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What have we covered?

Logistics, overview
Math Review

MLE, MAPR, and
graphical models

Neural networks /
backprop

Clustering |

Clustering Il —
Mixture models and
EM

Topic modeling |

Topic modeling Il

Dimensionality
reduction |

Dimensionality
reduction Il

Auto-encoders/"Self-
supervision";
Learning to embed

Structured prediction
/

Structured prediction
I



The tundamentals



Dependent Events

Red bin Blue bin

Conditional Probability
P(fruit = apple | bin=red) =2/8



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin = blue) = ?



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin = blue) =3/12



Two rules of Probabillity
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1. Sum Rule (Marginal Probabilities)
P(fruit = apple) = ?
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1. Sum Rule (Marginal Probabilities)

P(fruit = apple) = P(

4
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Tuit = apple , bin = blue)

P(fruit = apple , bin = red)



Two rules

of Probability

O0Q| |O

OO0 100

1. Sum Rule (Marginal Probabilities)

P(fruit = apple) = P(

_|_

Tuit = apple , bin = blue)

P(fruit = apple , bin = red)

=3/12+2/12=5/12



Two rules of Probability
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2. Product Rule
P(fruit = apple , bin =red) = ?



Two rules of Probability
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2. Product Rule
P(fruit = apple , bin =red) =

P(':rui’[ — apple bin = red) p(bm = red)
=7



Two rules of Probability
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2. Product Rule
P(fruit = apple , bin =red) =

P(':rui’[ — apple bin = red) p(bm = red)



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior



Calc: Univariate Functions

y= f(z), z,y € R

Difference Quotient

by _ flw+0m) — f(o)

oxr 0x




Sum Rule




Product Rule




Chain Rule




More Dims —> Gradients

Group the gradients into a vector (the gradient)

_ _df _ |9f(x) Of(=) of(x) 1xn
Vel = gradf = de | Oz 0x o 0x, <K




Example

f(x1,29) = 2529 + 1123

af(xlva)

I — 251315[)2 -+ CI’)S

1

8f(gx1’ v2) = 17 + 31,75
2

df _|0f(z1,22) Of (1, 22)

— — [2$1$2 + x5 xf + 3$1$%] c R'*°
da 011 05




Rules still hold!

.9 _9df | 0Og
Sum rule: P (f(x) +g(x)) = ot
o, O P
Product rule: a—w(f(a;)g(a;)) — 8—£g($) 4 f(w)a_i
Chainule: (g0 )@) = 5 (/@) = 5o

... but be mindful of dims!



MLE Framework

Observe some data X = zy,....x, x; € R®

We assume this is a random draw (sample)
from some parameterized distribution Py

Goal: find @

In MLE we pick
HMLE — argmaXQP(X\é’)

P(X|0) = HP (2;]0)



Maximum Likelihood Estimation

Likelihood of N independent events:

N K
poCxr,nxw) =] [polxa)  pole) =] |6
=1 k=1

Maximum likelihood estimation

0* = argmax py(x{,...,Xy)
0

= argmax logpg(xq,...,XyN)
0

K N
= argmaXZ N, log6, N, = Z Xy k
0 k=1 n=1

(known as cross-entropy loss in neural net libraries)



Problems with MLE"

* Provides a point estimate; no notion of uncertainty
around parameters

* Does not naturally incorporate prior beliefs (maybe
a pro, if you're a frequentist?)



Graphical Model: Naive Bayes

vy, ~ Bernoulli(u) n=1,...,N

X4 |y, =k ~Bernoulli(¢p,4) k=0,1 d=1,...,D

Parameters ~

> Observed Variables

b "/

- (value known)

__— Unobserved Variables

u —AO‘/ (value unknown)

pCe,y lu )= [pOn I [PGnd | yor ®)
n=1 d=1



Neural nets/backprop
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Problems with O/1 loss

e |[f we're wrong by .0001 it is "as bad” as being
wrong by .9999

e Because it is discrete, optimization is hard if the
instances are not linearly separable




Smooth loss

|dea: Introduce a “smooth” loss function to make optimization easier
Example: Hinge loss
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GGradient descent

By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355



Algorithm 21 GRADIENTDESCENT(F, K, 771, ...)

w29« {o0,0,...,0) // initialize variable we are optimizing
 fork=1...Kdo

s W« Vo F| wn // compute gradient at current location
¢z kD) 0 gk // take a step down the gradient
5. end for

return zK)

A

Alg from CIML [Daume]



Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)

The challenge: How do we update weights associated with each node
in this multi-layer regime?



back-propagation = gradient descent + chain rule



Clustering —> EM



Four Types of Clustering

1. Centroid-based (K-means, K-medoids)




Four Types of Clustering

2. Connectivity-based (Hierarchical)
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Notion of Clusters: Cut off dendrogram at some depth



Four Types of Clustering

3. Density-based (DBSCAN, OPTICS)
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Notion of Clusters: Connected regions of high density



Four Types of Clustering

4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features



From K-Means —> Gaussian Mixture Models

ldea: Learn both means gk and covariances 2k

Don’t just learn where the center of the cluster is,
but also how big it is, and what shape it has.



