtFQLkbkjQdYiPhI0EYD9wQZNPKUkiIOyU+DJVISQTpSMzLl62S9RiPxDimHKhbchMkSiPCJ5oyh9Oy1p2oxMDKaQvlSORRPEgDn5a9nEg2m5YHY9WPeWXCc8IMpDh6vS+F0dnZ7uDeQFYQBl5BYNPoqK8K+AyAFojZ7+AdU2eSjCUh/IOMHMurYUDhyo2jiFBPWJfgyqE6HwtomjHINyIsJxJtrJqmwQtU+cztTWvZOJOimJ6/BVqXYiar2PUSlm9UQdcadFMX60bDPtRhi+GrqZ7X0ySrYTONzXSIaRCrVgi1OSFJgzCm2n7GS/R8TsZ60nCJKXqchwzVJfeIFjGZ1OPJJNDYo0pnjmQ+LssEYX5EVJ+tOAFGeMzyS3cV8EkYRAFPRWGXuldA/++l7NVkB7I8lPnfccSB1EjXCeeDWT47fUJd5pW5fJc1mM/K2KJxNWBSAYsDzkn13uHq66YLp70uNrr4Xb+9t1+8fOvoKXqGthBGA7SH3qBDdIJc9Bn9QL/Q78bHxpfGt8b3Bbq6Uvg8QaXV+PkHfvtCbQ==</latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI="></latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI="></latexit><latexit sha1_base64="qj2KYw6zvGUIwpHY/Csap624zhI="></latexit><latexit sha1_base64="NRZgFrrwlSEtVu8MK5bhsaZoWWA="></latexit>

<latexit sha1_base64="2bpafo5d0NT+MPGghH2LVwOajeA="></latexit>

Maximum likelihood estimation

<latexit sha1_base64="2bpafo5d0NT+MPGghH2LVwOajeA="></latexit>

<latexit sha1_base64="hn6EIcT0KtCSR3Dg0rkSytelHCc="></latexit>

Nk =
NX

n=1

xn,k
<latexit sha1_base64="rIj5z5wn/NF7yOyJfwK1sJ/b/ck="></latexit><latexit sha1_base64="rIj5z5wn/NF7yOyJfwK1sJ/b/ck=">AAAGGHicfZTNb9MwFMC9scIoXxscuVT0wqGq4q6s4TBpGkxwmsa0L6kplZO8tlETJ9jOviz/I/wJ/A0cuCFuiNv4a3DSIJo4wpGip/d+78t+tpuEAReWdbuyemetcffe+v3mg4ePHj/Z2Hx6yuOUeXDixWHMzl3CIQwonIhAhHCeMCCRG8KZO3+T2c8ugPEgpsfiOoFRRKY0mAQeEVo13ngrnTzIkE3dkbS624NX2LY7VrdnYxv3tWC93sKDnjoYz1s7LYen0VjSHaw+HrSutNSZq5Yab7Q1l6+WKeBCaO+ixTocb659dfzYSyOgwgsJ50NsJWIkCROBF4JqOimHhHhzMoWhFimJgI9kXqlqlazHeCQnMRVAvZKbJBGPiJgZygzmZa0304mBldMWypHMovjAgykte7mRajYdHyZ66/PKpO+GKSh59G5PSauzvdXBvYGqIAz8gsC21dFfFZgyAFogdr+Dt22TSVKWhPAPsjIsq4YBhUsvjiJCfelcgKeGen8coDxlkDUiHTeSbayUMuAFqn1ye9NZNl4pWQzK3wKdC3mlqtj1EpY1qqFrA7qpi3VjYJ/qMEfMQJCa6kU9TdIaNjXY1ISYAbFqhVCbExIehDE1+pks0fmcTMyk4RJTnHEWMtT32SdGxGRWjyezwGCPKidzpLJxWSYIm0ZEn7MTJ8CIiFl26S4DMQuDKBBcFnZlegX0/17aXk22r8pDmf1dV+4rg/TcMB/M8t6ZE+oxv8xlXdZgU1bGFgdXAyYVsNjgjNTvHa6+bqZw2utiq4s/9Nu7e8XLt46eoxfoJcJogHbRe3SITpCHvqCf6Bb9bnxufGt8b/xYoKsrhc8zVFqNX38AmU85EA==</latexit><latexit sha1_base64="rIj5z5wn/NF7yOyJfwK1sJ/b/ck="></latexit><latexit sha1_base64="cRRm6tOQ1UhLQOqR10P98CgaKnw="></latexit>

(known as cross-entropy loss in neural net libraries)



Problems with MLE?

