
Machine Learning 2
DS 4420 - Spring 2020

Structured prediction, I
Byron C Wallace

Today

• So far: focus on unsupervised methods, where we have
typically been interested in associated instances with
single components (or “labels”)

• We’ll switch gears a bit today and consider structured
spaces where an instance is associated with multiple
labels

Today

• So far: focus on unsupervised methods, where we have
typically been interested in associated instances with
single components (or “labels”)

• We’ll switch gears a bit today and consider structured
spaces where an instance is associated with multiple
labels

Daumé, CIML reading

• Material today based (mostly) on

Structured output spaces

(xi, yi)
<latexit sha1_base64="NNYNv+Zpyu7+mLxR2qtmXhJzHd4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk8fOUOqxU69csWv2DGiZODmpQI6mV/7qDyKShFRowrFSPceOtZthqRnhdFLqJ4rGmIzxkPYMFTikys1mF0/QiVEGKIikKaHRTP09keFQqTT0TWeI9UgtelPxP6+X6ODKzZiIE00FmS8KEo50hKbvowGTlGieGoKJZOZWREZYYqJNSCUTgrP48jJp12vOea1+d1FpXOdxFOEIjqEKDlxCA26hCS0gIOAZXuHNUtaL9W59zFsLVj5zCH9gff4AReqQAA==</latexit>

So far have assumed it is reasonable to assume:

Structured output spaces

(xi, yi)
<latexit sha1_base64="NNYNv+Zpyu7+mLxR2qtmXhJzHd4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk8fOUOqxU69csWv2DGiZODmpQI6mV/7qDyKShFRowrFSPceOtZthqRnhdFLqJ4rGmIzxkPYMFTikys1mF0/QiVEGKIikKaHRTP09keFQqTT0TWeI9UgtelPxP6+X6ODKzZiIE00FmS8KEo50hKbvowGTlGieGoKJZOZWREZYYqJNSCUTgrP48jJp12vOea1+d1FpXOdxFOEIjqEKDlxCA26hCS0gIOAZXuHNUtaL9W59zFsLVj5zCH9gff4AReqQAA==</latexit>

So far have assumed it is reasonable to assume:

Consider speech transcription

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x3
<latexit sha1_base64="GcfdmiVXIuQAVIE+3vSRqlRiStc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAaNpg==</latexit>

y3
<latexit sha1_base64="I1Yqf/dyfMgBYEmmGxGuyvCmwQ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RjI2n</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

Structured output spaces

(xi, yi)
<latexit sha1_base64="NNYNv+Zpyu7+mLxR2qtmXhJzHd4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk8fOUOqxU69csWv2DGiZODmpQI6mV/7qDyKShFRowrFSPceOtZthqRnhdFLqJ4rGmIzxkPYMFTikys1mF0/QiVEGKIikKaHRTP09keFQqTT0TWeI9UgtelPxP6+X6ODKzZiIE00FmS8KEo50hKbvowGTlGieGoKJZOZWREZYYqJNSCUTgrP48jJp12vOea1+d1FpXOdxFOEIjqEKDlxCA26hCS0gIOAZXuHNUtaL9W59zFsLVj5zCH9gff4AReqQAA==</latexit>

So far have assumed it is reasonable to assume:

Consider speech transcription

“Play

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x3
<latexit sha1_base64="GcfdmiVXIuQAVIE+3vSRqlRiStc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAaNpg==</latexit>

y3
<latexit sha1_base64="I1Yqf/dyfMgBYEmmGxGuyvCmwQ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RjI2n</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

Structured output spaces

(xi, yi)
<latexit sha1_base64="NNYNv+Zpyu7+mLxR2qtmXhJzHd4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk8fOUOqxU69csWv2DGiZODmpQI6mV/7qDyKShFRowrFSPceOtZthqRnhdFLqJ4rGmIzxkPYMFTikys1mF0/QiVEGKIikKaHRTP09keFQqTT0TWeI9UgtelPxP6+X6ODKzZiIE00FmS8KEo50hKbvowGTlGieGoKJZOZWREZYYqJNSCUTgrP48jJp12vOea1+d1FpXOdxFOEIjqEKDlxCA26hCS0gIOAZXuHNUtaL9W59zFsLVj5zCH9gff4AReqQAA==</latexit>

So far have assumed it is reasonable to assume:

Consider speech transcription

“Play Kanye

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x3
<latexit sha1_base64="GcfdmiVXIuQAVIE+3vSRqlRiStc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAaNpg==</latexit>

y3
<latexit sha1_base64="I1Yqf/dyfMgBYEmmGxGuyvCmwQ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RjI2n</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

Structured output spaces

(xi, yi)
<latexit sha1_base64="NNYNv+Zpyu7+mLxR2qtmXhJzHd4=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8Jmu2mXbjZhdyOG0H/hxYMiXv033vw3btsctPXBwOO9GWbm+TFnStv2t1VYWV1b3yhulra2d3b3yvsHbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe3445up33mkUrFI3Os0pm6Ih4IFjGBtpIfqk8fOUOqxU69csWv2DGiZODmpQI6mV/7qDyKShFRowrFSPceOtZthqRnhdFLqJ4rGmIzxkPYMFTikys1mF0/QiVEGKIikKaHRTP09keFQqTT0TWeI9UgtelPxP6+X6ODKzZiIE00FmS8KEo50hKbvowGTlGieGoKJZOZWREZYYqJNSCUTgrP48jJp12vOea1+d1FpXOdxFOEIjqEKDlxCA26hCS0gIOAZXuHNUtaL9W59zFsLVj5zCH9gff4AReqQAA==</latexit>

So far have assumed it is reasonable to assume:

Consider speech transcription

“Play Kanye West”

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x3
<latexit sha1_base64="GcfdmiVXIuQAVIE+3vSRqlRiStc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAaNpg==</latexit>

y3
<latexit sha1_base64="I1Yqf/dyfMgBYEmmGxGuyvCmwQ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RjI2n</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

Structured output spaces

Source: http://cocodataset.org/

http://cocodataset.org/

Structured output spaces

Source: https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html

https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

is now a vector (or tensor)

Structured output spaces

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

is now a vector (or tensor)

Structured output spaces

We will generally be interested in scoring pairs

(x, ŷ)
<latexit sha1_base64="6R+DaOzOoBV3hApof6R7uvh1Cso=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBAiSNiNgh6DXjxGMA/ILmF2MkmGzD6Y6RWXJb/hxYMiXv0Zb/6Nk2QPmljQUFR1093lx1JotO1va2V1bX1js7BV3N7Z3dsvHRy2dJQoxpsskpHq+FRzKULeRIGSd2LFaeBL3vbHt1O//ciVFlH4gGnMvYAOQzEQjKKR3MrTOXFHFLN0ctYrle2qPQNZJk5OypCj0St9uf2IJQEPkUmqddexY/QyqlAwySdFN9E8pmxMh7xraEgDrr1sdvOEnBqlTwaRMhUimam/JzIaaJ0GvukMKI70ojcV//O6CQ6uvUyEcYI8ZPNFg0QSjMg0ANIXijOUqSGUKWFuJWxEFWVoYiqaEJzFl5dJq1Z1Lqq1+8ty/SaPowDHcAIVcOAK6nAHDWgCgxie4RXerMR6sd6tj3nripXPHMEfWJ8/G9KRFQ==</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

is now a vector (or tensor)

