Machine Learning 2 DS 4420 - Spring 2020

Structured prediction, I Byron C Wallace

Today

- So far: focus on *unsupervised* methods, where we have typically been interested in associated instances with single components (or "labels")
- We'll switch gears a bit today and consider structured spaces where an instance is associated with multiple labels

Today

- So far: focus on *unsupervised* methods, where we have typically been interested in associated instances with single components (or "labels")
- We'll switch gears a bit today and consider *structured* spaces where an instance is associated with multiple labels
- Material today based (mostly) on

Daumé, CIML reading

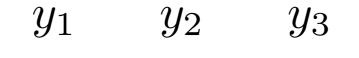
So far have assumed it is reasonable to assume:

$$(x_i, y_i)$$

So far have assumed it is reasonable to assume:

 (x_i, y_i)

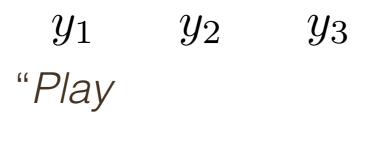
Consider speech transcription



So far have assumed it is reasonable to assume:

 (x_i, y_i)

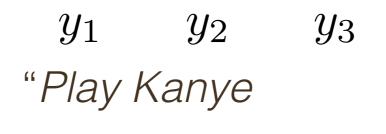
Consider speech transcription

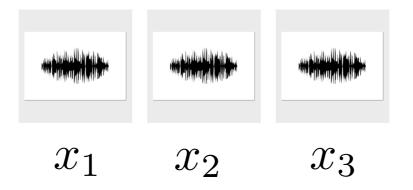


So far have assumed it is reasonable to assume:

 (x_i, y_i)

Consider speech transcription

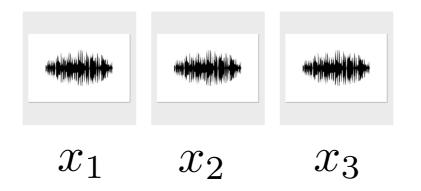




So far have assumed it is reasonable to assume:

 (x_i, y_i)

Consider speech transcription



John lives in New York and works for the European Union B-PER 0 0 B-LOC I-LOC 0 0 0 0 B-ORG I-ORG

Source: https://guillaumegenthial.github.io/sequence-tagging-with-tensorflow.html

y is now a vector (or *tensor*)

y is now a vector (or *tensor*)

We will generally be interested in scoring pairs

$$(x, \hat{y})$$

y is now a vector (or *tensor*)

We will generally be interested in scoring pairs

$$(x, \hat{y})$$

Often called sequence labeling

Given

Predict

Type?

An image

Contains a cat?

Given	Predict	Type?
An image	Contains a cat?	Classification

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	Structured prediction

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	Structured prediction
	Nomeo in the two of	

A tweet Names in the tweet

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	Structured prediction
A tweet	Names in the tweet	Structured prediction

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	Structured prediction
A tweet	Names in the tweet	Structured prediction
A tweet	Sentiment in tweet	

Given	Predict	Type?
An image	Contains a cat?	Classification
An image	Coordinates that outline all cats	Structured prediction
A tweet	Names in the tweet	Structured prediction
A tweet	Sentiment in tweet	Classification