• Provides a point estimate; no notion of uncertainty 
around parameters 

• Does not naturally incorporate prior beliefs (maybe 
a pro, if you’re a frequentist?)



Graphical Model: Naive Bayes

<latexit sha1_base64="UgnBq44SaPoUUf5RaclWPIG346w="></latexit><latexit sha1_base64="cdop8wwQ+R6JJudDH5a6Uw//O2w="></latexit>

<latexit sha1_base64="Uq9vFJSOHqGjtYJEx90qkDca9ww="></latexit>

<latexit sha1_base64="yqrmo9qlpuWOPMvHQkJwHVrgYTA="></latexit>

<latexit sha1_base64="dSAwzQgzM2mfPwJQ6JKH+AQSRXc="></latexit>

<latexit sha1_base64="ZKSlnzyhzDhvnXivn69OoyNhKD4=">AAAF03icfZRPT9swFMANoxvr/gDbcRe0XnaoqoQh6BGxoe0IFQUkUiHHeU0sHCeznUKxfJl2m3bbvs2+yL7N4jbSmjiaI0VP7/3eP/vZYc6oVJ73Z2390Ubn8ZPNp91nz1+83NreeXUhs0IQGJOMZeIqxBIY5TBWVDG4ygXgNGRwGd5+sPbLGQhJM36u5jlMUhxzOqUEq1J19vFmu+cNvMXadQW/EnqoWqc3Oxu/gygjRQpcEYalvPa9XE00FooSBqYbFBJyTG5xDNelyHEKcqIXlZrdmvXcn+hpxhVwUnPTOJUpVomjtLCsa0lSJgZRT1spJ9pGiUDSmNe9wtR0u0EE03LXFpXpKGQFGD36dGy01z943/f3Dk0DERBVhD/0+uXXBGIBwCtkuN/3D4YukxciZ/AP8ixmqxHA4Y5kaYp5pIMZEHNd7k8AXBYCbCM6CFPd840xDrxES5+FvRusGu+N1kGtwGCm700Tm69gttESmjvQQ1usBwf70oYFKgGFW6pX7TQuWtjCYQsXEg4kmhVCa07IJWUZd/qZrtCLOZm6SdkKU52xDcnKqxhhJ2KetON5Qh121DiZkbHjskpgEae4POcgy0FglQl76e6oShhNqZK6shvXi/L/e5X2ZrITUx9K+w9DfWIckoRsMZj1vXMnlIioztkuW7BY1LHlwbWAeQOsNtiS5XvnN183V7jYG/jewD/b7x0dVy/fJnqD3qJ3yEeH6Ah9RqdojAgC9B39RL86447ufO18W6Lra5XPa1RbnR9/AbDeIYs=</latexit>

<latexit sha1_base64="Ot+R1CnHY23oNHKIvRpVfR1ZFt4="></latexit>

<latexit sha1_base64="5aEhnAVokJ/REsLQTe+vKCoVvA4=">AAAF1nicfZRPb9MwFMC9scIo/zY4cpnohUM1JWPaepyGJjiOat0qNdXkOK+NNccJttOts8wNcUPc4MPwRfg2xGkkmjjCkaKn937vn/3sMGNUKs/7s7H5YKvz8NH24+6Tp8+ev9jZfXkp01wQGJGUpWIcYgmMchgpqhiMMwE4CRlchTfvrf1qAULSlF+oZQbTBM85nVGClVUFWUyvd3revleuPVfwK6GHqnV+vbv1O4hSkifAFWFYyonvZWqqsVCUMDDdIJeQYXKD5zApRI4TkFNdFmv2atYLf6pnKVfASc1N40QmWMWO0sKyriVxkRhEPW2lnGobJQJJ57zuFSam2w0imBUbV1amo5DlYPTww6nRXv/oXd8/ODYNREBUEf7A6xdfE5gLAF4hg8O+fzRwmSwXGYN/kGcxW40ADrckTRLMIx0sgJhJsT8BcJkLsI3oIEx0zzfGOPAKLXxKezdYN94ZrYNagcFC35kmtlzDbKMFtHSg+7ZY9w72uQ0LVAwKt1Sv2mmct7C5w+YuJBxINCuE1pyQScpS7vQzW6PLOZm5SdkaU52xDcmK2xhhJ2IWt+PFjXTYYeNkhsaOyzqBxTzBxTkHaQYCq1TYS3dLVcxoQpXUld24XpT/36uwN5OdmfpQ2n8Y6jPjkCRk5WDW986dUCKiOme7bMHmoo6tDq4FzBpgtcGWLN47v/m6ucLlwb7v7fufDnsnp9XLt41eozfoLfLRMTpBH9E5GiGCYvQd/US/OuPOl87XzrcVurlR+bxCtdX58ReAvCMC</latexit>

