Machine Learning 2 DS 4420 - Spring 2020

Dimensionality reduction 2 Byron C Wallace

Today

- A bit of wrap up on PCA
- Then: Non-linear dimensionality reduction! (SNE/t-SNE)

In Sum: Principal Component Analysis

Data
$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Eigenvectors of Covariance

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$$

$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{d} \end{pmatrix}$$

Idea: Take top-k eigenvectors to maximize variance

Why?

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathsf{T}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$$
$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

Idea: Take top-k eigenvectors to maximize variance

Last time, we saw that we can derive this by maximizing the variance in the compressed space

Why?

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathsf{T}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$$
$$\mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j}$$

Idea: Take top-k eigenvectors to maximize variance

Last time, we saw that we can derive this by maximizing the variance in the compressed space

Can also motivate by explicitly minimizing reconstruction error

Minimizing reconstruction error

Getting the eigenvalues, two ways

Direct eigenvalue decomposition of the covariance matrix

$$oldsymbol{S} = rac{1}{N} \sum_{n=1}^{N} oldsymbol{x}_n oldsymbol{x}_n^ op = rac{1}{N} oldsymbol{X} oldsymbol{X}^ op$$

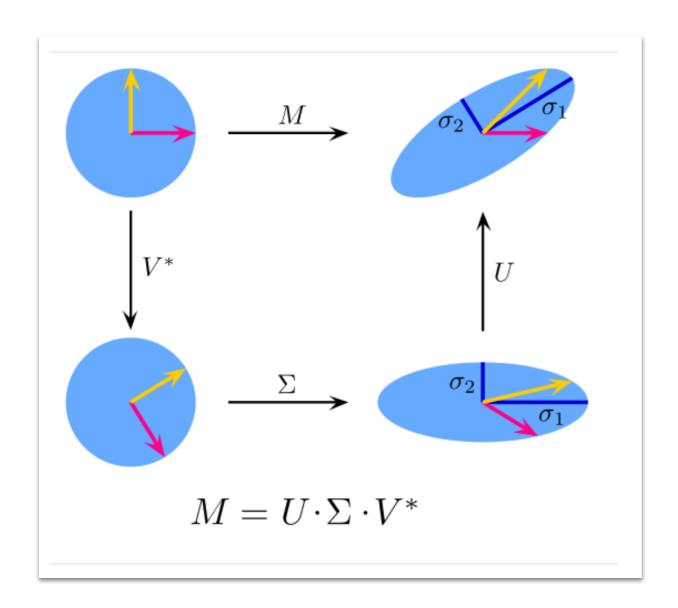
Getting the eigenvalues, two ways

Direct eigenvalue decomposition of the covariance matrix

$$oldsymbol{S} = rac{1}{N} \sum_{n=1}^{N} oldsymbol{x}_n oldsymbol{x}_n^ op = rac{1}{N} oldsymbol{X} oldsymbol{X}^ op$$

Singular Value Decomposition (SVD)

Singular Value Decomposition



Idea: Decompose the d x n matrix X into

- A n x n basis V (unitary matrix)
- 2. A d x n matrix Σ (diagonal projection)
- 3. A d x d basis *U* (unitary matrix)

$$\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$$

1. Rotation

$$V^T \vec{x} = \sum_{i=1}^n \langle \vec{v}_i, \vec{x} \rangle \vec{e}_i$$

2. Scaling

$$SV^T \vec{x} = \sum_{i=1}^n s_i \langle \vec{v}_i, \vec{x} \rangle \vec{e}_i$$

3. Rotation

$$USV^T \vec{x} = \sum_{i=1}^n s_i \langle \vec{v}_i, \vec{x} \rangle \vec{u}_i$$

SVD for PCA

$$X = U \sum_{D \times N} V^{\top}$$
 $D \times N = D \times D \times N \times N \times N$

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \underbrace{\boldsymbol{V}^{\top} \boldsymbol{V}}_{=\boldsymbol{I}_{N}} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top}$$

SVD for PCA

$$X = U \sum_{D \times N} V^{\top}$$
 $D \times N = D \times D \times N \times N \times N$

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \underbrace{\boldsymbol{V}^{\top} \boldsymbol{V}}_{=\boldsymbol{I}_{N}} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top}$$

It turns out the columns of **U** are the eigenvectors of **XX**^T

Computing PCA

Method 1: eigendecomposition

U are eigenvectors of covariance matrix $C = \frac{1}{n}\mathbf{X}\mathbf{X}^{\top}$

Computing C already takes $O(nd^2)$ time (very expensive)

Method 2: singular value decomposition (SVD)

Find $\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$ where $\mathbf{U}^{\top} \mathbf{U} = I_{d \times d}$, $\mathbf{V}^{\top} \mathbf{V} = I_{n \times n}$, Σ is diagonal Computing top k singular vectors takes only O(ndk)

Computing PCA

Method 1: eigendecomposition

 ${f U}$ are eigenvectors of covariance matrix $C=rac{1}{n}{f X}{f X}^{ op}$

Computing C already takes $O(nd^2)$ time (very expensive)

Method 2: singular value decomposition (SVD)

Find $\mathbf{X} = \mathbf{U}_{d \times d} \Sigma_{d \times n} \mathbf{V}_{n \times n}^{\top}$ where $\mathbf{U}^{\top} \mathbf{U} = I_{d \times d}$, $\mathbf{V}^{\top} \mathbf{V} = I_{n \times n}$, Σ is diagonal Computing top k singular vectors takes only O(ndk)