Models

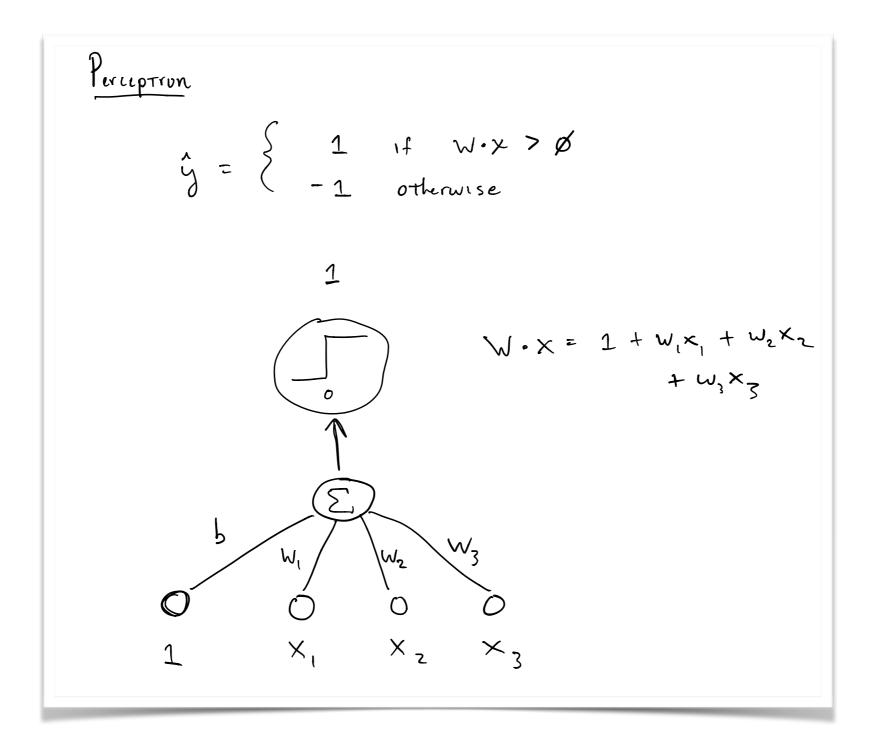
- Structured perceptron
- Hidden Markov Models (HMMs)
- Conditional Random Fields (CRFs)

The structured perceptron

The structured perceptron

Will build up to this by first introducing the *multi-class* perceptron.

The Perceptron



Multiclass perceptron

Assume $y \in \{1, 2, ..., K\}$

Joint feature vector $\phi(x,y)$

We're after a scoring function

$$s(x,y) = w \cdot \phi(x,y)$$

Multiclass perceptron

Assume $y \in \{1, 2, ..., K\}$

Joint feature vector $\phi(x,y)$

We're after a scoring function

$$s(x,y) = w \cdot \phi(x,y)$$

should be high for correct y

Multiclass perceptron

How should we design $\phi(x, y)$?

One option:

$$\phi(\mathbf{x}, k) = \left\langle \underbrace{0, 0, \dots, 0}_{D(k-1) \text{ zeros}}, \underbrace{\mathbf{x}}_{\in \mathbb{R}^D}, \underbrace{0, 0, \dots, 0}_{D(K-k) \text{ zeros}} \right\rangle \in \mathbb{R}^{DK}$$

Consider making a prediction, given w

$$\hat{y} = \operatorname*{argmax}_{\hat{y} \in [1,K]} s(x, \hat{y})$$

Consider making a prediction, given w

$$\hat{y} = \operatorname*{argmax} s(x, \hat{y})$$
$$\hat{y} \in [1, K]$$
$$= \operatorname*{argmax} w \cdot \phi(x, \hat{y})$$
$$\hat{y} \in [1, K]$$

If $\hat{y} = y$ we do nothing

If we are wrong $(\hat{y} \neq y)$ then update

$$w \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

If $\hat{y} = y$ we do nothing

If we are wrong $(\hat{y} \neq y)$ then update

$$w \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

features for true label
features for wrong label

Is this doing what we want?

$$w^{(\text{new})} \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

Is this doing what we want?

$$w^{(\text{new})} \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

Consider updated prediction for true label

 $w^{(\text{new})} \cdot \phi(x,y)$

Is this doing what we want?

$$w^{(\text{new})} \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

Consider updated prediction for true label

$$w^{(\text{new})} \cdot \phi(x, y)$$
$$= \left(w^{(\text{old})} + \phi(x, y) - \phi(x, \hat{y})\right) \cdot \phi(x, y)$$

Is this doing what we want?

$$w^{(\text{new})} \leftarrow w + \phi(x, y) - \phi(x, \hat{y})$$

Consider updated prediction for true label

$$w^{(\text{new})} \cdot \phi(x, y)$$

$$= \left(w^{(\text{old})} + \phi(x, y) - \phi(x, \hat{y})\right) \cdot \phi(x, y)$$

$$= \underbrace{w^{(\text{old})} \cdot \phi(x, y)}_{\text{old prediction}} + \underbrace{\phi(x, y) \cdot \phi(x, y)}_{\geq 0} - \underbrace{\phi(x, \hat{y}) \cdot \phi(x, y)}_{=0}_{(\text{by construction})}$$

Sharing features

Suppose there are three classes: *music*, *movies*, and *oncology*.

