
Machine Learning 2
DS 4420 - Spring 2020

Self-supervised learning
Byron C Wallace



Today

• Auto-Encoders 

• “Self-Supervised” learning as a general paradigm



Figure credit: https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

Auto-Encoders

https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/
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CHAPTER 14. AUTOENCODERS

to the activations on the reconstructed input. Recirculation is regarded as more
biologically plausible than back-propagation, but is rarely used for machine learning
applications.
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Figure 14.1: The general structure an autoencoder, mapping an input x to an output

(called reconstruction) r through an internal representation or code h . The autoencoder

has two components: the encoder f (mapping x to h) and the decoder g (mapping h to

r).

14.1 Undercomplete Autoencoders

Copying the input to the output may sound useless, but we are typically not
interested in the output of the decoder. Instead, we hope that training the
autoencoder to perform the input copying task will result in h taking on useful
properties.

One way to obtain useful features from the autoencoder is to constrain h to
have smaller dimension than x. An autoencoder whose code dimension is less
than the input dimension is called undercomplete. Learning an undercomplete
representation forces the autoencoder to capture the most salient features of the

training data.

The learning process is described simply as minimizing a loss function

L , g f(x ( ( )))x (14.1)

where L is a loss function penalizing g(f (x)) for being dissimilar from x, such as
the mean squared error.

When the decoder is linear and L is the mean squared error, an undercomplete
autoencoder learns to span the same subspace as PCA. In this case, an autoencoder
trained to perform the copying task has learned the principal subspace of the
training data as a side-effect.

Autoencoders with nonlinear encoder functions f and nonlinear decoder func-
tions g can thus learn a more powerful nonlinear generalization of PCA. Unfortu-
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• Both f and g are parameterized
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• Both f and g are parameterized 

• If L is the MSE and f, g are linear, then this is PCA



“code”

z = f(x)

x̃ = g(z)
<latexit sha1_base64="LeOSqjo9qbWi0CHSX+bWxIP1BEw=">AAACBXicbVDLSsNAFJ3UV42vqEtdDBah3ZSkCroRim5cVrAPaEKZTCft0MkkzEykbejGjb/ixoUibv0Hd/6N0zYLbT1w4XDOvdx7jx8zKpVtfxu5ldW19Y38prm1vbO7Z+0fNGSUCEzqOGKRaPlIEkY5qSuqGGnFgqDQZ6TpD26mfvOBCEkjfq9GMfFC1OM0oBgpLXWs4zG8gkFxWIKua7qKsi5JhxOt9YrjUscq2GV7BrhMnIwUQIZax/pyuxFOQsIVZkjKtmPHykuRUBQzMjHdRJIY4QHqkbamHIVEeunsiwk81UoXBpHQxRWcqb8nUhRKOQp93Rki1ZeL3lT8z2snKrj0UsrjRBGO54uChEEVwWkksEsFwYqNNEFYUH0rxH0kEFY6OFOH4Cy+vEwalbJzVq7cnReq11kceXAETkAROOACVMEtqIE6wOARPINX8GY8GS/Gu/Exb80Z2cwh+APj8wcFNZZc</latexit>



• Set z to be (much) lower dim than x: Undercomplete

“code”

z = f(x)

x̃ = g(z)
<latexit sha1_base64="LeOSqjo9qbWi0CHSX+bWxIP1BEw=">AAACBXicbVDLSsNAFJ3UV42vqEtdDBah3ZSkCroRim5cVrAPaEKZTCft0MkkzEykbejGjb/ixoUibv0Hd/6N0zYLbT1w4XDOvdx7jx8zKpVtfxu5ldW19Y38prm1vbO7Z+0fNGSUCEzqOGKRaPlIEkY5qSuqGGnFgqDQZ6TpD26mfvOBCEkjfq9GMfFC1OM0oBgpLXWs4zG8gkFxWIKua7qKsi5JhxOt9YrjUscq2GV7BrhMnIwUQIZax/pyuxFOQsIVZkjKtmPHykuRUBQzMjHdRJIY4QHqkbamHIVEeunsiwk81UoXBpHQxRWcqb8nUhRKOQp93Rki1ZeL3lT8z2snKrj0UsrjRBGO54uChEEVwWkksEsFwYqNNEFYUH0rxH0kEFY6OFOH4Cy+vEwalbJzVq7cnReq11kceXAETkAROOACVMEtqIE6wOARPINX8GY8GS/Gu/Exb80Z2cwh+APj8wcFNZZc</latexit>