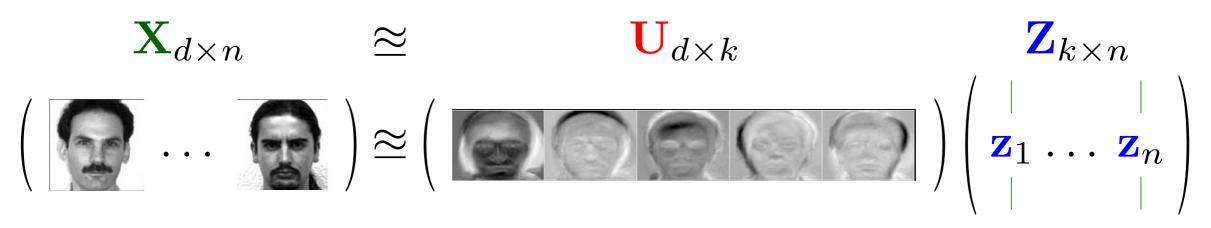
Relationship between eigendecomposition and SVD:

Left singular vectors are principal components $(C = \mathbf{U}\Sigma^2\mathbf{U}^\top)$

- $\bullet d = \text{number of pixels}$
- ullet Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

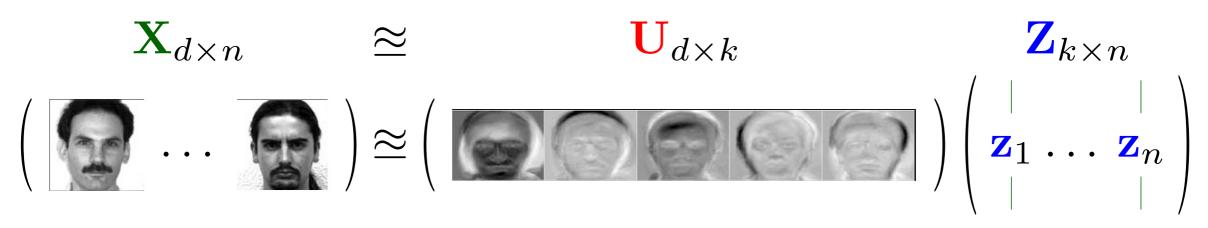
- $\bullet d = \text{number of pixels}$
- ullet Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $ullet \mathbf{x}_{ji} = ext{intensity of the } j ext{-th pixel in image } i$

- $\bullet d = \text{number of pixels}$
- ullet Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\bullet \mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$



Idea: \mathbf{z}_i more "meaningful" representation of i-th face than \mathbf{x}_i Can use \mathbf{z}_i for nearest-neighbor classification

- $\bullet d = \text{number of pixels}$
- ullet Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $ullet \mathbf{x}_{ji} = ext{intensity of the } j ext{-th pixel in image } i$

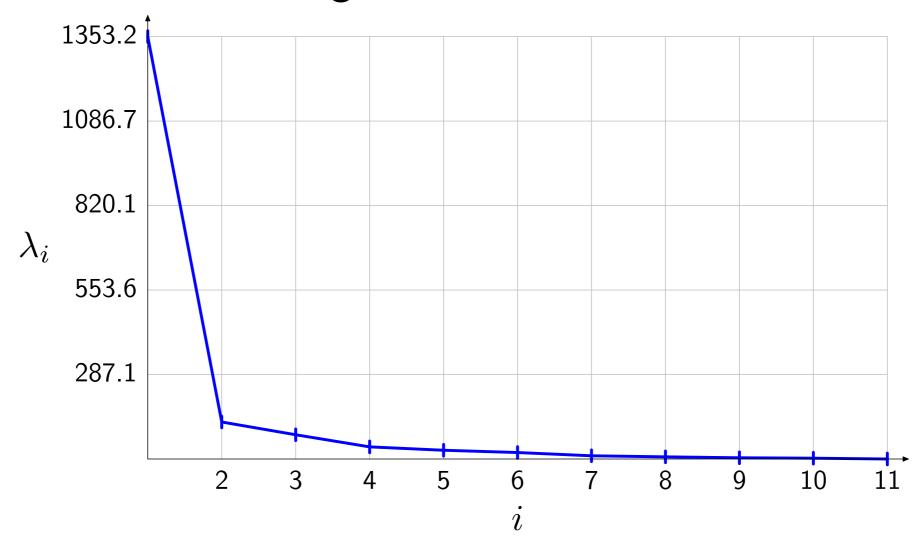


Idea: \mathbf{z}_i more "meaningful" representation of i-th face than \mathbf{x}_i Can use \mathbf{z}_i for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when $n, d \gg k$

Aside: How many components?

- Magnitude of eigenvalues indicate fraction of variance captured.
- Eigenvalues on a face image dataset:



- Eigenvalues typically drop off sharply, so don't need that many.
- Of course variance isn't everything...