We think the first two are probably more similar.

We can **encode** this in the feature space.

Sharing features

Suppose there are three classes: *music*, *movies*, and *oncology*. We think the first two are probably more similar. We can **encode** this in the feature space.

$$\phi(x, \text{music}) = \langle x, 0, 0, x \rangle$$

$$\phi(x, \text{movies}) = \langle 0, x, 0, x \rangle$$

$$\phi(x, \text{oncology}) = \langle 0, 0, x, 0 \rangle$$

Sharing features

Suppose there are three classes: *music*, *movies*, and *oncology*. We think the first two are probably more similar.

We can **encode** this in the feature space.

$$\phi(x, \text{music}) = \langle x, 0, 0, x \rangle$$

$$\phi(x, \text{movies}) = \langle 0, x, 0, x \rangle$$

$$\phi(x, \text{oncology}) = \langle 0, 0, x, 0 \rangle$$

"extra" copy; allows \boldsymbol{w} to capture shared aspects of movies/music

Structured perceptron

Let's come back to our motivation of *structured* outputs To be concrete, we will focus on *sequence labeling*

x = " monsters eat tasty bunnies "

y = noun verb adj noun

Structured perceptron

Let's come back to our motivation of *structured* outputs To be concrete, we will focus on *sequence labeling*

x = " monsters eat tasty bunnies "

y = noun verb adj noun

So y is now a sequence. But goal is the same; Score true y (whole sequence) higher than other potential y's.

How big is our output space?

Assume x has length L, and that there are K possible labels at each position

How big is our output space?

Assume x has length L, and that there are K possible labels at each position

 $\mathcal{Y} = K^L$

x = " monsters eat tasty bunnies " y = noun verb adj noun

Want to design $\phi(x,y)$

x = " monsters eat tasty bunnies " y = noun verb adj noun

Want to design $\phi(x,y)$

Some possibilities

- # of times w gets label / (for all w, /)
- # of times / is adjacent to /' (for all / and /')

x = " monsters eat tasty bunnies " y = noun verb adj noun

Want to design $\phi(x,y)$

Some possibilities

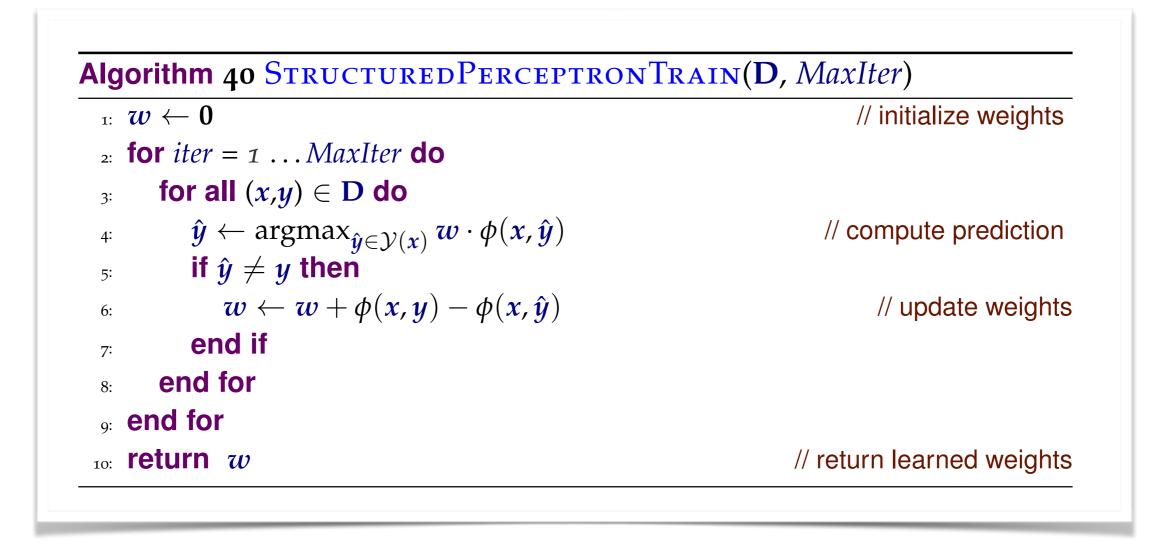
- # of times w gets label / (for all w, /) Unary
- # of times / is adjacent to /' (for all / and /')