"Hard EM” with Gaussians

Assignment Update

z, = argmaxp(z, =k|x,,0)
k

Parameter Updates

Nk ::ZN Znk Znik ::I[Zn:k]

n=1%n

1 N
ll’l’k — N_anzl Zle xn

N
2 = Nik Dane1 Znk (3¢ — ) (3¢, — W)



Gaussian Mixture Models

Soft Assignment Update

Yk :=P(2, = k|x,,0)

Parameter Updates
Nj:= Zle

n=(N;/N,...,Ny/N)

ldea: Replace hard W = 77 Zlexn
assignments with

. N
soft assignments 2 = ﬁk anl(xn — ), — ) !




Topic modeling



Topics
(shared)

gene 0.04
dna 0.02
genetic 0.01
life 0.02

evolve 0.01
organism 0.01

A

/

brain 0.04
neuron 0.02

nerve 0.01
data 0.02

number 0.02
computer 0.01

LI

/

Topic Modeling

Words in Document Topic Proportions
(mixture over topics) (document-specific)

Eac
Eac
Eac

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  ‘“are not all that far apart,” especially in
How many genes does anjorganism need to  comparison to the 75,000 ¢enes in the hu-

survive! Last week at the genome meeling e, notes Siv Andersson O¥erala
here,* two genome researchers with radically  University in Swerkme A--
different approaches presented complemen- 8001 eT. Dut coming up with a com

tary views of the basic genes needed for life.® sus answer may be more than just a geseTic
One rescarch team, using compurter analy-  numbers Mimrespagticularlyaehore and
ses to compare known genomes, concluded  more genomes arc e tetysaapped :

that today’s organisms can be sustained with  sequenced. “It may be a way of organizime
just 250 genes, and that the carliestlife forms any newly sequenced genome,” explains

Arcady Mushegian, a computational mo-
lecular biologist at the Natiagal Center
for Biotechnology Informatio

required a mere 128 genes. The
other rescarcher mapped genes
in a simple parasite and esti-

Haemophilus

mated that for this oreanism, [+ gefome _ in Bethesda, Maryland. Comparing a
;g:'17039enes 1

|
)

800 genes are plenty to do the 7 , Redundant and Fo e

job—but that anything short Y . Genes e s Cromoved

of 100 wouldn’t be enough. . -4 genes 7122 genes
Although the numbers don't

oIy S

+22 genes
match precisely, those predictions L
* Genome Mapping and Sequenc-

ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modern and ancient genomes.

Minimal
gene set
250 genes

‘Mycoplasma
genome
469 genhes

ADRPTED FROM NCBI

gene set

SCIENCE e VOL. 272 * 24 MAY 1996

n topic is a distribution over words
n document is a mixture over topics

n word is drawn from one topic distribution
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EM for topic models —>
PLSA



EM for Word Mixtures (PLSA

enerative Model E-step: Update assignments

z., ~ Discrete(0) O, Br,
X, |z, = k ~ Discrete(f3;) k > 6B

|
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Seoking ife's are (Geneto Necesitis M-step: Update parameters
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ses to compare known genomes, concluded
that today’s/organisms can be sustained with

sequenced. “It may be a way of organizrt
just 250 genes, and that the earliest life forms  any newly sequenced genome,” explains
required a mere 128 genes. The
other researcher mapped genes
in a simple parasite and esti-
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800 genes are plenty todo the
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L atent Dirichlet Allocation
(a.k.a. PLSI/PLSA with priors)

Proportions
parameter

Per-document
topic proportions

o

Per-word
topic assignment

Observed
word

|

Topics

|

Or-Or0O—0

R O Zdn

Wd,n N

D

©<_
B

K

[3;. ~ Diric

1]

6, ~ Diric

1

Z 4, ~ Discrete(6;)
Wy nlZys,=k ~ Discrete(8,) n=1,...

let(n) k=1,...
let(a) d=1,...

n=1,...

Topic
parameter

|



Estimation: Gibbs sampling

Initialization: Initialize x(°) € R? and number of samples N

e for:=0to N —-1do

. . (z'+1) p(z |I2 }13 . (2))

° Ig—i_l)NP( |f(+):$3 a'“axD)

o

. xg-”l) N p(xj|$§i+1)7 :Bgz'+1), ll?g-i__l_ll), l‘gz},l %))
®

¢l i)

return ({x®}Y:1




Extensions: Supervised LDA

OO0 O e

Q ed Zd,n Wd,n N ﬁk K
® O
Yy D| n0°

@ Draw topic proportions 6 | « ~ Dir(«).
@ For each word

« Draw topic assignment z, | 6 ~ Mult(6).
o Draw word wy, | z, 81.x ~ Mult(3z,).