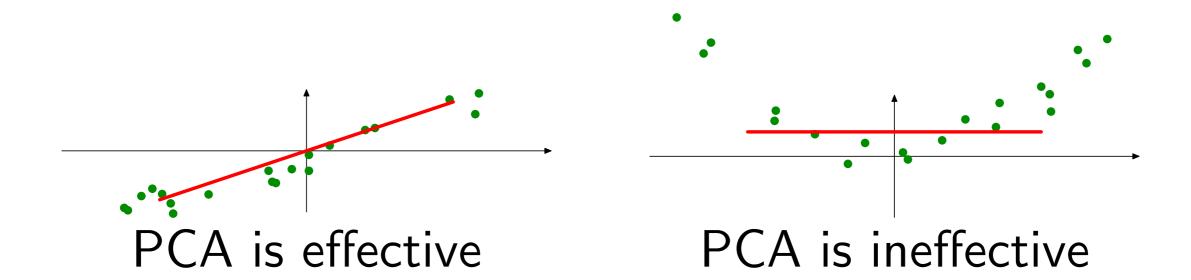
Wrapping up PCA

 PCA is a linear model for dimensionality reduction which finds a mapping to a lower dimensional space that maximizes variance

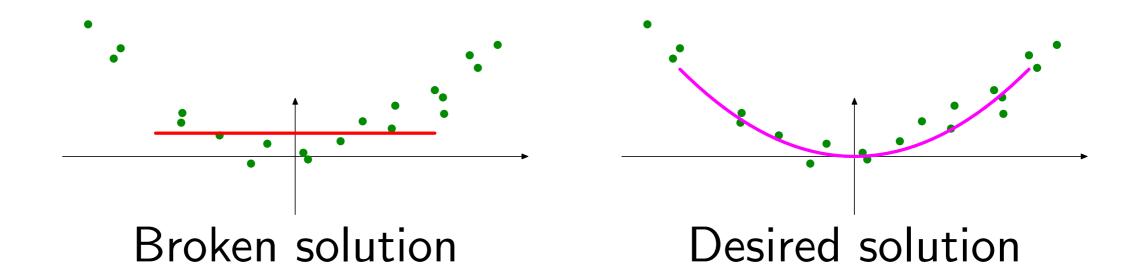
Wrapping up PCA

- PCA is a linear model for dimensionality reduction which finds a mapping to a lower dimensional space that maximizes variance
- We saw that this is equivalent to performing an eigendecomposition on the covariance matrix of X

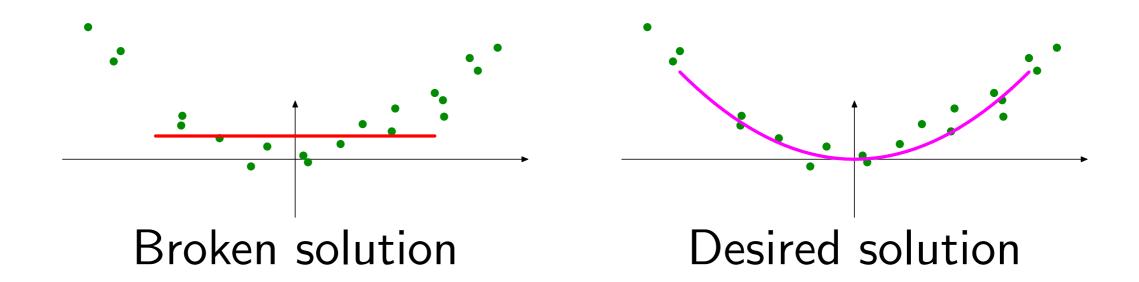
Limitations of Linearity



Nonlinear PCA



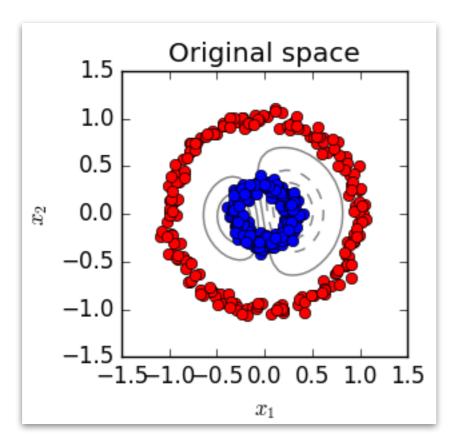
Nonlinear PCA

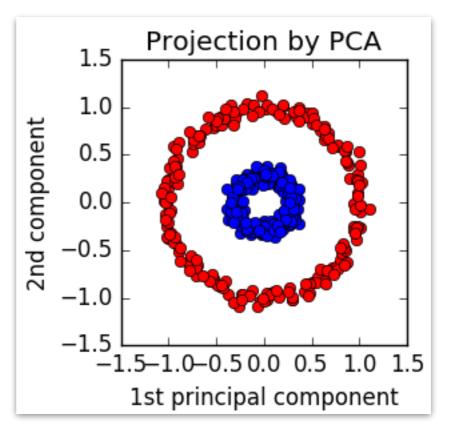


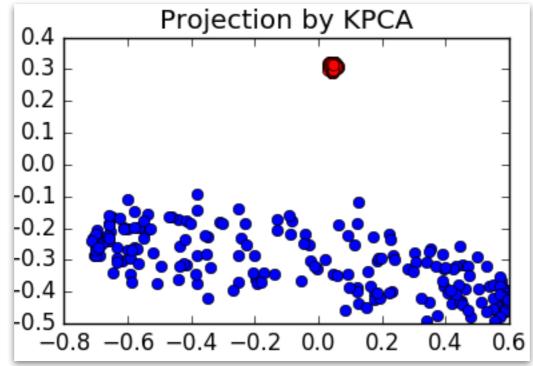
Idea: Use kernels

Linear dimensionality reduction in $\phi(\mathbf{x})$ space \updownarrow Nonlinear dimensionality reduction in \mathbf{x} space