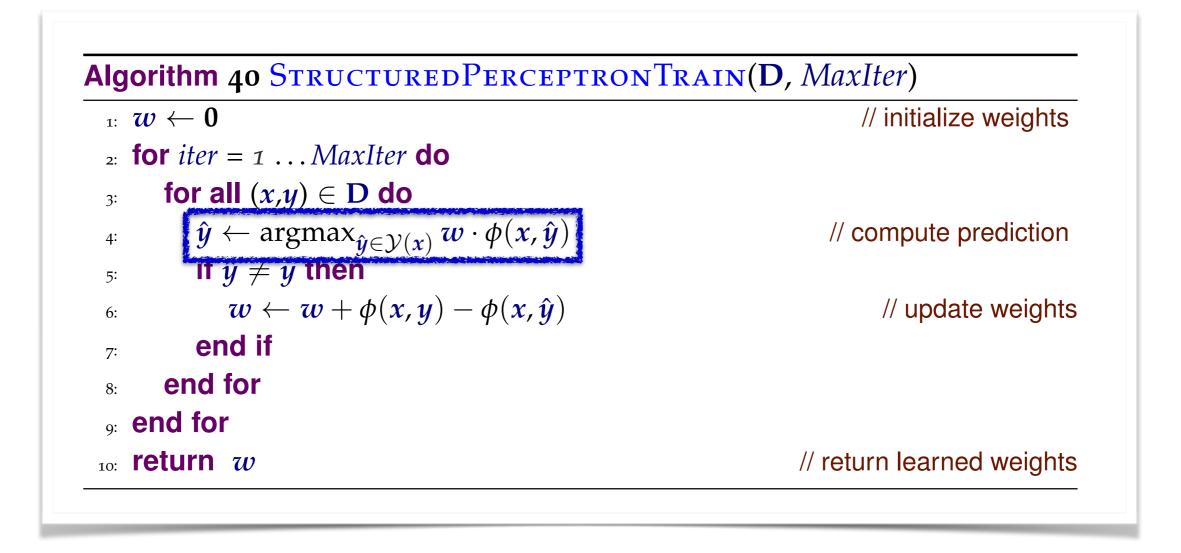
- x = " monsters eat tasty bunnies "
- y = noun verb adj noun

Want to design $\phi(x,y)$

Some possibilities

- # of times w gets label / (for all w, /) Unary
- # of times / is adjacent to /' (for all / and /') Markov





argmax problem

$$\hat{y} \leftarrow \operatorname*{argmax}_{\hat{y} \in \mathcal{Y}(x)} w \cdot \phi(x, \hat{y})$$

Why is this hard?

Decomposing structure

Problem We want to compute an argmax over ridiculously large set of elements

Key idea If we restrict ourselves to "local" features, we can decompose ϕ over the input

Decomposing structure

$$oldsymbol{w} \cdot \phi(x, y) = oldsymbol{w} \cdot \sum_{l=1}^{L} \phi_l(x, y)$$
 decomposition of structure
= $\sum_{l=1}^{L} oldsymbol{w} \cdot \phi_l(x, y)$ associative law

 $\phi_l(x,y)$ encodes only features about position /

Decomposing structure

$$m{w} \cdot \phi(m{x},m{y}) = m{w} \cdot \sum_{l=1}^{L} \phi_l(m{x},m{y})$$
 decomposition of structure
= $\sum_{l=1}^{L} m{w} \cdot \phi_l(m{x},m{y})$ associative law