Overfitting

• An issue with auto-encoders: Even if h is relatively low-
dimensional, if we have a deep auto-encoder (many 
params) the model might not learn anything particularly 
useful 

• Solution: Regularized auto-encoders

L(x, g(f(x)) + ⌦(z)
<latexit sha1_base64="wgWWozrboxL+IofH+rMDdADm/ik=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARUpSSVEGXRTcuBCvYB7ShTKaTduhMEmYm0hrqxl9x40IRt/6FO//GaZuFth64cDjnXu69x4sYlcq2v43MwuLS8kp2Nbe2vrG5ZW7v1GQYC0yqOGShaHhIEkYDUlVUMdKIBEHcY6Tu9S/Hfv2eCEnD4E4NI+Jy1A2oTzFSWmqbe9fW4Bh2Ld8aFArwCLZuOOki66HQNvN20Z4AzhMnJXmQotI2v1qdEMecBAozJGXTsSPlJkgoihkZ5VqxJBHCfdQlTU0DxIl0k8kHI3iolQ70Q6ErUHCi/p5IEJdyyD3dyZHqyVlvLP7nNWPln7sJDaJYkQBPF/kxgyqE4zhghwqCFRtqgrCg+laIe0ggrHRoOR2CM/vyPKmVis5JsXR7mi9fpHFkwT44ABZwwBkogytQAVWAwSN4Bq/gzXgyXox342PamjHSmV3wB8bnD0eFlDk=</latexit>
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⌦(z)
<latexit sha1_base64="r0jjNTY1KjaJUFWSJd03hrbBRkg=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OLNCvZD2qVk02wbmmSXJCvUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo+up33qkSrNI3ptxTH2BB5KFjGBjpYfuraADXH467RVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwks/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0mzWvHOKtW781LtKosjD0dwDGXw4AJqcAN1aAABAc/wCm+Ocl6cd+dj3ppzsplD+APn8wcKso/o</latexit>

Note: We can use this function to bake-in other constraints 
and inductive biases as well



Probabilistic view
• Another means of regularizing z involves imposing a prior, 

similar to PPCA. 

p(x, z) = p(z)p(x|z)
<latexit sha1_base64="TcCcNBz5JkvCjwcY2Njcm+CF8IE=">AAAB/HicbVDLSgMxFM3UV62v0S7dBIvQgpSZKuhGKLpxWcE+oB1KJs20oZlMSDJiO9ZfceNCEbd+iDv/xrSdhbYeuHByzr3k3uMLRpV2nG8rs7K6tr6R3cxtbe/s7tn7Bw0VxRKTOo5YJFs+UoRRTuqaakZaQhIU+ow0/eH11G/eE6loxO/0SBAvRH1OA4qRNlLXzoviw8m4BC+hKI5L5vE4LnXtglN2ZoDLxE1JAaSode2vTi/CcUi4xgwp1XYdob0ESU0xI5NcJ1ZEIDxEfdI2lKOQKC+ZLT+Bx0bpwSCSpriGM/X3RIJCpUahbzpDpAdq0ZuK/3ntWAcXXkK5iDXheP5REDOoIzhNAvaoJFizkSEIS2p2hXiAJMLa5JUzIbiLJy+TRqXsnpYrt2eF6lUaRxYcgiNQBC44B1VwA2qgDjAYgWfwCt6sJ+vFerc+5q0ZK53Jgz+wPn8ANcCTMw==</latexit>
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log(p(x, z)) = log(p(z)) + log(p(x|z))
<latexit sha1_base64="BhP22OJ9lI4U68WRDvNHhkG9dAA=">AAACKXicbZDLSgMxFIYz9VbrbdSlm2ARWpQyUwXdCEU3LivYC7SlZNK0Dc1MhuSMtI59HTe+ihsFRd36ImbaLrT6Q+DnO+dwcn4vFFyD43xYqYXFpeWV9GpmbX1jc8ve3qlqGSnKKlQKqeoe0UzwgFWAg2D1UDHie4LVvMFlUq/dMqW5DG5gFLKWT3oB73JKwKC2XYqbwIYQC9kbj3Nhbnh0l8/jczyHE3g4D4f3BrftrFNwJsJ/jTszWTRTuW2/NDuSRj4LgAqidcN1QmjFRAGngo0zzUizkNAB6bGGsQHxmW7Fk0vH+MCQDu5KZV4AeEJ/TsTE13rke6bTJ9DX87UE/ldrRNA9a8U8CCNgAZ0u6kYCg8RJbLjDFaMgRsYQqrj5K6Z9oggFE27GhODOn/zXVIsF97hQvD7Jli5mcaTRHtpHOeSiU1RCV6iMKoiiB/SEXtGb9Wg9W+/W57Q1Zc1mdtEvWV/fw8mmTA==</latexit>