Structured output spaces

We will generally be interested in scoring pairs

(x, ŷ)
<latexit sha1_base64="6R+DaOzOoBV3hApof6R7uvh1Cso=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBAiSNiNgh6DXjxGMA/ILmF2MkmGzD6Y6RWXJb/hxYMiXv0Zb/6Nk2QPmljQUFR1093lx1JotO1va2V1bX1js7BV3N7Z3dsvHRy2dJQoxpsskpHq+FRzKULeRIGSd2LFaeBL3vbHt1O//ciVFlH4gGnMvYAOQzEQjKKR3MrTOXFHFLN0ctYrle2qPQNZJk5OypCj0St9uf2IJQEPkUmqddexY/QyqlAwySdFN9E8pmxMh7xraEgDrr1sdvOEnBqlTwaRMhUimam/JzIaaJ0GvukMKI70ojcV//O6CQ6uvUyEcYI8ZPNFg0QSjMg0ANIXijOUqSGUKWFuJWxEFWVoYiqaEJzFl5dJq1Z1Lqq1+8ty/SaPowDHcAIVcOAK6nAHDWgCgxie4RXerMR6sd6tj3nripXPHMEfWJ8/G9KRFQ==</latexit>

Often called sequence labeling

Space of problems

Given Predict

An image Contains a cat?

Type?

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Structured
prediction

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Structured
prediction

A tweet Names in the tweet

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Structured
prediction

A tweet Names in the tweet Structured
prediction

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Structured
prediction

A tweet Names in the tweet Structured
prediction

A tweet Sentiment in tweet

Space of problems

Given Predict

An image Contains a cat? Classification

Type?

An image Coordinates that
outline all cats

Structured
prediction

A tweet Names in the tweet Structured
prediction

A tweet Sentiment in tweet Classification

• Structured perceptron
• Hidden Markov Models (HMMs)
• Conditional Random Fields (CRFs)

Models

The structured perceptron

The structured perceptron

Will build up to this by first introducing the multi-class perceptron.

The Perceptron

Perception

1 if W X 70
y 1 otherwise

I

W X 1 t W X t wzXz

w3 3

p

H
O O O O

1 X X z X3

Problems with 0 1 loss

Loss 41
0

wrong Correct

Multiclass perceptron

We’re after a scoring function

Assume

Joint feature vector

y 2 {1, 2, ...,K}
<latexit sha1_base64="qMQQXj180E2DokWq/LO/J+azK/I=">AAACAHicbVBNS8NAEJ3Ur1q/qh48eFksgocSkirosehF8FLBfkATyma7aZduNmF3I5TQi3/FiwdFvPozvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwsrq2vlHcLG1t7+zulfcPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORjdTv/1IpWKxeNDjhPoRHggWMoK1kXrlozHymEBe5lZRrYps20ZVdOdNeuWKYzszoGXi5qQCORq98pfXj0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn80emKBTo/RRGEtTQqOZ+nsiw5FS4ygwnRHWQ7XoTcX/vG6qwys/YyJJNRVkvihMOdIxmqaB+kxSovnYEEwkM7ciMsQSE20yK5kQ3MWXl0mrZrvndu3+olK/zuMowjGcwBm4cAl1uIUGNIHABJ7hFd6sJ+vFerc+5q0FK585hD+wPn8A+HCTbQ==</latexit>

�(x, y)
<latexit sha1_base64="offYIjHK+OgAIJNcSp1VKopLkk0=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM3HrLy09n4tFcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZwRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCa/8lMk4MVSS+aIw4chEaPo96jNFieFjSzBRzN6KyBArTIzNqGBD8BZfXibNasU7r1TvLkq16yyOPBzBMZTBg0uowS3UoQEEBDzDK7w5ynlx3p2PeWvOyWYO4Q+czx8DS4/j</latexit>

s(x, y) = w · �(x, y)
<latexit sha1_base64="NN1sazZ8vWPi/RZcjK+/6EsXPeI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahgpSkCroRim5cVrAPaEKZTCbt0EkmzEzUEgpu/BU3LhRx60+482+cpllo64ELh3Pu5d57vJhRqSzr2ygsLC4trxRXS2vrG5tb5vZOS/JEYNLEnHHR8ZAkjEakqahipBMLgkKPkbY3vJr47TsiJOXRrRrFxA1RP6IBxUhpqWfuycrD8egIXsB76GCfK+jEA5ppPbNsVa0McJ7YOSmDHI2e+eX4HCchiRRmSMqubcXKTZFQFDMyLjmJJDHCQ9QnXU0jFBLpptkPY3ioFR8GXOiKFMzU3xMpCqUchZ7uDJEayFlvIv7ndRMVnLspjeJEkQhPFwUJg4rDSSDQp4JgxUaaICyovhXiARIIKx1bSYdgz748T1q1qn1Srd2cluuXeRxFsA8OQAXY4AzUwTVogCbA4BE8g1fwZjwZL8a78TFtLRj5zC74A+PzBwUcldk=</latexit>

Multiclass perceptron

We’re after a scoring function

Assume

Joint feature vector

y 2 {1, 2, ...,K}
<latexit sha1_base64="qMQQXj180E2DokWq/LO/J+azK/I=">AAACAHicbVBNS8NAEJ3Ur1q/qh48eFksgocSkirosehF8FLBfkATyma7aZduNmF3I5TQi3/FiwdFvPozvPlv3LY5aOuDgcd7M8zMCxLOlHacb6uwsrq2vlHcLG1t7+zulfcPWipOJaFNEvNYdgKsKGeCNjXTnHYSSXEUcNoORjdTv/1IpWKxeNDjhPoRHggWMoK1kXrlozHymEBe5lZRrYps20ZVdOdNeuWKYzszoGXi5qQCORq98pfXj0kaUaEJx0p1XSfRfoalZoTTSclLFU0wGeEB7RoqcESVn80emKBTo/RRGEtTQqOZ+nsiw5FS4ygwnRHWQ7XoTcX/vG6qwys/YyJJNRVkvihMOdIxmqaB+kxSovnYEEwkM7ciMsQSE20yK5kQ3MWXl0mrZrvndu3+olK/zuMowjGcwBm4cAl1uIUGNIHABJ7hFd6sJ+vFerc+5q0FK585hD+wPn8A+HCTbQ==</latexit>