<latexit sha1_base64="W95L7lAblSHe8aOH35d6unPhuxg="></latexit>

Parameters Observed Variables
(value known)

Unobserved Variables
(value unknown)

<latexit sha1_base64="xWS/bKvnp2E0zuVBXDcz7UtGqZo="></latexit>



Neural nets/backprop
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Problems with 0/1 loss

 

More on Linear Models
1754440

Last time The perceptron

is ifw.x.IT
nesa.sbas

been moved into
1 otherwise w

Given training data x y we fit

This iteratively updating W when we

observed a mistake

Note That This assumes 0 1 loss

so all mistakes are Treated equally
We call the distance from W Xi To

The Separating plane The margin
0 1 loss

1 1I

e
wrong correct

signed margin

•  If we’re wrong by .0001 it is “as bad” as being 
wrong by .9999 

•  Because it is discrete, optimization is hard if the 
instances are not linearly separable



Smooth loss

0 1
This is just one possible loss function and
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For example we might use Hinge loss

Langley
2 Max o l g z

2 w Xi
raw outputyE I I

0 1 loss

i

2 But regardless of
wrong correct

signed margin which we use

xiw mum LCxi.si w

In addition to the loss function we often
want To keep the weight parameters
small to avoid Overfitting This is

accomplished w a Regularization Tem

RCW e.g
RCW 11Wh w

Greg

Idea: Introduce a “smooth” loss function to make optimization easier
Example: Hinge loss

0 1
This is just one possible loss function and
arguably not a great one

For example we might use Hinge loss

Langley
2 Max o l g z

2 w Xi
raw outputyE I I

0 1 loss

i

2 But regardless of
wrong correct

signed margin which we use

xiw mum LCxi.si w

In addition to the loss function we often
want To keep the weight parameters
small to avoid Overfitting This is

accomplished w a Regularization Tem

RCW e.g
RCW 11Wh w

Greg



By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was 
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355

Gradient descent



94 a course in machine learning

Algorithm 21 GradientDescent(F , K, h1, . . . )
1: z(0)  h0, 0, . . . , 0i // initialize variable we are optimizing
2: for k = 1 . . . K do
3: g(k)  rzF|z(k-1) // compute gradient at current location
4: z(k)  z(k-1) � h(k)g(k) // take a step down the gradient
5: end for
6: return z(K)

learning problems will be framed as minimization problems (trying
to reach the bottom of a ditch, rather than the top of a hill). There-
fore, descent is the primary approach you will use. One of the major
conditions for gradient ascent being able to find the true, global min-
imum, of its objective function is convexity. Without convexity, all is
lost.

The gradient descent algorithm is sketched in Algorithm 7.4.
The function takes as arguments the function F to be minimized,
the number of iterations K to run and a sequence of learning rates
h1, . . . , hK. (This is to address the case that you might want to start
your mountain climbing taking large steps, but only take small steps
when you are close to the peak.)