Inducing sparsity
Idea: Pick a prior to encourage 0s

Laplacian prior ~ L1 Norm



⌦(z) = khk1 =
X

j

|zj |
<latexit sha1_base64="ULEyaX3ffNdcCqqp55IXWiGC1Ig=">AAACC3icbZDLSgMxFIYz9VbrrerSTWgR6qbMVEE3QtGNOyvYC3SGIZOmbdokMyQZoZ1278ZXceNCEbe+gDvfxvSy0NYfAh//OYeT8wcRo0rb9reVWlldW99Ib2a2tnd297L7BzUVxhKTKg5ZKBsBUoRRQaqaakYakSSIB4zUg/71pF5/IFLRUNzrQUQ8jjqCtilG2lh+NufectJBheEJvITuqOuOfGdCKuZ+D46Gfm/kZ/N20Z4KLoMzhzyYq+Jnv9xWiGNOhMYMKdV07Eh7CZKaYkbGGTdWJEK4jzqkaVAgTpSXTG8Zw2PjtGA7lOYJDafu74kEcaUGPDCdHOmuWqxNzP9qzVi3L7yEiijWRODZonbMoA7hJBjYopJgzQYGEJbU/BXiLpIIaxNfxoTgLJ68DLVS0Tktlu7O8uWreRxpcARyoAAccA7K4AZUQBVg8AiewSt4s56sF+vd+pi1pqz5zCH4I+vzB6EImYo=</latexit>

Inducing sparsity



⌦(z) = khk1 =
X

j

|zj |
<latexit sha1_base64="ULEyaX3ffNdcCqqp55IXWiGC1Ig=">AAACC3icbZDLSgMxFIYz9VbrrerSTWgR6qbMVEE3QtGNOyvYC3SGIZOmbdokMyQZoZ1278ZXceNCEbe+gDvfxvSy0NYfAh//OYeT8wcRo0rb9reVWlldW99Ib2a2tnd297L7BzUVxhKTKg5ZKBsBUoRRQaqaakYakSSIB4zUg/71pF5/IFLRUNzrQUQ8jjqCtilG2lh+NufectJBheEJvITuqOuOfGdCKuZ+D46Gfm/kZ/N20Z4KLoMzhzyYq+Jnv9xWiGNOhMYMKdV07Eh7CZKaYkbGGTdWJEK4jzqkaVAgTpSXTG8Zw2PjtGA7lOYJDafu74kEcaUGPDCdHOmuWqxNzP9qzVi3L7yEiijWRODZonbMoA7hJBjYopJgzQYGEJbU/BXiLpIIaxNfxoTgLJ68DLVS0Tktlu7O8uWreRxpcARyoAAccA7K4AZUQBVg8AiewSt4s56sF+vd+pi1pqz5zCH4I+vzB6EImYo=</latexit>