�(x, y)
<latexit sha1_base64="offYIjHK+OgAIJNcSp1VKopLkk0=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM3HrLy09n4tFcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZwRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCa/8lMk4MVSS+aIw4chEaPo96jNFieFjSzBRzN6KyBArTIzNqGBD8BZfXibNasU7r1TvLkq16yyOPBzBMZTBg0uowS3UoQEEBDzDK7w5ynlx3p2PeWvOyWYO4Q+czx8DS4/j</latexit>

s(x, y) = w · �(x, y)
<latexit sha1_base64="NN1sazZ8vWPi/RZcjK+/6EsXPeI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahgpSkCroRim5cVrAPaEKZTCbt0EkmzEzUEgpu/BU3LhRx60+482+cpllo64ELh3Pu5d57vJhRqSzr2ygsLC4trxRXS2vrG5tb5vZOS/JEYNLEnHHR8ZAkjEakqahipBMLgkKPkbY3vJr47TsiJOXRrRrFxA1RP6IBxUhpqWfuycrD8egIXsB76GCfK+jEA5ppPbNsVa0McJ7YOSmDHI2e+eX4HCchiRRmSMqubcXKTZFQFDMyLjmJJDHCQ9QnXU0jFBLpptkPY3ioFR8GXOiKFMzU3xMpCqUchZ7uDJEayFlvIv7ndRMVnLspjeJEkQhPFwUJg4rDSSDQp4JgxUaaICyovhXiARIIKx1bSYdgz748T1q1qn1Srd2cluuXeRxFsA8OQAXY4AzUwTVogCbA4BE8g1fwZjwZL8a78TFtLRj5zC74A+PzBwUcldk=</latexit>

should be high for correct y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

Multiclass perceptron

How should we design �(x, y)
<latexit sha1_base64="offYIjHK+OgAIJNcSp1VKopLkk0=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM3HrLy09n4tFcsuRV3BrRMvIyUIEO9V/zq9iOSCCoN4VjrjufGxk+xMoxwOil0E01jTEZ4QDuWSiyo9tPZwRN0YpU+CiNlSxo0U39PpFhoPRaB7RTYDPWiNxX/8zqJCa/8lMk4MVSS+aIw4chEaPo96jNFieFjSzBRzN6KyBArTIzNqGBD8BZfXibNasU7r1TvLkq16yyOPBzBMZTBg0uowS3UoQEEBDzDK7w5ynlx3p2PeWvOyWYO4Q+czx8DS4/j</latexit>

?

One option:

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Learning

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Consider making a prediction, given

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Learning

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Consider making a prediction, given

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Learning

If

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

we do nothing

If we are wrong (

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

) then update

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

Learning

If

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

we do nothing

If we are wrong (

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

) then update

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

features for true label
features for wrong label

Learning

Is this doing what we want?

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Learning

Is this doing what we want?

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Consider updated prediction for true label

Learning

Is this doing what we want?

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Consider updated prediction for true label

Learning

Is this doing what we want?

196 a course in machine learning

17.1 Multiclass Perceptron

In order to build up to structured problems, let’s begin with a simpli-
fied by pedagogically useful stepping stone: multiclass classification
with a perceptron. As discussed earlier, in multiclass classification we
have inputs x 2 RD and output labels y 2 {1, 2, . . . , K}. Our goal
is to learn a scoring function s so that s(x, y) > s(x, ŷ) for all ŷ 6= y,
where y is the true label and ŷ is an imposter label. The general form
of scoring function we consider is a linear function of a joint feature
vector f(x, y):

s(x, y) = w · f(x, y) (17.1)

Here, the features f(x, y) should denote how “compatible” the input
x is with the label y. We keep track of a single weight vector w that
learns how to weigh these different “compatibility” features.

A natural way to represent f, if you know nothing else about
the problem, is an outer product between x and the label space. This
yields the following representation:

f(x, k) =
D

0, 0, . . . , 0| {z }
D(k�1) zeros

, x|{z}
2RD

, 0, 0, . . . , 0| {z }
D(K�k) zeros

E
2 RDK (17.2)

In this representation, w effectively encodes a separate weight for
every feature/label pair.

How are we going to learn w? We will start with w = 0 and then
process each input one at a time. Suppose we get an input x with
gold standard label y. We will use the current scoring function to
predict a label. In particular, we will predict the label ŷ that maxi-
mizes the score:

ŷ = argmax
ŷ2[1,K]

s(x, ŷ) (17.3)

= argmax
ŷ2[1,K]

w · f(x, ŷ) (17.4)

If this predicted output is correct (i.e., ŷ = y), then, per the normal
perceptron, we will do nothing. Suppose that ŷ 6= y. This means that
the score of ŷ is greater than the score of y, so we want to update w
so that the score of ŷ is decreased and the score of y is increased. We
do this by:

w w + f(x, y)� f(x, ŷ) (17.5)

To make sure this is doing what we expect, let’s consider what would
happen if we computed scores under the updated value of w. To make
the notation clear, let’s say w(old) are the weights before update, and

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Consider updated prediction for true label

(by construction)

Sharing features

Suppose there are three classes: music, movies, and oncology.
We think the first two are probably more similar.
We can encode this in the feature space.

Sharing features

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Suppose there are three classes: music, movies, and oncology.
We think the first two are probably more similar.
We can encode this in the feature space.

Sharing features

structured prediction 197

Algorithm 39 MulticlassPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxk w · f(x, k) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

w(new) are the weights after update. Then:

w(new) · f(x, y) (17.6)

=
⇣

w(old) + f(x, y)� f(x, ŷ)
⌘
· f(x, y) (17.7)

= w(old) · f(x, y)
| {z }

old prediction

+ f(x, y) · f(x, y)
| {z }

�0

� f(x, ŷ) · f(x, y)
| {z }

=0

(17.8)

Here, the first term is the old prediction. The second term is of the
form a · a which is non-negative (and, unless f(x, y) is the zero vec-
tor, positive). The third term is the dot product between f for two
different labels, which by definition of f is zero (see Eq (17.2)). Verify the score of ŷ, w(new) · f(x, ŷ),

decreases after an update, as we
would want.

?This gives rise to the updated multiclass perceptron specified in
Algorithm 17.1. As with the normal perceptron, the generalization
of the multiclass perceptron increases dramatically if you do weight
averaging.

An important note is that MulticlassPerceptronTrain is actually
more powerful than suggested so far. For instance, suppose that you
have three categories, but believe that two of them are tightly related,
while the third is very different. For instance, the categories might
be {music, movies, oncology}. You can encode this relatedness by
defining a feature expansion f that reflects this:

f(x, music) = hx, 0, 0, xi (17.9)

f(x, movies) = h0, x, 0, xi (17.10)

f(x, oncology) = h0, 0, x, 0i (17.11)

This encoding is identical to the normal encoding in the first three
positions, but includes an extra copy of the features at the end,
shared between music and movies. By doing so, if the perceptron
wants to learn something common to music and movies, it can use
this final shared position. Suppose you have a hierarchy

of classes arranged in a tree.
How could you use that to
construct a feature representa-
tion. You can think of the mu-
sic/movies/oncology example as
a binary tree: the left branch of the
root splits into music and movies;
the right branch of the root is just
oncology.

?

Suppose there are three classes: music, movies, and oncology.
We think the first two are probably more similar.
We can encode this in the feature space.

“extra” copy; allows w to capture shared aspects of movies/music

Structured perceptron
Let’s come back to our motivation of structured outputs

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

To be concrete, we will focus on sequence labeling

Structured perceptron
Let’s come back to our motivation of structured outputs

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

To be concrete, we will focus on sequence labeling

So y is now a sequence. But goal is the same; Score true y
(whole sequence) higher than other potential y’s.

How big is our output space?

Assume x has length L, and that there are K possible labels at
each position

How big is our output space?