The only real work you need to do to apply a gradient descent
method is be able to compute derivatives. For concreteness, suppose
that you choose exponential loss as a loss function and the 2-norm as
a regularizer. Then, the regularized objective function is:

L(w, b) = Â
n

exp
⇥
� yn(w · xn + b)

⇤
+

l

2
||w||2 (7.13)

The only “strange” thing in this objective is that we have replaced
l with l

2 . The reason for this change is just to make the gradients
cleaner. We can first compute derivatives with respect to b:

∂L
∂b

=
∂

∂b Â
n

exp
⇥
� yn(w · xn + b)

⇤
+

∂

∂b
l

2
||w||2 (7.14)

= Â
n

∂

∂b
exp

⇥
� yn(w · xn + b)
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Before proceeding, it is worth thinking about what this says. From a
practical perspective, the optimization will operate by updating b  
b � h ∂L

∂b . Consider positive examples: examples with yn = +1. We
would hope for these examples that the current prediction, w · xn + b,
is as large as possible. As this value tends toward •, the term in the
exp[] goes to zero. Thus, such points will not contribute to the step.

Alg from CIML [Daume]



Now what about this NN
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Neural networks

Idea: Basically stack together a bunch of linear models.  

This introduces hidden units which are neither observations (x) nor 
outputs (y)

The challenge: How do we update weights associated with each node 
in this multi-layer regime?
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function.”
This is a remarkable theorem. Practically, it says that if you give

me a function F and some error tolerance parameter e, I can construct
a two layer network that computes F. In a sense, it says that going
from one layer to two layers completely changes the representational
capacity of your model.

When working with two-layer networks, the key question is: how
many hidden units should I have? If your data is D dimensional
and you have K hidden units, then the total number of parameters
is (D + 2)K. (The first +1 is from the bias, the second is from the
second layer of weights.) Following on from the heuristic that you
should have one to two examples for each parameter you are trying
to estimate, this suggests a method for choosing the number of hid-
den units as roughly bN

D c. In other words, if you have tons and tons
of examples, you can safely have lots of hidden units. If you only
have a few examples, you should probably restrict the number of
hidden units in your network.

The number of units is both a form of inductive bias and a form
of regularization. In both view, the number of hidden units controls
how complex your function will be. Lots of hidden units ) very
complicated function. As the number increases, training performance
continues to get better. But at some point, test performance gets
worse because the network has overfit the data.

10.2 The Back-propagation Algorithm

The back-propagation algorithm is a classic approach to training
neural networks. Although it was not originally seen this way, based
on what you know from the last chapter, you can summarize back-
propagation as:

back-propagation = gradient descent + chain rule (10.4)

More specifically, the set up is exactly the same as before. You are
going to optimize the weights in the network to minimize some ob-
jective function. The only difference is that the predictor is no longer
linear (i.e., ŷ = w · x + b) but now non-linear (i.e., v · tanh(Wx̂)).
The only question is how to do gradient descent on this more compli-
cated objective.

For now, we will ignore the idea of regularization. This is for two
reasons. The first is that you already know how to deal with regular-
ization, so everything you’ve learned before applies. The second is
that historically, neural networks have not been regularized. Instead,
people have used early stopping as a method for controlling overfit-
ting. Presently, it’s not obvious which is a better solution: both are



Clustering —> EM



Four Types of Clustering

1. Centroid-based (K-means, K-medoids)



Four Types of Clustering

2. Connectivity-based (Hierarchical)

Notion of Clusters: Cut off dendrogram at some depth



Four Types of Clustering

3. Density-based (DBSCAN, OPTICS)

Notion of Clusters: Connected regions of high density



Four Types of Clustering

4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features



From K-Means —> Gaussian Mixture Models

μ1

μ2

μ3

Idea: Learn both means μk and covariances Σk

μ3 Σ3 μ2 Σ2

μ1 Σ1

Don’t just learn where the center of the cluster is, 
but also how big it is, and what shape it has.
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Assignment Update

“Hard EM” with Gaussians
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Parameter Updates

Gaussian Mixture Models
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Soft Assignment Update

Idea: Replace hard  
assignments with  
soft assignments 



Topic modeling



Topic Modeling

• Each topic is a distribution over words 
• Each document is a mixture over topics 
• Each word is drawn from one topic distribution

Generative model for LDA

gene     0.04

dna      0.02

genetic  0.01

.,,

life     0.02

evolve   0.01

organism 0.01

.,,

brain    0.04

neuron   0.02

nerve    0.01

...

data     0.02

number   0.02

computer 0.01

.,,

Topics Documents
Topic proportions and

assignments

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics

Topics
(shared)

Words in Document
(mixture over topics)

Topic Proportions
(document-specific)
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EM for topic models —> 
PLSA



EM for Word Mixtures (PLSA)

Generative model for LDA

gene     0.04

dna      0.02

genetic  0.01

.,,

life     0.02

evolve   0.01

organism 0.01

.,,

brain    0.04

neuron   0.02

nerve    0.01

...

data     0.02

number   0.02

computer 0.01

.,,

Topics Documents
Topic proportions and

assignments

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics

E-step: Update assignmentsGenerative Model

M-step: Update parameters



Latent Dirichlet Allocation
LDA as a graphical model

�d Zd,n Wd,n
N

D K
�k

↵ η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Encodes our assumptions about the data
• Connects to algorithms for computing with data
• See Pattern Recognition and Machine Learning (Bishop, 2006).