© Draw response variable y | zy.n,n,0% ~ N(n'Zz,02), where
z=(1/N)>0; zn.



Dimensionality
reduction



Dimensionality reduction

Goal: Map high dimensional data onto lower-dimensional
data in a manner that preserves distances/similarities

Original Data (4 dims)

Iris Data (red=setosa,green=versicolor,blue=virginica)

llllllllll
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Projection with PCA (2 dims)
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Obijective: projection should
“‘preserve’ relative distances



Linear dimensionality reduction

[dea: Project high-dimensional vector
onto a lower dimensional space



In Sum: Principal Component Analysis

Data Orthonormal Basis
| | | |
X p— X]_ ...... XTL E Ran U — ul .o ud 6 RdXd
| | | |
Eigenvectors of Covariance Eigen-decomposition
C=UAU"'
C = ij — —XXT
A
[ M . \
Cllj — )\jllj A=
\ ra )

[dea. Take top-k eigenvectors to maximize variance



Probabilistic PCA

* |f we define a prior over zthen we can sample from
the latent space and hallucinate images



Non-linear reduction

LLE (0.17 sec) LTSA (0.39 sec) Hessian LLE (0.51 sec) Modified LLE (0.41 sec)

T

b3
130603 q 565

Visualizing data using t-SNE
L Maaten, G Hinton - Journal of machine learning research, 2008 - jmlr.org

We present a new technique called" t-SNE" that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. The technique is a variation of
Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...

v 99 Cited by 11621 Related articles All 39 versions Import into BibTeX 99
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Auto-encoders



Auto-Encoders

Code

Original Reconstructed

0

10

20



https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

/’O\cwle,“




to-encodgers

ISINg au

Deno

Copyright by opendeep.org.


http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model

Selt-supervision

* Self-supervision: A form of unsupervised learning
in which the data itself provides the supervision

* (Generally: Hide some aspect of the data, attempt
to reconstruct it from the rest

* Formulating "good” self-training objectives is an
active area of research!



Example: Colorizing

Train network to predict pixel colour from a monochrome input

Grayscale image: L channel Concatenate (L,ab)

X € R (X,Y)

“Free”
L =) #—-—-4 e ab <+«—— | supervisory
signal




Structured prediction



ructured output spaces
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Source: http://cocodataset.org/



http://cocodataset.org/

Structured output spaces

John lives in New York and works for the European Union
B-PER O O B-LOC I-LOC O 0 O 0 B-ORG I-ORG

Source: https://quillaumegenthial.github.io/sequence-tagging-with-tensorflow.html



https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html

Designing features

x = “ monsters eat tasty bunnies “

Yy = noun verb adj noun

Want to design ¢(x, y)

Some possibilities

o # of times w gets label /(for all w, /) Unary
e # of times /is adjacent to /'(for all fand /') Markov




Algorithm 40 STRUCTUREDPERCEPTRONTRAIN(D, Maxlter)

w0

.. for iter = 1 ... MaxlIter do

for all (x,y) € D do
§ < argmaxgcy ) w- ¢(x,J)
if § # y then

6 w < w+¢(x,y) — o(x,9)
end if

end for

o end for

o return w

@

+

1

~

*

// initialize weights

// compute prediction

// update weights

// return learned weights




Algorithm 40 STRUCTUREDPERCEPTRONTRAIN(D, Maxlter)

w0 // initialize weights
.. for iter = 1 ... MaxIter do

» forall(xy)eDdo

5 a'rAx' Vi W (X, 7 /I compute prediction
6 w—w+¢(x,y) —¢(x, i) /| update weights
7 end if

s  end for

o end for

o return w // return learned weights
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Modeling Sequences

P(Xlzﬂlen:CEn,Yl:len:yn)
n—+1 n

= H P(yilyi-1) | | Plaily:)

e

|
—



HMMs v MEMMs

HMM  p(yilyi—1)p(xi|y:)

MEMM D ycy €XP(W - O(T1, oy Tiny Yie1,Y'))

® permits richer representations!



The “label bias™ problem

An example of three states, A, B and C, which have uniform outgoing transition distributions.
Label bias will cause the inference procedure to favor paths which go through state C.

Figure from Awni Hannun, https.//awni.github.io/label-bias


https://awni.github.io/label-bias/

MEMMSs vs CRFs

MEMMSs locally normalize, chain together transition probabilities:

yfiﬁ Hp y’L’yZ 1,L1y...L )

exp(w ¥ ¢(331, vy Imyy Yi—1,5 yz))
Zy’Ey eXp(w . ¢(3§'1, ey $m7yi—17y/))

CRFs globally normalize

p(ylr) = exp{2_; $(Yi, Ti, Yi-1)}
2y €XP2; S(Yi iy Vi1 )




Beyond linear-chains

Logistic Regression Linear-chain CRFs GRAPHS General CRFs

Figure from Sutton and McCallum, 2011