Assume x has length L, and that there are K possible labels at
each position

Y = KL
<latexit sha1_base64="xpcCqbSUkEW/WTPYunY36RY6jL0=">AAAB+nicbVDLSgMxFL3js9bXVJdugkVwVWaqoBuh6EbQRQX7kHYsmTRtQzOZIckoZeynuHGhiFu/xJ1/Y6adhbYeCBzOuZd7cvyIM6Ud59taWFxaXlnNreXXNza3tu3CTl2FsSS0RkIeyqaPFeVM0JpmmtNmJCkOfE4b/vAi9RsPVCoWils9iqgX4L5gPUawNlLHLrQDrAcE8+RujM7Q1f11xy46JWcCNE/cjBQhQ7Vjf7W7IYkDKjThWKmW60TaS7DUjHA6zrdjRSNMhrhPW4YKHFDlJZPoY3RglC7qhdI8odFE/b2R4ECpUeCbyTSomvVS8T+vFeveqZcwEcWaCjI91Is50iFKe0BdJinRfGQIJpKZrIgMsMREm7bypgR39svzpF4uuUel8s1xsXKe1ZGDPdiHQ3DhBCpwCVWoAYFHeIZXeLOerBfr3fqYji5Y2c4u/IH1+QM7C5NS</latexit>

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

Designing features

Want to design �(x, y)
<latexit sha1_base64="/LiModH4T5OWsyK3xQgOgiGW6hs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8pmu2mXbjZhdyOG0H/hxYMiXv033vw3btoctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5vM7zxSqVgo7nUSUTfAI8F8RrA20kM/GrPq0xlKTgflil2zZ0DLxMlJBXI0B+Wv/jAkcUCFJhwr1XPsSLsplpoRTqelfqxohMkEj2jPUIEDqtx0dvEUnRhliPxQmhIazdTfEykOlEoCz3QGWI/VopeJ/3m9WPtXbspEFGsqyHyRH3OkQ5S9j4ZMUqJ5YggmkplbERljiYk2IZVMCM7iy8ukXa8557X63UWlcZ3HUYQjOIYqOHAJDbiFJrSAgIBneIU3S1kv1rv1MW8tWPnMIfyB9fkDW2iQDQ==</latexit>

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

Designing features

Want to design �(x, y)
<latexit sha1_base64="/LiModH4T5OWsyK3xQgOgiGW6hs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8pmu2mXbjZhdyOG0H/hxYMiXv033vw3btoctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5vM7zxSqVgo7nUSUTfAI8F8RrA20kM/GrPq0xlKTgflil2zZ0DLxMlJBXI0B+Wv/jAkcUCFJhwr1XPsSLsplpoRTqelfqxohMkEj2jPUIEDqtx0dvEUnRhliPxQmhIazdTfEykOlEoCz3QGWI/VopeJ/3m9WPtXbspEFGsqyHyRH3OkQ5S9j4ZMUqJ5YggmkplbERljiYk2IZVMCM7iy8ukXa8557X63UWlcZ3HUYQjOIYqOHAJDbiFJrSAgIBneIU3S1kv1rv1MW8tWPnMIfyB9fkDW2iQDQ==</latexit>

• # of times w gets label l (for all w, l)
• # of times l is adjacent to l’ (for all l and l’)

Some possibilities

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

Designing features

Want to design �(x, y)
<latexit sha1_base64="/LiModH4T5OWsyK3xQgOgiGW6hs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8pmu2mXbjZhdyOG0H/hxYMiXv033vw3btoctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5vM7zxSqVgo7nUSUTfAI8F8RrA20kM/GrPq0xlKTgflil2zZ0DLxMlJBXI0B+Wv/jAkcUCFJhwr1XPsSLsplpoRTqelfqxohMkEj2jPUIEDqtx0dvEUnRhliPxQmhIazdTfEykOlEoCz3QGWI/VopeJ/3m9WPtXbspEFGsqyHyRH3OkQ5S9j4ZMUqJ5YggmkplbERljiYk2IZVMCM7iy8ukXa8557X63UWlcZ3HUYQjOIYqOHAJDbiFJrSAgIBneIU3S1kv1rv1MW8tWPnMIfyB9fkDW2iQDQ==</latexit>

• # of times w gets label l (for all w, l)
• # of times l is adjacent to l’ (for all l and l’)

Some possibilities
Unary

198 a course in machine learning

17.2 Structured Perceptron

Let us now consider the sequence labeling task. In sequence labeling,
the outputs are themselves variable-length vectors. An input/output
pair (which must have the same length) might look like:

x = “ monsters eat tasty bunnies “ (17.12)

y = noun verb adj noun (17.13)

To set terminology, we will refer to the entire sequence y as the “out-
put” and a single label within y as a “label”. As before, our goal is to
learn a scoring function that scores the true output sequence y higher
than any imposter output sequence.

As before, despite the fact that y is now a vector, we can still de-
fine feature functions over the entire input/output pair. For instance,
we might want to count the number of times “monsters” has been
tagged as “noun” in a given output. Or the number of times “verb”
is followed by “noun” in an output. Both of these are features that
are likely indicative of a correct output. We might also count the num-
ber of times “tasty” has been tagged as a verb (probably a negative
feature) and the number of times two verbs are adjacent (again, prob-
ably a negative feature).

More generally, a very standard set of features would be:

• the number of times word w has been labeled with tag l, for all
words w and all syntactic tags l

• the number of times tag l is adjacent to tag l0 in the output, for all
tags l and l0

The first set of features are often called unary features, because they
talk only about the relationship between the input (sentence) and a
single (unit) label in the output sequence. The second set of features
are often called Markov features, because they talk about adjacent la-
bels in the output sequence, which is reminiscent of Markov models
which only have short term memory.

Note that for a given input x of length L (in the example, L =

4), the number of possible outputs is KL, where K is the number of
syntactic tags. This means that the number of possible outputs grows
exponentially in the length of the input. In general, we write Y(x) to
mean “the set of all possible structured outputs for the input x”. We
have just seen that |Y(x)| = Klen(x).

Despite the fact that the inputs and outputs have variable length,
the size of the feature representation is constant. If there are V words
in your vocabulary and K labels for a given word, the the number of
unary features is VK and the number of Markov features is K2, so

Designing features

Want to design �(x, y)
<latexit sha1_base64="/LiModH4T5OWsyK3xQgOgiGW6hs=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5gG8pmu2mXbjZhdyOG0H/hxYMiXv033vw3btoctPXBwOO9GWbmeRFnStv2t1VYWV1b3yhulra2d3b3yvsHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k5vM7zxSqVgo7nUSUTfAI8F8RrA20kM/GrPq0xlKTgflil2zZ0DLxMlJBXI0B+Wv/jAkcUCFJhwr1XPsSLsplpoRTqelfqxohMkEj2jPUIEDqtx0dvEUnRhliPxQmhIazdTfEykOlEoCz3QGWI/VopeJ/3m9WPtXbspEFGsqyHyRH3OkQ5S9j4ZMUqJ5YggmkplbERljiYk2IZVMCM7iy8ukXa8557X63UWlcZ3HUYQjOIYqOHAJDbiFJrSAgIBneIU3S1kv1rv1MW8tWPnMIfyB9fkDW2iQDQ==</latexit>

• # of times w gets label l (for all w, l)
• # of times l is adjacent to l’ (for all l and l’)

Some possibilities
Unary

Markov

structured prediction 199

Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxŷ2Y(x) w · f(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · f(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ argmax
ŷ2Y(x)

w · f(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,

structured prediction 199

Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxŷ2Y(x) w · f(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · f(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ argmax
ŷ2Y(x)

w · f(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,

structured prediction 199

Algorithm 40 StructuredPerceptronTrain(D, MaxIter)
1: w 0 // initialize weights
2: for iter = 1 . . . MaxIter do
3: for all (x,y) 2 D do
4: ŷ argmaxŷ2Y(x) w · f(x, ŷ) // compute prediction
5: if ŷ 6= y then
6: w w + f(x, y)� f(x, ŷ) // update weights
7: end if
8: end for
9: end for

10: return w // return learned weights

the total number of features is K(V + K). Of course, more complex
feature representations are possible and, in general, are a good idea.
For example, it is often useful to have unary features of neighboring
words like “the number of times the word immediately preceding a
verb was ’monsters’.”