(a.k.a. PLSI/PLSA with priors)



Estimation: Gibbs sampling



Extensions: Supervised LDASupervised LDA

�d Zd,n Wd,n
N

D

K
�k

�

Yd η, σ
2

1 Draw topic proportions ✓ | ↵ ⇠ Dir(↵).
2 For each word

• Draw topic assignment zn | ✓ ⇠ Mult(✓).
• Draw word wn | zn, �1:K ⇠ Mult(�zn

).
3 Draw response variable y | z1:N , ⌘, �2 ⇠ N

�
⌘>z̄, �2�, where

z̄ = (1/N)
P

N

n=1 zn.



Dimensionality 
reduction



Dimensionality reduction

Original Data (4 dims) Projection with PCA (2 dims)

Goal: Map high dimensional data onto lower-dimensional 
 data in a manner that preserves distances/similarities

Objective: projection should
“preserve” relative distances



Linear dimensionality reductionBasic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U>x

z 2 R10

5

Idea: Project high-dimensional vector  
onto a lower dimensional space



⇤ =

0
B@
�1

�2
. . .

�d

1
CA

Dimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn 2 Rd

X = ( x1 · · · · · · xn ) 2 Rd⇥n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = ( u1 ·· uk ) 2 Rd⇥k

For each uj, compute “similarity” zj = u>j x

Project x down to z = (z1, . . . , zk)> = U>x
How to choose U?

Principal component analysis (PCA) / Basic principles 8

Data Orthonormal Basis
Dimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn 2 Rd

X = ( x1 · · · · · · xn ) 2 Rd⇥n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = ( u1 ·· uk ) 2 Rd⇥k

For each uj, compute “similarity” zj = u>j x

Project x down to z = (z1, . . . , zk)> = U>x
How to choose U?

Principal component analysis (PCA) / Basic principles 8

dd

Eigenvectors of Covariance Eigen-decomposition 

Idea: Take top-k eigenvectors to maximize variance

In Sum: Principal Component Analysis



Probabilistic PCA

• If we define a prior over z then we can sample from 
the latent space and hallucinate images



Non-linear reduction



tochastic Neighbor Embedding CSNE

very low dim

Airn X y
very high dim

Define a conditional probability That
encodes similarity
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Auto-encoders



Figure credit: https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

Auto-Encoders

https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/


CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.

xx rr

hh

f g

Figure 14.1: The general structure an autoencoder, mapping an input x to an output

(called reconstruction) r through an internal representation or code h . The autoencoder

has two components: the encoder f (mapping x to h) and the decoder g (mapping h to

r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the

training data.

The learning process is described simply as minimizing a loss function

L , g f(x ( ( )))x (14.1)

where L is a loss function penalizing g(f (x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-

506

Auto encoders

Design a network that consumes X and

Then re constructs IT
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Denoising auto-encoders

L(x, g(f(x0)))
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• Self-supervision: A form of unsupervised learning 
in which the data itself provides the supervision

• Generally: Hide some aspect of the data, attempt 
to reconstruct it from the rest 

• Formulating “good” self-training objectives is an 
active area of research!