Kernel PCA





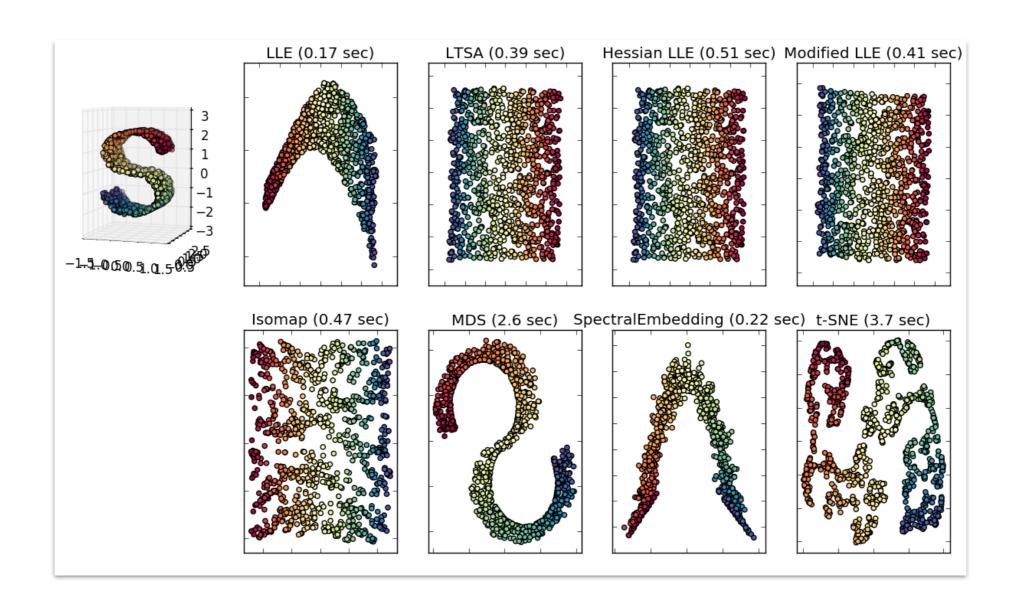


Alternatively: *t-SNE*!

Stochastic Neighbor Embeddings

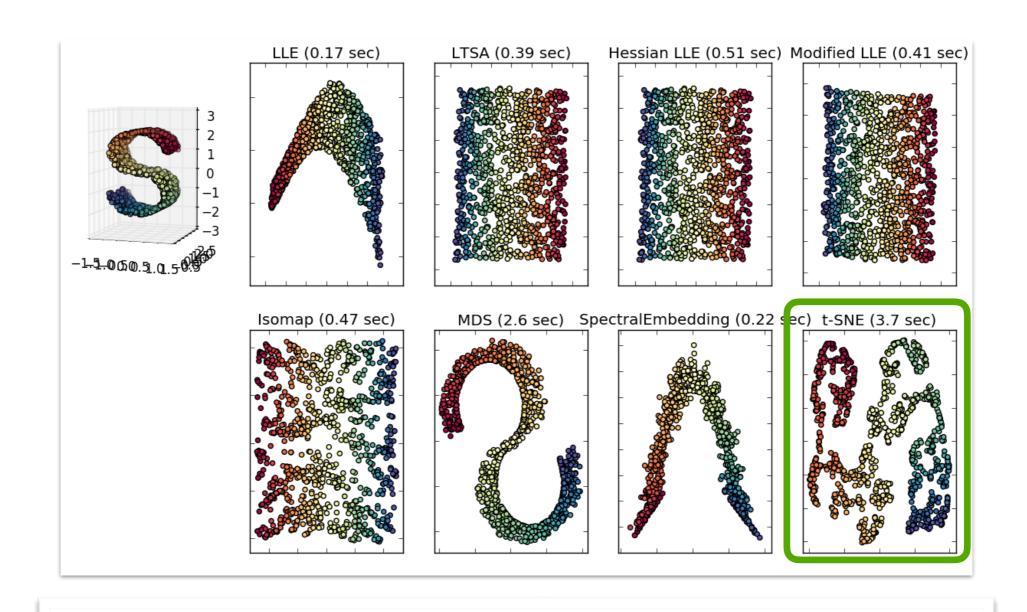
Borrowing from: Laurens van der Maaten (Delft -> Facebook AI)

Manifold learning



Idea: Perform a *non-linear* dimensionality reduction in a manner that preserves proximity (but not distances)