Inducing sparsity

Can be combined with a ReLU to get actual 0s



Denoising auto-encoders

L(x, g(f(x)))
<latexit sha1_base64="lxe329ZY2ja9AD7KtBfxDArbB0Q=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBYhBSlJFfRY9OLBQwX7AW0om+2mXbrZxN1NaSn9HV48KOLVH+PNf+O2zUFbHww83pthZp4fc6a043xbmbX1jc2t7HZuZ3dv/yB/eFRXUSIJrZGIR7LpY0U5E7Smmea0GUuKQ5/Thj+4nfmNIZWKReJRj2PqhbgnWMAI1kby7u3ROerZgT0qFoudfMEpOXOgVeKmpAApqp38V7sbkSSkQhOOlWq5Tqy9CZaaEU6nuXaiaIzJAPdoy1CBQ6q8yfzoKTozShcFkTQlNJqrvycmOFRqHPqmM8S6r5a9mfif10p0cO1NmIgTTQVZLAoSjnSEZgmgLpOUaD42BBPJzK2I9LHERJucciYEd/nlVVIvl9yLUvnhslC5SePIwgmcgg0uXEEF7qAKNSDwBM/wCm/W0Hqx3q2PRWvGSmeO4Q+szx/7G5BI</latexit>

Instead of the typical auto-encoder loss:

Attempt to reconstruct the input from a corrupted version

L(x, g(f(x0)))
<latexit sha1_base64="5NHZO6AQTVteA2gCWc8gb9Cyxio=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBA3IGE3CnoMevHgIYJ5QLKG2clsMmR2dpmZ1YQl/+HFgyJe/Rdv/o2Tx0ETCxqKqm66u/yYM6Ud59taWl5ZXVvPbGQ3t7Z3dnN7+zUVJZLQKol4JBs+VpQzQauaaU4bsaQ49Dmt+/3rsV9/pFKxSNzrYUy9EHcFCxjB2kgPt/bgFHXtwB6cFAqFdi7vFJ0J0CJxZyQPM1Taua9WJyJJSIUmHCvVdJ1YeymWmhFOR9lWomiMSR93adNQgUOqvHRy9QgdG6WDgkiaEhpN1N8TKQ6VGoa+6Qyx7ql5byz+5zUTHVx6KRNxoqkg00VBwpGO0DgC1GGSEs2HhmAimbkVkR6WmGgTVNaE4M6/vEhqpaJ7VizdnefLV7M4MnAIR2CDCxdQhhuoQBUISHiGV3iznqwX6936mLYuWbOZA/gD6/MHXoSQeQ==</latexit>



Denoising auto-encoders

L(x, g(f(x0)))
<latexit sha1_base64="5NHZO6AQTVteA2gCWc8gb9Cyxio=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBA3IGE3CnoMevHgIYJ5QLKG2clsMmR2dpmZ1YQl/+HFgyJe/Rdv/o2Tx0ETCxqKqm66u/yYM6Ud59taWl5ZXVvPbGQ3t7Z3dnN7+zUVJZLQKol4JBs+VpQzQauaaU4bsaQ49Dmt+/3rsV9/pFKxSNzrYUy9EHcFCxjB2kgPt/bgFHXtwB6cFAqFdi7vFJ0J0CJxZyQPM1Taua9WJyJJSIUmHCvVdJ1YeymWmhFOR9lWomiMSR93adNQgUOqvHRy9QgdG6WDgkiaEhpN1N8TKQ6VGoa+6Qyx7ql5byz+5zUTHVx6KRNxoqkg00VBwpGO0DgC1GGSEs2HhmAimbkVkR6WmGgTVNaE4M6/vEhqpaJ7VizdnefLV7M4MnAIR2CDCxdQhhuoQBUISHiGV3iznqwX6936mLYuWbOZA/gD6/MHXoSQeQ==</latexit>

Copyright by opendeep.org.