Now that we have a fixed size feature representation, we can de-
velop a perceptron-style algorithm for sequence labeling. The core
idea is the same as before. We will maintain a single weight vector w.
We will make predictions by choosing the (entire) output sequence
ŷ that maximizes a score given by w · f(x, ŷ). And if this output se-
quence is incorrect, we will adjust the weights word the correct output
sequence y and away from the incorrect output sequence ŷ. This is
summarized in Algorithm 17.2

You may have noticed that Algorithm 17.2 for the structured per-
ceptron is identical to Algorithm 17.1, aside from the fact that in the
multiclass perceptron the argmax is over the K possible classes, while
in the structured perceptron, the argmax is over the KL possible out-
put sequences!

The only difficulty in this algorithm is in line 4:

ŷ argmax
ŷ2Y(x)

w · f(x, ŷ) (17.14)

In principle, this requires you to search over KL possible output se-
quences ŷ to find the one that maximizes the dot product. Except for
very small K or very small L, this is computationally infeasible. Be-
cause of its difficulty, this is often refered to as the argmax problem
in structured prediction. Below, we consider how to solve the argmax
problem for sequences.

17.3 Argmax for Sequences

We now face an algorithmic question, not a machine learning ques-
tion: how to compute the argmax in Eq 17.14 efficiently. In general,

argmax problem

Why is this hard?

Decomposing structure

Key idea If we restrict ourselves to “local” features, we can
decompose over the input�

<latexit sha1_base64="U7EeqmYiKeTo/r/N2HofpG7Xero=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN83S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4IlnICDa5NEwiNqrW3Lq7AFonXkFqUKA9qn4NxzFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8oQNLJRZU+9ni1jm6sMoYhbGyJQ1aqL8nMiy0nonAdgpsIr3q5eJ/3iA14Y2fMZmkhkqyXBSmHJkY5Y+jMVOUGD6zBBPF7K2IRFhhYmw8FRuCt/ryOuk26t5VvfHQrLVuizjKcAbncAkeXEML7qENHSAQwTO8wpsjnBfn3flYtpacYuYU/sD5/AEU1o5D</latexit>

Problem We want to compute an argmax over ridiculously
large set of elements

Decomposing structure

200 a course in machine learning

this is not possible. However, under somewhat restrictive assump-
tions about the form of our features f, we can solve this problem effi-
ciently, by casting it as the problem of computing a maximum weight
path through a specifically constructed lattice. This is a variant of the
Viterbi algorithm for hidden Markov models, a classic example of dy-
namic programming. (Later, in Section 17.6, we will consider argmax
for more general problems.)

The key observation for sequences is that—so long as we restrict
our attention to unary features and Markov features—the feature
function f decomposes over the input. This is easiest to see with
an example. Consider the input/output sequence from before: x =

“monsters eat tasty bunnies” and y = [noun verb adj noun]. If we
want to compute the number of times “bunnies” is tagged as “noun”
in this pair, we can do this by:

1. count the number of times “bunnies” is tagged as “noun” in the
first three words of the sentence

2. add to that the number of times “bunnies” is tagged as “noun” in
the final word

We can do a similar exercise for Markov features, like the number of
times “adj” is followed by “noun”.

However, we don’t actually need these counts. All we need for
computing the argmax sequence is the dot product between the
weights w and these counts. In particular, we can compute w · f(x, y)
as the dot product on all-but-the-last word plus the dot product on
the last word: w · f1:3(x, y) + w · f4(x, y). Here, f1:3 means “fea-
tures for everything up to and including position 3” and f4 means
“features for position 4.”

More generally, we can write f(x, y) = ÂL
l=1 fl(x, y), where

fl(x, y) only includes features about position l.1 In particular, we’re 1 In the case of Markov features, we
think of them as pairs that end at
position l, so “verb adj” would be the
active feature for f3.

taking advantage of the associative law for addition:

w · f(x, y) = w ·
L

Â
l=1

fl(x, y) decomposition of structure (17.15)

=
L

Â
l=1

w · fl(x, y) associative law (17.16)

What this means is that we can build a graph like that in Figure ??,
with one verticle slice per time step (l 1 . . . L).2 Each edge in this 2 A graph of this sort is called a trel-

lis, and sometimes a lattice in the
literature.

graph will receive a weight, constructed in such a way that if you
take a complete path through the lattice, and add up all the weights,
this will correspond exactly to w · f(x, y).

To complete the construction, let fl(x, · · · � y � y0) denote the unary
features at position l together with the Markov features that end at

�l(x, y)
<latexit sha1_base64="GZxsgCN0P1CnIb4mQyybf39zu+Y=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5AG8pmu2mXbjbp7qYYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4eNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlje5mfmtCpWKheNRJRN0ADwTzGcHaSG43GrIeLz9doOQc9Yolu2LPgVaJk5ESZKj3il/dfkjigApNOFaq49iRdlMsNSOcTgvdWNEIkxEe0I6hAgdUuen86Ck6M0of+aE0JTSaq78nUhwolQSe6QywHqplbyb+53Vi7d+4KRNRrKkgi0V+zJEO0SwB1GeSEs0TQzCRzNyKyBBLTLTJqWBCcJZfXiXNasW5rFQfrkq12yyOPJzAKZTBgWuowT3UoQEExvAMr/BmTawX6936WLTmrGzmGP7A+vwBOuuRFg==</latexit>

encodes only features about position l

Decomposing structure

200 a course in machine learning

this is not possible. However, under somewhat restrictive assump-
tions about the form of our features f, we can solve this problem effi-
ciently, by casting it as the problem of computing a maximum weight
path through a specifically constructed lattice. This is a variant of the
Viterbi algorithm for hidden Markov models, a classic example of dy-
namic programming. (Later, in Section 17.6, we will consider argmax
for more general problems.)

The key observation for sequences is that—so long as we restrict
our attention to unary features and Markov features—the feature
function f decomposes over the input. This is easiest to see with
an example. Consider the input/output sequence from before: x =

“monsters eat tasty bunnies” and y = [noun verb adj noun]. If we
want to compute the number of times “bunnies” is tagged as “noun”
in this pair, we can do this by:

1. count the number of times “bunnies” is tagged as “noun” in the
first three words of the sentence

2. add to that the number of times “bunnies” is tagged as “noun” in
the final word

We can do a similar exercise for Markov features, like the number of
times “adj” is followed by “noun”.