Manifold learning



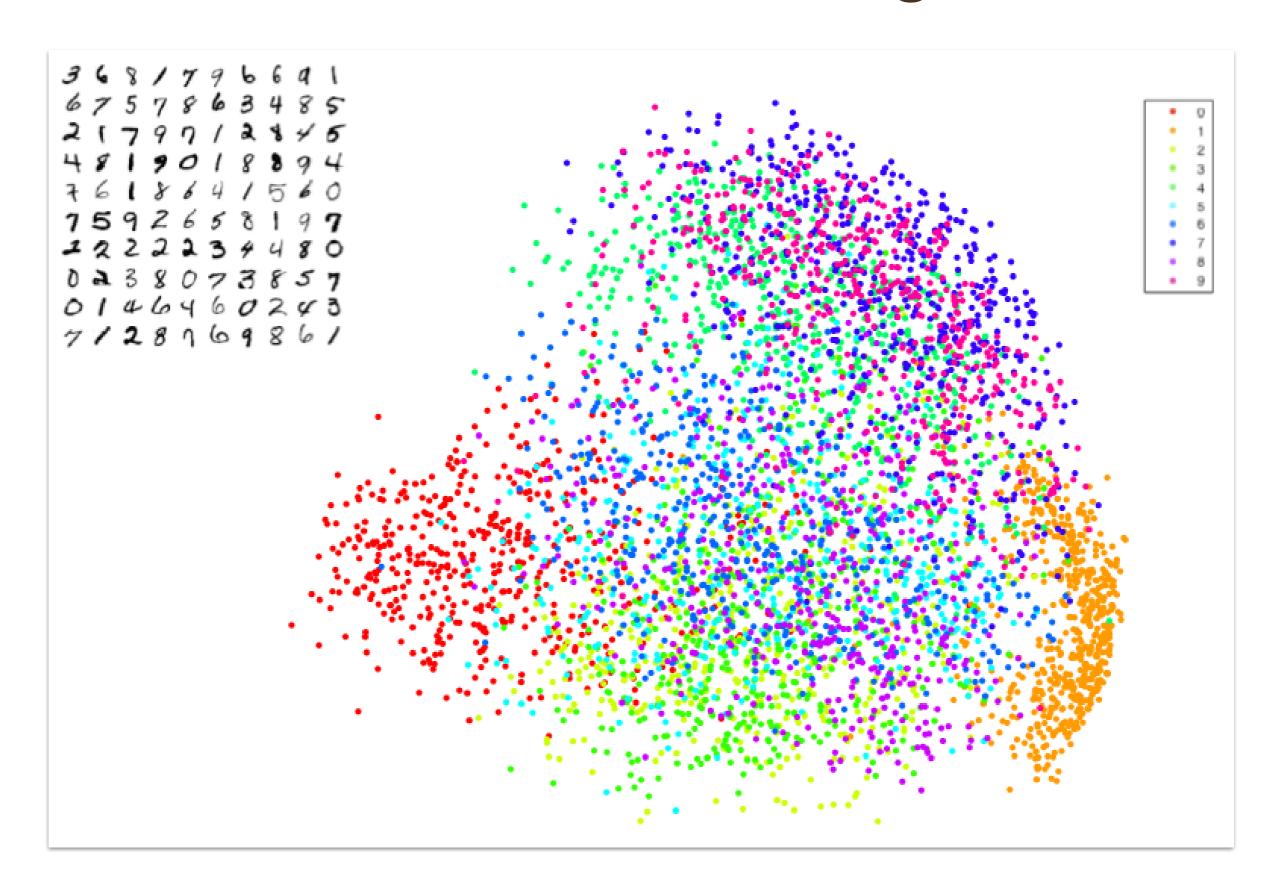
Visualizing data using t-SNE

L Maaten, G Hinton - Journal of machine learning research, 2008 - jmlr.org Paperpile

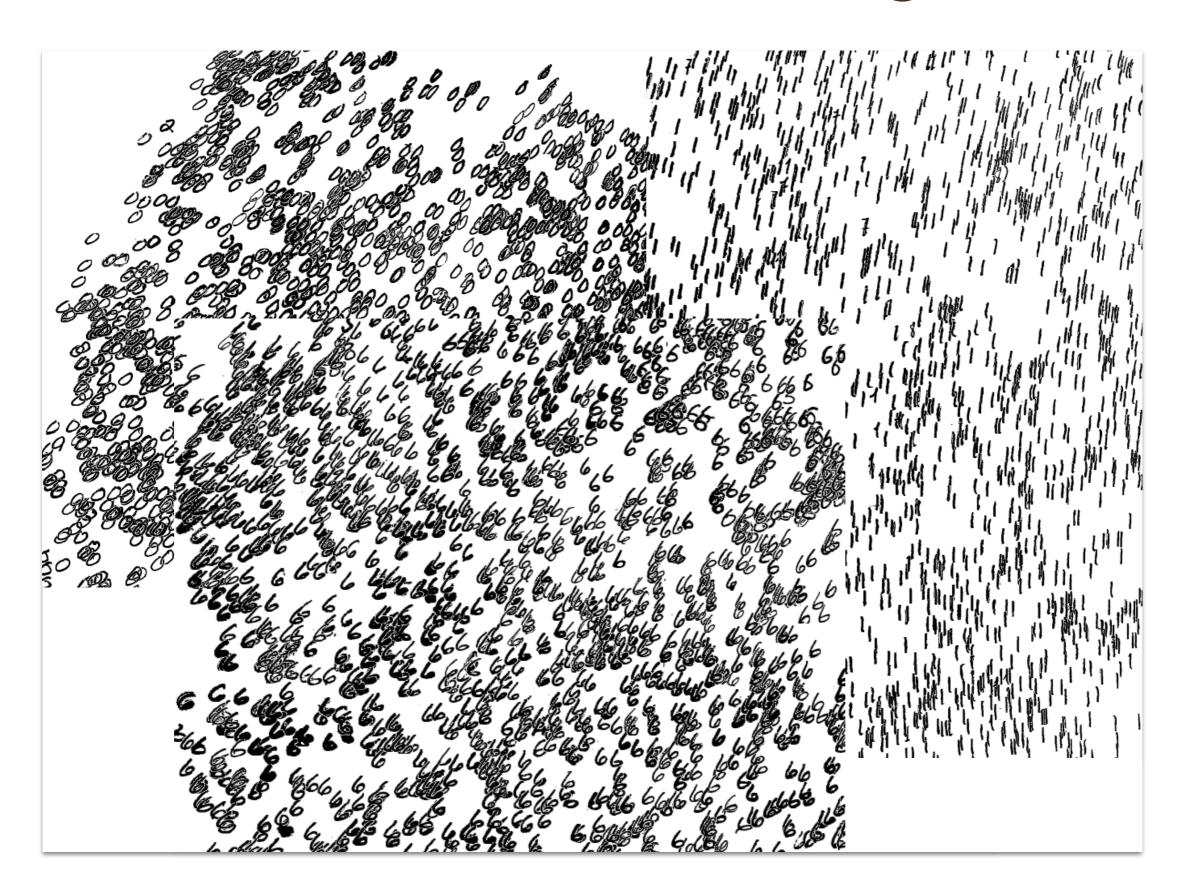
We present a new technique called "t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...