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

x0
<latexit sha1_base64="fE3ASVSeVbJpP9+EYmbYOaSFZRg=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjF6IrtookeiF49o5JEAIbNDL0yYnd3MzBrJhj/w4kFjvPpH3vwbB9iDgpV0UqnqTneXHwuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLV8qlGwSXWDTcCW7FCGvoCm/7oZuo3H1FpHskHM46xG9KB5AFn1Fjp/um0Vyy5ZXcGsky8jJQgQ61X/Or0I5aEKA0TVOu258amm1JlOBM4KXQSjTFlIzrAtqWShqi76ezSCTmxSp8EkbIlDZmpvydSGmo9Dn3bGVIz1IveVPzPaycmuOqmXMaJQcnmi4JEEBOR6dukzxUyI8aWUKa4vZWwIVWUGRtOwYbgLb68TBqVsndertxdlKrXWRx5OIJjOAMPLqEKt1CDOjAI4Ble4c0ZOS/Ou/Mxb8052cwh/IHz+QNIDo0x</latexit>

g(f(x))
<latexit sha1_base64="JS3Yud2tuWkbLSL/0fKeGBz7nPE=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBCSS9iNgh6DXjxGMA9IljA76U2GzM4uM7NiCPkILx4U8er3ePNvnCR70MSChqKqm+6uIBFcG9f9dtbWNza3tnM7+d29/YPDwtFxU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekSleSwfzDhBP6IDyUPOqLFSa1AKS0/lcq9QdCvuHGSVeBkpQoZ6r/DV7ccsjVAaJqjWHc9NjD+hynAmcJrvphoTykZ0gB1LJY1Q+5P5uVNybpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDan3CZpAYlWywKU0FMTGa/kz5XyIwYW0KZ4vZWwoZUUWZsQnkbgrf88ippViveRaV6f1ms3WRx5OAUzqAEHlxBDe6gDg1gMIJneIU3J3FenHfnY9G65mQzJ/AHzucP98GOqw==</latexit>

http://www.opendeep.org/v0.0.5/docs/tutorial-your-first-model


Let’s play around a bit in torch… 
[notebook/exercise: get starter from blackboard!]



Variational AEs 
(see notes and notebook)



Self-supervision in vision 
and NLP





Self-supervised learning in 
images

These slides are derived from Andrew Zisserman’s materials: https://
project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf, which 
in turn include content from: Carl Doersch, Ishan Misra, Andrew Owens, 
Carl Vondrick, Richard Zhang 

https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf


• Self-supervision: A form of unsupervised learning 
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• Generally: Hide some aspect of the data, attempt 
to reconstruct it from the rest 

• Formulating “good” self-training objectives is an 
active area of research!
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Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

8 possible locations

Example: relative positioning
Train network to predict relative position of two regions in the same image

Unsupervised visual representation learning by context prediction, 
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015 

Example: Relative positioning



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

8 possible locations

Recap: relative positioning
Train network to predict relative position of two regions in the same image

Unsupervised visual representation learning by context prediction, 
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015 

Example: Relative positioning



Example: Colorizing

abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Image example II: colourization
Train network to predict pixel colour from a monochrome input



Example: Colorizing
Image example II: colourization

Train network to predict pixel colour from a monochrome input

Colorful Image Colorization, Zhang et al., ECCV 2016



Example: Rotation
Image Transformations – 2018 

Unsupervised representation learning by predicting image rotations, 
Spyros Gidaris, Praveer Singh, Nikos Komodakis,  ICLR 2018

Which image has the correct rotation?



Self-supervision in NLP



Learning to embed words
word2vec

image credit: adrian colyer
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/



Learning to embed words
word2vec

image credit: adrian colyer
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec

image credit: adrian colyer
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

v(king) – v(man) + v(woman)

v(king) - v(woman) = 
v(queen)



How do we learn these?



How do we learn these?

One way: word2vec



Training word2vec

image credit: adrian colyer
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/



Constructing self supervision

Image credit: Chris McCormick  
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Formally

1.1 Parameterization of the skip-gram model

One approach for parameterizing the skip-grammodel follows the neural-network
language models literature, and models the conditional probability p(c|w; θ) us-
ing soft-max:

p(c|w; θ) =
evc·vw

∑

c′∈C evc′ ·vw
(3)

where vc and vw ∈ Rd are vector representations for c and w respectively, and
C is the set of all available contexts.2 The parameters θ are vci , vwi for w ∈ V ,
c ∈ C, i ∈ 1, · · · , d (a total of |C| × |V | × d parameters). We would like to set
the parameters such that the product (2) is maximized.