However, we don’t actually need these counts. All we need for
computing the argmax sequence is the dot product between the
weights w and these counts. In particular, we can compute w · f(x, y)
as the dot product on all-but-the-last word plus the dot product on
the last word: w · f1:3(x, y) + w · f4(x, y). Here, f1:3 means “fea-
tures for everything up to and including position 3” and f4 means
“features for position 4.”

More generally, we can write f(x, y) = ÂL
l=1 fl(x, y), where

fl(x, y) only includes features about position l.1 In particular, we’re 1 In the case of Markov features, we
think of them as pairs that end at
position l, so “verb adj” would be the
active feature for f3.

taking advantage of the associative law for addition:

w · f(x, y) = w ·
L

Â
l=1

fl(x, y) decomposition of structure (17.15)

=
L

Â
l=1

w · fl(x, y) associative law (17.16)

What this means is that we can build a graph like that in Figure ??,
with one verticle slice per time step (l 1 . . . L).2 Each edge in this 2 A graph of this sort is called a trel-

lis, and sometimes a lattice in the
literature.

graph will receive a weight, constructed in such a way that if you
take a complete path through the lattice, and add up all the weights,
this will correspond exactly to w · f(x, y).

To complete the construction, let fl(x, · · · � y � y0) denote the unary
features at position l together with the Markov features that end at

�l(x, y)
<latexit sha1_base64="GZxsgCN0P1CnIb4mQyybf39zu+Y=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpSkCnosevFYwX5AG8pmu2mXbjbp7qYYQn+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ50WcKW3b31ZubX1jcyu/XdjZ3ds/KB4eNVUYS0IbJOShbHtYUc4EbWimOW1HkuLA47Tlje5mfmtCpWKheNRJRN0ADwTzGcHaSG43GrIeLz9doOQc9Yolu2LPgVaJk5ESZKj3il/dfkjigApNOFaq49iRdlMsNSOcTgvdWNEIkxEe0I6hAgdUuen86Ck6M0of+aE0JTSaq78nUhwolQSe6QywHqplbyb+53Vi7d+4KRNRrKkgi0V+zJEO0SwB1GeSEs0TQzCRzNyKyBBLTLTJqWBCcJZfXiXNasW5rFQfrkq12yyOPJzAKZTBgWuowT3UoQEExvAMr/BmTawX6936WLTmrGzmGP7A+vwBOuuRFg==</latexit>

encodes only features about position l

Markov

The Viterbi algorithm
(on board)

• Suppose you are given a dataset of 28 x 28 images containing within
them faces  

• In the train data, these have been labeled at the pixel level

Face extraction

Face extraction

• Suppose you are given a dataset of 28 x 28 images containing within
them faces  

• In the train data, these have been labeled at the pixel level

X Y

Y

Face extraction

X Y

Y

How would you design ? �l(x, y)
<latexit sha1_base64="YNF95dQKkn3ZESEnDbdgG53zCRI=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmtgh6LXjxWsB+wXUo2zbah2WRJZsWl9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YSK4Adf9dlZW19Y3Ngtbxe2d3b390sFhy6hUU9akSijdCYlhgkvWBA6CdRLNSBwK1g5Ht1O//ci04Uo+QJawICYDySNOCVjJ7yZD3hOVp/PsrFcqu1V3BrxMvJyUUY5Gr/TV7SuaxkwCFcQY33MTCMZEA6eCTYrd1LCE0BEZMN9SSWJmgvHs5Ak+tUofR0rbkoBn6u+JMYmNyeLQdsYEhmbRm4r/eX4K0XUw5jJJgUk6XxSlAoPC0/9xn2tGQWSWEKq5vRXTIdGEgk2paEPwFl9eJq1a1buo1u4vy/WbPI4COkYnqII8dIXq6A41UBNRpNAzekVvDjgvzrvzMW9dcfKZI/QHzucPiICQwg==</latexit>

How would you construct your lattice?

A probabilistic view on
structured learning

Some content that follows derived from
Michael Collins’ materials

• Perceptrons lack any probabilistic semantics

• We can introduce these for structured problems of course!

A probabilistic view on
structured learning

• A fully generative model that explicitly bakes in Markov
assumption 

Hidden Markov Models (HMMs)

• A fully generative model that explicitly bakes in Markov
assumption 

• Recall in Naive Bayes we had:

Hidden Markov Models (HMMs)

2.3. GENERATIVE MODELS, AND THE NOISY CHANNEL MODEL 7

the probability p(x, y) as follows:

p(x, y) = p(y)p(x|y) (2.2)

and then estimate the models for p(y) and p(x|y) separately. These two model
components have the following interpretations:

• p(y) is a prior probability distribution over labels y.

• p(x|y) is the probability of generating the input x, given that the underlying
label is y.

We will see that in many cases it is very convenient to decompose models in this
way; for example, the classical approach to speech recognition is based on this type
of decomposition.

Given a generative model, we can use Bayes rule to derive the conditional
probability p(y|x) for any (x, y) pair:

p(y|x) = p(y)p(x|y)
p(x)

where
p(x) =

X

y2Y
p(x, y) =

X

y2Y
p(y)p(x|y)

Thus the joint model is quite versatile, in that we can also derive the probabilities
p(x) and p(y|x).

We use Bayes rule directly in applying the joint model to a new test example.
Given an input x, the output of our model, f(x), can be derived as follows:

f(x) = argmax
y

p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

(2.3)

= argmax
y

p(y)p(x|y) (2.4)

Eq. 2.3 follows by Bayes rule. Eq. 2.4 follows because the denominator, p(x),
does not depend on y, and hence does not affect the argmax. This is convenient,
because it means that we do not need to calculate p(x), which can be an expensive
operation.

Models that decompose a joint probability into into terms p(y) and p(x|y) are
often called noisy-channel models. Intuitively, when we see a test example x, we
assume that has been generated in two steps: first, a label y has been chosen with

• A fully generative model that explicitly bakes in Markov
assumption 

• Recall in Naive Bayes we had:

Hidden Markov Models (HMMs)

2.3. GENERATIVE MODELS, AND THE NOISY CHANNEL MODEL 7

the probability p(x, y) as follows:

p(x, y) = p(y)p(x|y) (2.2)

and then estimate the models for p(y) and p(x|y) separately. These two model
components have the following interpretations:

• p(y) is a prior probability distribution over labels y.

• p(x|y) is the probability of generating the input x, given that the underlying
label is y.

We will see that in many cases it is very convenient to decompose models in this
way; for example, the classical approach to speech recognition is based on this type
of decomposition.

Given a generative model, we can use Bayes rule to derive the conditional
probability p(y|x) for any (x, y) pair:

p(y|x) = p(y)p(x|y)
p(x)

where
p(x) =

X

y2Y
p(x, y) =

X

y2Y
p(y)p(x|y)

Thus the joint model is quite versatile, in that we can also derive the probabilities
p(x) and p(y|x).