 $\phi_l(x,y)$ encodes only features about position /

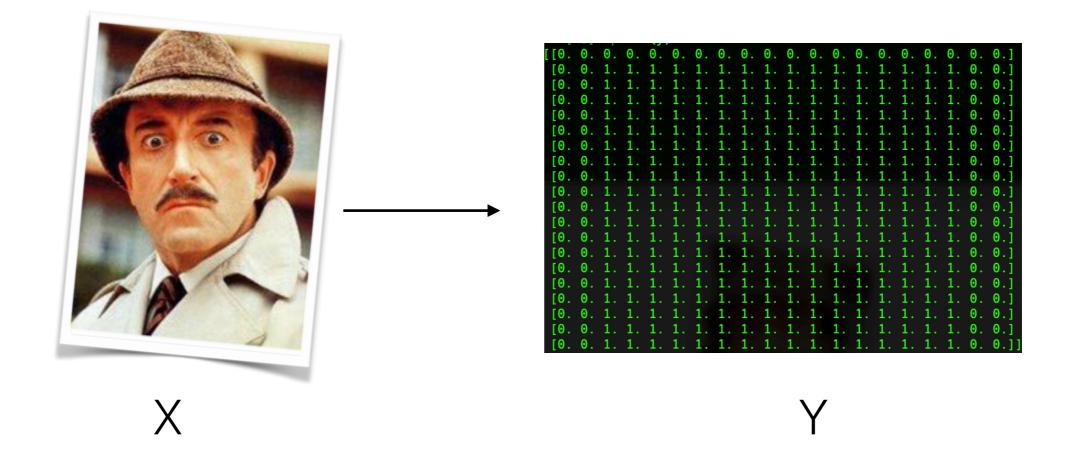
The Viterbi algorithm (on board)

Face extraction

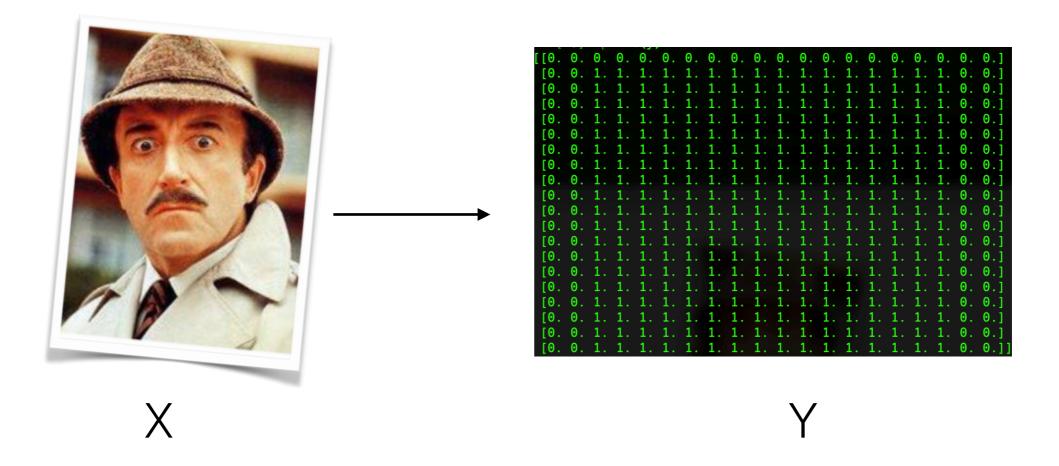
- Suppose you are given a dataset of 28 x 28 images containing within them faces
- In the train data, these have been labeled at the *pixel* level

Face extraction

- Suppose you are given a dataset of 28 x 28 images containing within them faces
- In the train data, these have been labeled at the *pixel* level



Face extraction



How would you design $\phi_l(x,y)$?

How would you construct your lattice?

A probabilistic view on structured learning

Some content that follows derived from Michael Collins' materials

A probabilistic view on structured learning

- Perceptrons lack any probabilistic semantics
- We can introduce these for structured problems of course!