99 Cited by 11621 Related articles All 39 versions Import into BibTeX №

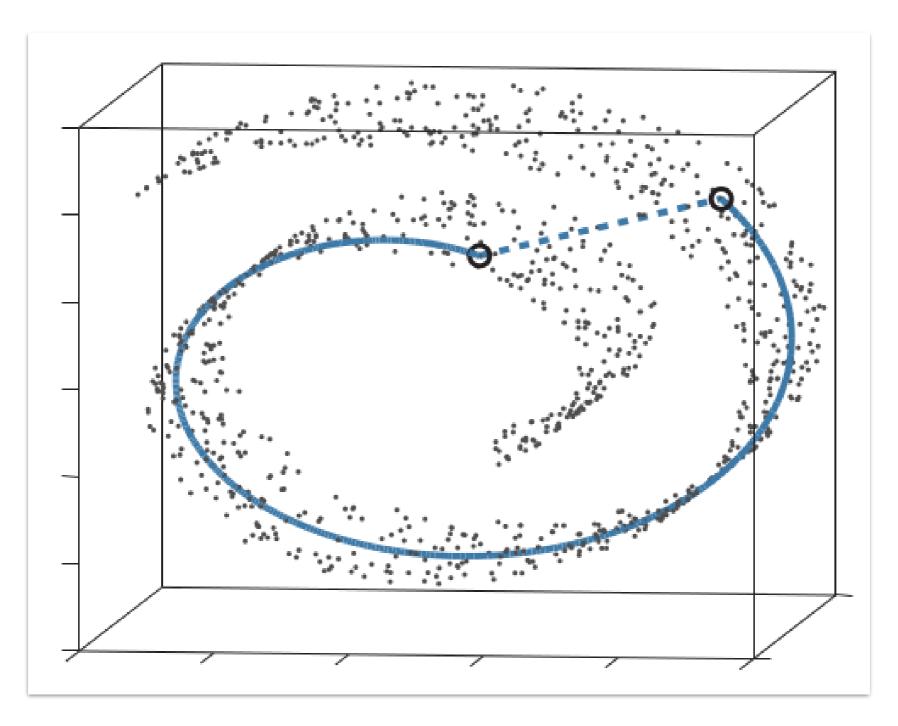
PCA on MNIST digits



t-SNE on MNIST Digits

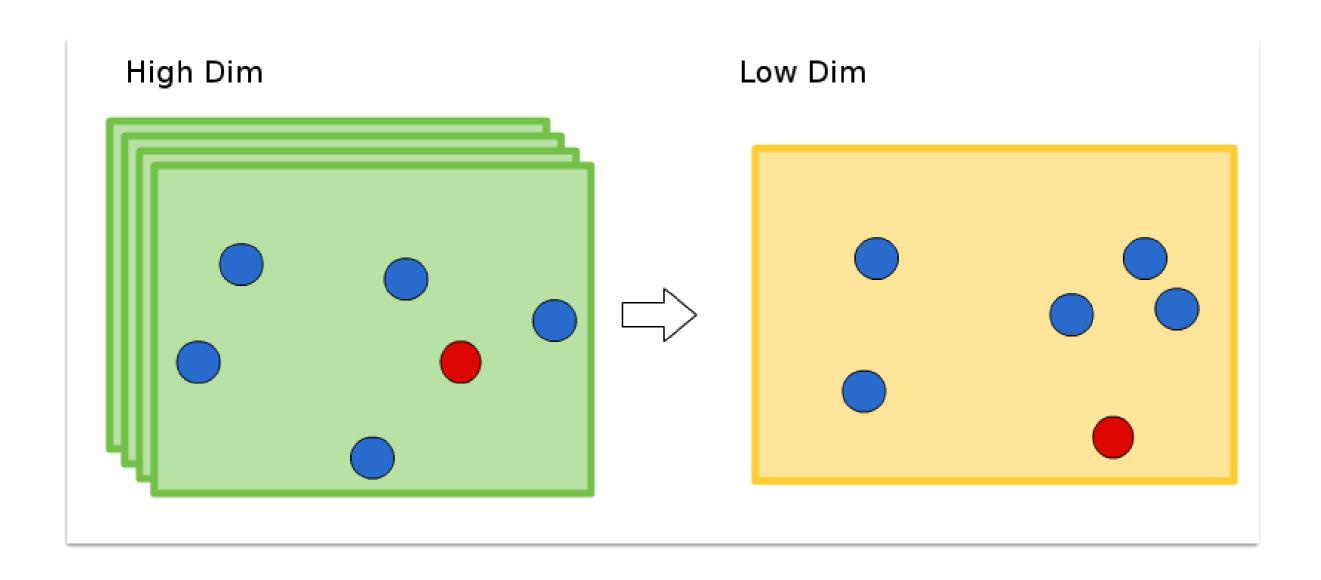


Swiss roll



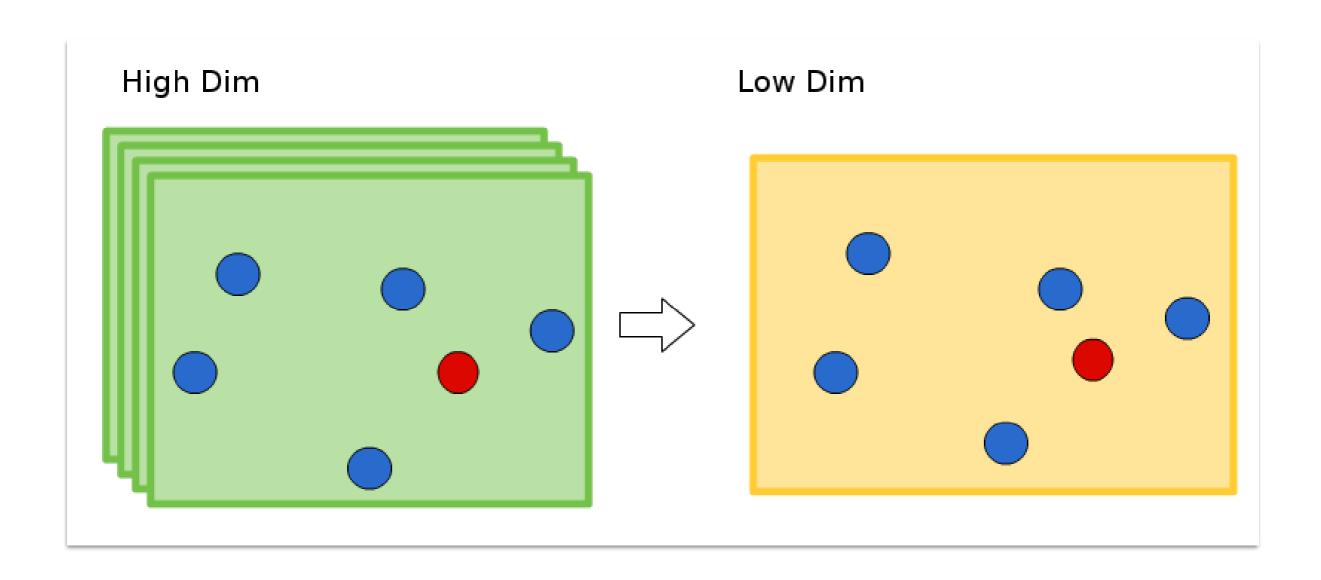
Euclidean distance is not always a good notion of proximity

Non-linear projection



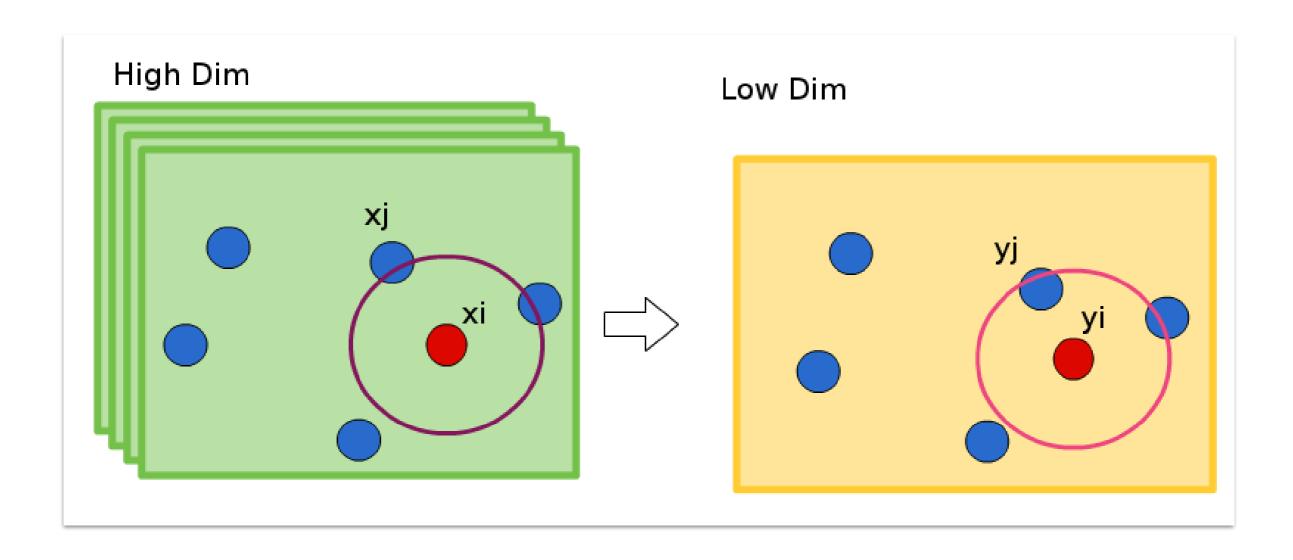
Bad projection: relative position to neighbors changes

Non-linear projection



Intuition: Want to preserve *local* neighborhood

Stochastic Neighbor Embedding



Original space

The map

SNE to t-SNE (on board)

t-SNE: SNE with a t-Distribution

Similarity in High Dimension

$$p_{ij} = \frac{exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq I} exp(-||x_I - x_k||^2/2\sigma^2)}$$

Similarity in Low Dimension

$$q_{ij} = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k\neq I} (1+||y_k-y_I||^2)^{-1}}$$

Gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set X = \{x_1, x_2, ..., x_n\}, cost function parameters: perplexity Perp, optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t). Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}. begin
 | \text{ compute pairwise affinities } p_{j|i} \text{ with perplexity } Perp \text{ (using Equation 1)} 
 | \text{ set } p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
```

set $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ sample initial solution $\mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\}$ from $\mathcal{N}(0, 10^{-4}I)$ **for** t = 1 **to** T **do** compute low-dimensional affinities q_{ij} (using Equation 4) compute gradient $\frac{\delta C}{\delta \mathcal{Y}}$ (using Equation 5)

 $\operatorname{set} \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$

end

end

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set X = \{x_1, x_2, ..., x_n\}, cost function parameters: perplexity Perp, optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t). Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}. begin
 | \text{ compute pairwise affinities } p_{j|i} \text{ with perplexity } Perp \text{ (using Equation 1)} 
 | \text{ set } p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
```

set $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$ sample initial solution $\mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\}$ from $\mathcal{N}(0, 10^{-4}I)$ **for** t = I **to** T **do**| compute low-dimensional affinities q_{ij} (using Equation 4) compute gradient $\frac{\delta C}{\delta \mathcal{T}}$ (using Equation 5) set $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)}\right)$

end

end

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$$

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$$

Regular gradient descent

"momentum"

$$\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left(\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)$$