We use Bayes rule directly in applying the joint model to a new test example.
Given an input x, the output of our model, f(x), can be derived as follows:

f(x) = argmax
y

p(y|x)

= argmax
y

p(y)p(x|y)
p(x)

(2.3)

= argmax
y

p(y)p(x|y) (2.4)

Eq. 2.3 follows by Bayes rule. Eq. 2.4 follows because the denominator, p(x),
does not depend on y, and hence does not affect the argmax. This is convenient,
because it means that we do not need to calculate p(x), which can be an expensive
operation.

Models that decompose a joint probability into into terms p(y) and p(x|y) are
often called noisy-channel models. Intuitively, when we see a test example x, we
assume that has been generated in two steps: first, a label y has been chosen with

Modeling Sequences

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

Want:

Modeling Sequences

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

=
n+1Y

i=1

P (yi|yi�1)
nY

i=1

P (xi|yi)
<latexit sha1_base64="uGKM4ZjoMHjNKaJNf99IciBFWvE=">AAACJXicbVDLSgMxFM3UV62vqks3wSK0iGWmCrqwUHTjsoJ9QDsOmTRtQzOZIcmIwzg/48ZfcePCIoIrf8V02oW2HggczjmXm3vcgFGpTPPLyCwtr6yuZddzG5tb2zv53b2m9EOBSQP7zBdtF0nCKCcNRRUj7UAQ5LmMtNzR9cRvPRAhqc/vVBQQ20MDTvsUI6UlJ39Zhd1A+D0nplUruY/5sZXAejFy6FOktRMrKc0FknrxMXVpyckXzLKZAi4Sa0YKYIa6kx93ez4OPcIVZkjKjmUGyo6RUBQzkuS6oSQBwiM0IB1NOfKItOP0ygQeaaUH+77QjyuYqr8nYuRJGXmuTnpIDeW8NxH/8zqh6l/YMeVBqAjH00X9kEHlw0llsEcFwYpFmiAsqP4rxEMkEFa62JwuwZo/eZE0K2XrtFy5PSvUrmZ1ZMEBOARFYIFzUAM3oA4aAINn8Arewdh4Md6MD+NzGs0Ys5l98AfG9w9gk6SZ</latexit>

Modeling Sequences

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

=
n+1Y

i=1

P (yi|yi�1)
nY

i=1

P (xi|yi)
<latexit sha1_base64="uGKM4ZjoMHjNKaJNf99IciBFWvE=">AAACJXicbVDLSgMxFM3UV62vqks3wSK0iGWmCrqwUHTjsoJ9QDsOmTRtQzOZIcmIwzg/48ZfcePCIoIrf8V02oW2HggczjmXm3vcgFGpTPPLyCwtr6yuZddzG5tb2zv53b2m9EOBSQP7zBdtF0nCKCcNRRUj7UAQ5LmMtNzR9cRvPRAhqc/vVBQQ20MDTvsUI6UlJ39Zhd1A+D0nplUruY/5sZXAejFy6FOktRMrKc0FknrxMXVpyckXzLKZAi4Sa0YKYIa6kx93ez4OPcIVZkjKjmUGyo6RUBQzkuS6oSQBwiM0IB1NOfKItOP0ygQeaaUH+77QjyuYqr8nYuRJGXmuTnpIDeW8NxH/8zqh6l/YMeVBqAjH00X9kEHlw0llsEcFwYpFmiAsqP4rxEMkEFa62JwuwZo/eZE0K2XrtFy5PSvUrmZ1ZMEBOARFYIFzUAM3oA4aAINn8Arewdh4Md6MD+NzGs0Ys5l98AfG9w9gk6SZ</latexit>

Transition probability

Modeling Sequences

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

=
n+1Y

i=1

P (yi|yi�1)
nY

i=1

P (xi|yi)
<latexit sha1_base64="uGKM4ZjoMHjNKaJNf99IciBFWvE=">AAACJXicbVDLSgMxFM3UV62vqks3wSK0iGWmCrqwUHTjsoJ9QDsOmTRtQzOZIcmIwzg/48ZfcePCIoIrf8V02oW2HggczjmXm3vcgFGpTPPLyCwtr6yuZddzG5tb2zv53b2m9EOBSQP7zBdtF0nCKCcNRRUj7UAQ5LmMtNzR9cRvPRAhqc/vVBQQ20MDTvsUI6UlJ39Zhd1A+D0nplUruY/5sZXAejFy6FOktRMrKc0FknrxMXVpyckXzLKZAi4Sa0YKYIa6kx93ez4OPcIVZkjKjmUGyo6RUBQzkuS6oSQBwiM0IB1NOfKItOP0ygQeaaUH+77QjyuYqr8nYuRJGXmuTnpIDeW8NxH/8zqh6l/YMeVBqAjH00X9kEHlw0llsEcFwYpFmiAsqP4rxEMkEFa62JwuwZo/eZE0K2XrtFy5PSvUrmZ1ZMEBOARFYIFzUAM3oA4aAINn8Arewdh4Md6MD+NzGs0Ys5l98AfG9w9gk6SZ</latexit>

Emission probabilityTransition probability

Graphical Representation of Hidden Markov Models

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

x5

Note: handling of beginning and end of sequence is a bit di↵erent than before. Last x
is known since p(8 | 8) = 1.

9 / 98

Graphical Model (HMMs)

Consider a “Tri-gram” variant

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 11

2.5.2 Independence Assumptions in Trigram HMMs

We now describe how the form for trigram HMMs can be derived: in particular, we
describe the independence assumptions that are made in the model. Consider a pair
of sequences of random variables X1 . . . Xn, and Y1 . . . Yn, where n is the length
of the sequences. We assume that each Xi can take any value in a finite set V of
words. For example, V might be a set of possible words in English, for example
V = {the, dog, saw, cat, laughs, . . .}. Each Yi can take any value in a finite set K
of possible tags. For example, K might be the set of possible part-of-speech tags
for English, e.g. K = {D, N, V, . . .}.

The length n is itself a random variable—it can vary across different sentences—
but we will use a similar technique to the method used for modeling variable-length
Markov processes (see chapter ??).

Our task will be to model the joint probability

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn = yn)

for any observation sequence x1 . . . xn paired with a state sequence y1 . . . yn, where
each xi is a member of V , and each yi is a member of K.

We will find it convenient to define one additional random variable Yn+1, which
always takes the value STOP. This will play a similar role to the STOP symbol seen
for variable-length Markov sequences, as described in the previous lecture notes.

The key idea in hidden Markov models is the following definition:

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

=
n+1Y

i=1

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1)
nY

i=1

P (Xi = xi|Yi = yi)(2.5)

where we have assumed that y0 = y�1 = *, where * is a special start symbol.
Note the similarity to our definition of trigram HMMs. In trigram HMMs we

have made the assumption that the joint probability factorizes as in Eq. 2.5, and in
addition we have assumed that for any i, for any values of yi�2, yi�1, yi,

P (Yi = yi|Yi�2 = yi�2, Yi�1 = yi�1) = q(yi|yi�2, yi�1)

and that for any value of i, for any values of xi and yi,

P (Xi = xi|Yi = yi) = e(xi|yi)

We now describe how Eq. 2.5 is derived, in particular focusing on indepen-
dence assumptions that have been made in the model. First, we can write

P (X1 = x1 . . . Xn = xn, Y1 = y1 . . . Yn+1 = yn+1)

= P (Y1 = y1 . . . Yn+1 = yn+1)⇥ P (X1 = x1 . . . Xn = xn|Y1 = y1 . . . Yn+1 = yn+1)

(2.6)

Emission probability

Transition probability

How should we estimate our parameters?