Now will be a good time to take the log and switch from product to sum:

argmax
θ

∑

(w,c)∈D

log p(c|w) =
∑

(w,c)∈D

(log evc·vw − log
∑

c′

evc′ ·vw) (4)

An assumption underlying the embedding process is the following:

Assumption maximizing objective 4 will result in good embeddings vw ∀ w ∈ V ,
in the sense that similar words will have similar vectors.

It is not clear to us at this point why this assumption holds.
While objective (4) can be computed, it is computationally expensive to do

so, because the term p(c|w; θ) is very expensive to compute due to the summa-
tion

∑

c′∈C evc′ ·vw over all the contexts c′ (there can be hundreds of thousands
of them). One way of making the computation more tractable is to replace the
softmax with an hierarchical softmax. We will not elaborate on this direction.

2 Negative Sampling

Mikolov et al. [2] present the negative-sampling approach as a more efficient
way of deriving word embeddings. While negative-sampling is based on the
skip-gram model, it is in fact optimizing a different objective. What follows is
the derivation of the negative-sampling objective.

Consider a pair (w, c) of word and context. Did this pair come from the
training data? Let’s denote by p(D = 1|w, c) the probability that (w, c) came
from the corpus data. Correspondingly, p(D = 0|w, c) = 1− p(D = 1|w, c) will
be the probability that (w, c) did not come from the corpus data. As before,
assume there are parameters θ controlling the distribution: p(D = 1|w, c; θ).

2Throughout this note, we assume that the words and the contexts come from distinct
vocabularies, so that, for example, the vector associated with the word dog will be different
from the vector associated with the context dog. This assumption follows the literature, where
it is not motivated. One motivation for making this assumption is the following: consider the
case where both the word dog and the context dog share the same vector v. Words hardly
appear in the contexts of themselves, and so the model should assign a low probability to
p(dog|dog), which entails assigning a low value to v · v which is impossible.

2



Transfer

The advantage of word embeddings is that we can learn them 
then transfer to new target tasks

This movie was great …

.7 -.3 .1 … .6

…

this

movie

great

.6 .5 .4 … -.2

-.4 .8 .1 … -.1



Practical things

• You can download (static) word embeddings that have been ‘pre-
trained’ — you will often load these as initializations 

• Gensim is a nice module for working with these things (https://
radimrehurek.com/gensim/models/word2vec.html)

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html


Man is to Computer Programmer as Woman is to Homemaker?

Debiasing Word Embeddings
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2Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
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Abstract
The blind application of machine learning runs the risk of amplifying biases present in data. Such a

danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
~w 2 Rd. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to x” (denoted as man:king :: woman:x), simple arithmetic of the embedding
vectors finds that x=queen is the best answer because:

��!man �����!woman ⇡
��!
king ����!queen

Similarly, x=Japan is returned for Paris:France :: Tokyo:x. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval [22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

��!man �����!woman ⇡ ����������������!computer programmer �
��������!
homemaker.
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Extreme she occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she�he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.
sewing-carpentry register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

softball extreme gender portion after debiasing
1. pitcher -1% 1. pitcher
2. bookkeeper 20% 2. infielder
3. receptionist 67% 3. major leaguer
4. registered nurse 29% 4. bookkeeper
5. waitress 35% 5. investigator

football extreme gender portion after debiasing
1. footballer 2% 1. footballer
2. businessman 31% 2. cleric
3. pundit 10% 3. vice chancellor
4. maestro 42% 4. lecturer
5. cleric 2% 5. midfielder

Figure 3: Example of indirect bias. The five most extreme occupations on the softball-football axis, which
indirectly captures gender bias. For each occupation, the degree to which the association represents a gender
bias is shown, as described in Section 5.3.
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