Self-supervision



Example: Colorizing

abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Image example II: colourization
Train network to predict pixel colour from a monochrome input



Structured prediction



Structured output spaces

Source: http://cocodataset.org/

http://cocodataset.org/


Structured output spaces

Source: https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html

https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html
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17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

Designing features

Want to design �(x, y)
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• # of times w gets label l (for all w, l) 
• # of times l is adjacent to l’ (for all l and l’)

Some possibilities
Unary

Markov
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Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w  0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ  argmaxŷ2Y(x) w · f(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w  w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · f(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ argmax
ŷ2Y(x)

w · f(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,
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Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w  0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ  argmaxŷ2Y(x) w · f(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w  w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · f(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ argmax
ŷ2Y(x)

w · f(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,
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2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

=
n+1Y

i=1

P (yi|yi�1)
nY

i=1

P (xi|yi)
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Emission probabilityTransition probability
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p(yi|yi�1)p(xi|yi)
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HMM

p(y|yi�1, x1, ..., xm, w) =
exp(w · �(x1, ..., xm, yi�1, yi))P

y02Y exp(w · �(x1, ..., xm, yi�1, y0))
<latexit sha1_base64="lByY6hsewcjnF4/QMN2j0Hndpck="></latexit>

MEMM

permits richer representations!�
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The “label bias” problem

Figure from Awni Hannun, https://awni.github.io/label-bias/

https://awni.github.io/label-bias/


p(y|yi�1, x1, ..., xm, w) =
exp(w · �(x1, ..., xm, yi�1, yi))P

y02Y exp(w · �(x1, ..., xm, yi�1, y0))
<latexit sha1_base64="lByY6hsewcjnF4/QMN2j0Hndpck="></latexit>

p(y|x) =
exp{

P
i s(yi, xi, yi�1)}P

y0 exp{
P

i s(y
0
i, xi, y0i�1)}

<latexit sha1_base64="VG/ttL6ULrk9Ed2v+W0vzBAdqIc="></latexit>

MEMMs locally normalize, chain together transition probabilities: 

MEMMs vs CRFs

=
mY

i

p(yi|yi�1, x1, ...xm)
<latexit sha1_base64="NztfWNFsRwx0t+HV7rgPZsizE+U=">AAACEnicbZDLSsNAFIYnXmu9RV26GSxCCzUkVdCNUHTjsoK9QBvDZDJth84kYWYihthncOOruHGhiFtX7nwbp5eFtv4w8PGfczhzfj9mVCrb/jYWFpeWV1Zza/n1jc2tbXNntyGjRGBSxxGLRMtHkjAakrqiipFWLAjiPiNNf3A5qjfviJA0Cm9UGhOXo15IuxQjpS3PLJ3DTiyiwKO3HMbF1KMPqZfRI2dYhveeU4aWZWngJeiZBduyx4Lz4EyhAKaqeeZXJ4hwwkmoMENSth07Vm6GhKKYkWG+k0gSIzxAPdLWGCJOpJuNTxrCQ+0EsBsJ/UIFx+7viQxxKVPu606OVF/O1kbmf7V2orpnbkbDOFEkxJNF3YRBFcFRPjCggmDFUg0IC6r/CnEfCYSVTjGvQ3BmT56HRsVyjq3K9UmhejGNIwf2wQEoAgecgiq4AjVQBxg8gmfwCt6MJ+PFeDc+Jq0LxnRmD/yR8fkDGFSbLQ==</latexit>

CRFs globally normalize

p(y|x) =
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Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs.

One perspective for gaining insight into the di↵erence between gen-
erative and discriminative modeling is due to Minka [80]. Suppose we
have a generative model pg with parameters ✓. By definition, this takes
the form

pg(y,x; ✓) = pg(y; ✓)pg(x|y; ✓). (2.10)

But we could also rewrite pg using Bayes rule as

pg(y,x; ✓) = pg(x; ✓)pg(y|x; ✓), (2.11)

where pg(x; ✓) and pg(y|x; ✓) are computed by inference, i.e., pg(x; ✓) =P
y pg(y,x; ✓) and pg(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓).
Now, compare this generative model to a discriminative model over

the same family of joint distributions. To do this, we define a prior
p(x) over inputs, such that p(x) could have arisen from pg with some
parameter setting. That is, p(x) = pc(x; ✓0) =

P
y pg(y,x|✓

0). We com-
bine this with a conditional distribution pc(y|x; ✓) that could also have
arisen from pg, that is, pc(y|x; ✓) = pg(y,x; ✓)/pg(x; ✓). Then the re-
sulting distribution is

pc(y,x) = pc(x; ✓0)pc(y|x; ✓). (2.12)

By comparing (2.11) with (2.12), it can be seen that the conditional
approach has more freedom to fit the data, because it does not require

Figure from Sutton and McCallum, 2011