Maximum Likelihood Estimates

Maximum Likelihood Estimates

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and
e(x|s) = c(s ; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and
e(dog|N) = c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = �1 ⇥ qML(s|u, v) + �2 ⇥ qML(s|v) + �3 ⇥ qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and �1,�2,�3 are smoothing parameters satisfying �1 � 0,�2 � 0,�3 �
0, and �1 + �2 + �3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

Maximum Likelihood Estimates

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and
e(x|s) = c(s ; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and
e(dog|N) = c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = �1 ⇥ qML(s|u, v) + �2 ⇥ qML(s|v) + �3 ⇥ qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and �1,�2,�3 are smoothing parameters satisfying �1 � 0,�2 � 0,�3 �
0, and �1 + �2 + �3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and
e(x|s) = c(s ; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and
e(dog|N) = c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = �1 ⇥ qML(s|u, v) + �2 ⇥ qML(s|v) + �3 ⇥ qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and �1,�2,�3 are smoothing parameters satisfying �1 � 0,�2 � 0,�3 �
0, and �1 + �2 + �3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

Maximum Likelihood Estimates

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and
e(x|s) = c(s ; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and
e(dog|N) = c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = �1 ⇥ qML(s|u, v) + �2 ⇥ qML(s|v) + �3 ⇥ qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and �1,�2,�3 are smoothing parameters satisfying �1 � 0,�2 � 0,�3 �
0, and �1 + �2 + �3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

2.5. TRIGRAM HIDDEN MARKOV MODELS (TRIGRAM HMMS) 13

2.5.3 Estimating the Parameters of a Trigram HMM

We will assume that we have access to some training data. The training data con-
sists of a set of examples where each example is a sentence x1 . . . xn paired with a
tag sequence y1 . . . yn. Given this data, how do we estimate the parameters of the
model? We will see that there is a simple and very intuitive answer to this question.

Define c(u, v, s) to be the number of times the sequence of three states (u, v, s)
is seen in training data: for example, c(V, D, N) would be the number of times the
sequence of three tags V, D, N is seen in the training corpus. Similarly, define
c(u, v) to be the number of times the tag bigram (u, v) is seen. Define c(s) to be
the number of times that the state s is seen in the corpus. Finally, define c(s ; x)
to be the number of times state s is seen paired sith observation x in the corpus: for
example, c(N ; dog) would be the number of times the word dog is seen paired
with the tag N.

Given these definitions, the maximum-likelihood estimates are

q(s|u, v) = c(u, v, s)

c(u, v)

and
e(x|s) = c(s ; x)

c(s)

For example, we would have the estimates

q(N|V, D) = c(V, D, N)

c(V, D)

and
e(dog|N) = c(N ; dog)

c(N)

Thus estimating the parameters of the model is simple: we just read off counts
from the training corpus, and then compute the maximum-likelihood estimates as
described above.

In some cases it is useful to smooth our estimates of q(s|u, v), using the tech-
niques described in chapter ?? of this book, for example defining

q(s|u, v) = �1 ⇥ qML(s|u, v) + �2 ⇥ qML(s|v) + �3 ⇥ qML(s)

where the qML terms are maximum-likelihood estimates derived from counts in the
corpus, and �1,�2,�3 are smoothing parameters satisfying �1 � 0,�2 � 0,�3 �
0, and �1 + �2 + �3 = 1.

One problem with these estimates is that the value for e(x|s) will be unreliable
if the word x is infrequent: worse still, we have e(x|s) = 0 if the word x is not
seen in the training data. A solution to this problem is described in section 2.7.1.

i.e., counts!

What about decoding?

14CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

2.5.4 Decoding with HMMs: the Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sentence x1 . . . xn. This is the problem of finding

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such that yi 2 K for
i = 1 . . . n, and yn+1 = STOP. We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1Y

i=1

q(yi|yi�2, yi�1)
nY

i=1

e(xi|yi) (2.8)

Recall that we have assumed in this definition that y0 = y�1 = *, and yn+1 =
STOP.

The naive, brute force method would be to simply enumerate all possible tag
sequences y1 . . . yn+1, score them under the function p, and take the highest scor-
ing sequence. For example, given the input sentence

the dog barks

and assuming that the set of possible tags is K = {D, N, V}, we would consider all
possible tag sequences:

D D D STOP
D D N STOP
D D V STOP
D N D STOP
D N N STOP
D N V STOP
. . .

and so on. There are 33 = 27 possible sequences in this case.
For longer sentences, however, this method will be hopelessly inefficient. For

an input sentence of length n, there are |K|n possible tag sequences. The expo-
nential growth with respect to the length n means that for any reasonable length
sentence, brute-force search will not be tractable.

The Basic Algorithm

Instead, we will see that we can efficiently find the highest probability tag se-
quence, using a dynamic programming algorithm that is often called the Viterbi

What about decoding?

14CHAPTER 2. TAGGING PROBLEMS, AND HIDDEN MARKOV MODELS(COURSE NOTES FOR NLP BY MICHAEL COLLINS, COLUMBIA UNIVERSITY)

2.5.4 Decoding with HMMs: the Viterbi Algorithm

We now turn to the problem of finding the most likely tag sequence for an input
sentence x1 . . . xn. This is the problem of finding

arg max
y1...yn+1

p(x1 . . . xn, y1 . . . yn+1)

where the argmax is taken over all sequences y1 . . . yn+1 such that yi 2 K for
i = 1 . . . n, and yn+1 = STOP. We assume that p again takes the form

p(x1 . . . xn, y1 . . . yn+1) =
n+1Y

i=1

q(yi|yi�2, yi�1)
nY

i=1

e(xi|yi) (2.8)

Recall that we have assumed in this definition that y0 = y�1 = *, and yn+1 =
STOP.

The naive, brute force method would be to simply enumerate all possible tag
sequences y1 . . . yn+1, score them under the function p, and take the highest scor-
ing sequence. For example, given the input sentence

the dog barks

and assuming that the set of possible tags is K = {D, N, V}, we would consider all
possible tag sequences:

D D D STOP
D D N STOP
D D V STOP
D N D STOP
D N N STOP
D N V STOP
. . .

and so on. There are 33 = 27 possible sequences in this case.
For longer sentences, however, this method will be hopelessly inefficient. For

an input sentence of length n, there are |K|n possible tag sequences. The expo-
nential growth with respect to the length n means that for any reasonable length
sentence, brute-force search will not be tractable.

The Basic Algorithm

Instead, we will see that we can efficiently find the highest probability tag se-
quence, using a dynamic programming algorithm that is often called the Viterbi

Viterbi!

Consider: How might we do unsupervised or
semi-supervised learning in HMMs?

Summary
Structured problems are those in which y’s are correlated
• Image segmentation
• Language modeling
• Credit fraud detection
• Any time we have sequences

Learning to recognize a structured problem when you see
them is important!