Hidden Markov Models (HMMs)

• A fully generative model that explicitly bakes in Markov assumption

Hidden Markov Models (HMMs)

- A fully generative model that explicitly bakes in Markov assumption
- Recall in Naive Bayes we had:

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

Hidden Markov Models (HMMs)

- A fully generative model that explicitly bakes in Markov assumption
- Recall in Naive Bayes we had:

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)}$$

Want:

$$P(X_1 = x_1 \dots X_n = x_n, Y_1 = y_1 \dots Y_n = y_n)$$

$$P(X_1 = x_1 \dots X_n = x_n, Y_1 = y_1 \dots Y_n = y_n)$$

= $\prod_{i=1}^{n+1} P(y_i | y_{i-1}) \prod_{i=1}^n P(x_i | y_i)$

$$P(X_{1} = x_{1} \dots X_{n} = x_{n}, Y_{1} = y_{1} \dots Y_{n} = y_{n})$$

$$= \prod_{i=1}^{n+1} P(y_{i}|y_{i-1}) \prod_{i=1}^{n} P(x_{i}|y_{i})$$
Transition probability

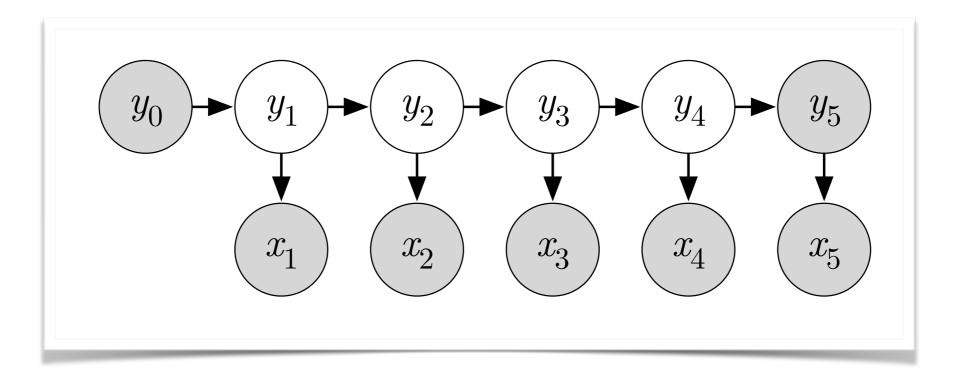
$$P(X_{1} = x_{1} \dots X_{n} = x_{n}, Y_{1} = y_{1} \dots Y_{n} = y_{n})$$

$$= \prod_{i=1}^{n+1} P(y_{i}|y_{i-1}) \prod_{i=1}^{n} P(x_{i}|y_{i})$$

$$Transition probability$$

$$Emission probability$$

Graphical Model (HMMs)



Consider a "Tri-gram" variant

$$P(Y_{i} = y_{i}|Y_{i-2} = y_{i-2}, Y_{i-1} = y_{i-1}) = q(y_{i}|y_{i-2}, y_{i-1})$$

Transition probability

 $P(X_i = x_i | Y_i = y_i) = e(x_i | y_i)$ Emission probability How should we estimate our parameters?

$$q(s|u,v) = \frac{c(u,v,s)}{c(u,v)}$$

$$q(s|u,v) = \frac{c(u,v,s)}{c(u,v)}$$

$$e(x|s) = \frac{c(s \rightsquigarrow x)}{c(s)}$$

$$q(s|u,v) = \frac{c(u,v,s)}{c(u,v)}$$

$$e(x|s) = \frac{c(s \rightsquigarrow x)}{c(s)}$$

What about *decoding*?

 $\arg \max_{y_1\dots y_{n+1}} p(x_1\dots x_n, y_1\dots y_{n+1})$

What about *decoding*?

$$\arg \max_{y_1...y_{n+1}} p(x_1...x_n, y_1...y_{n+1})$$

Viterbi!

Consider: How might we do *unsupervised* or *semi-supervised* learning in HMMs?

Summary

Structured problems are those in which y's are correlated

- Image segmentation
- Language modeling
- Credit fraud detection
- Any time we have *sequences*

Learning to recognize a structured problem when you see them is important!