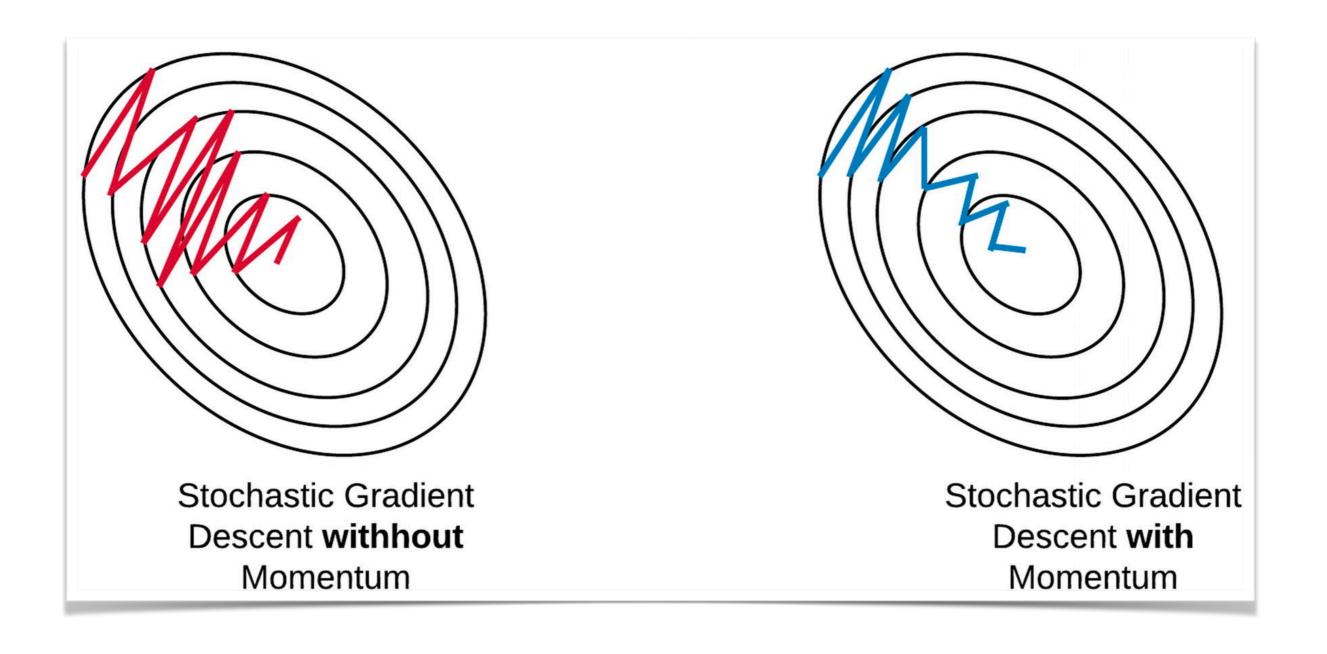
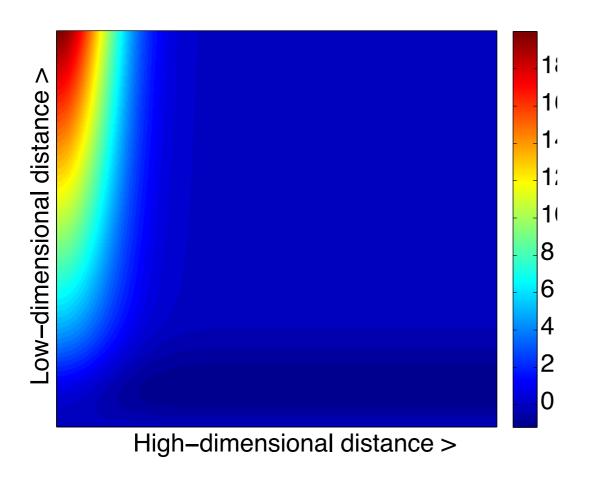


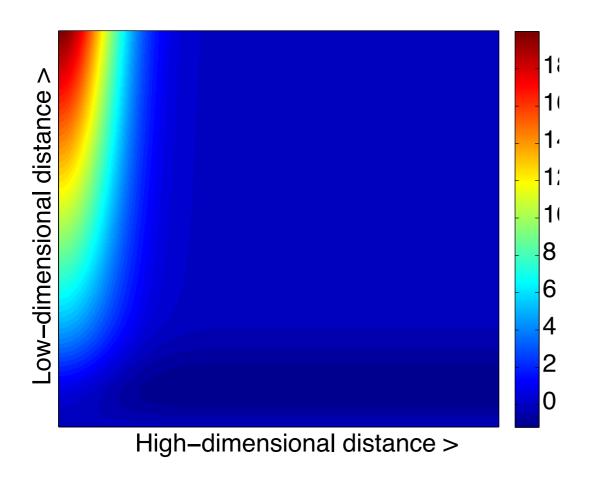
Figure credit: Bisong, 2019

Basically, the gradient has nice properties



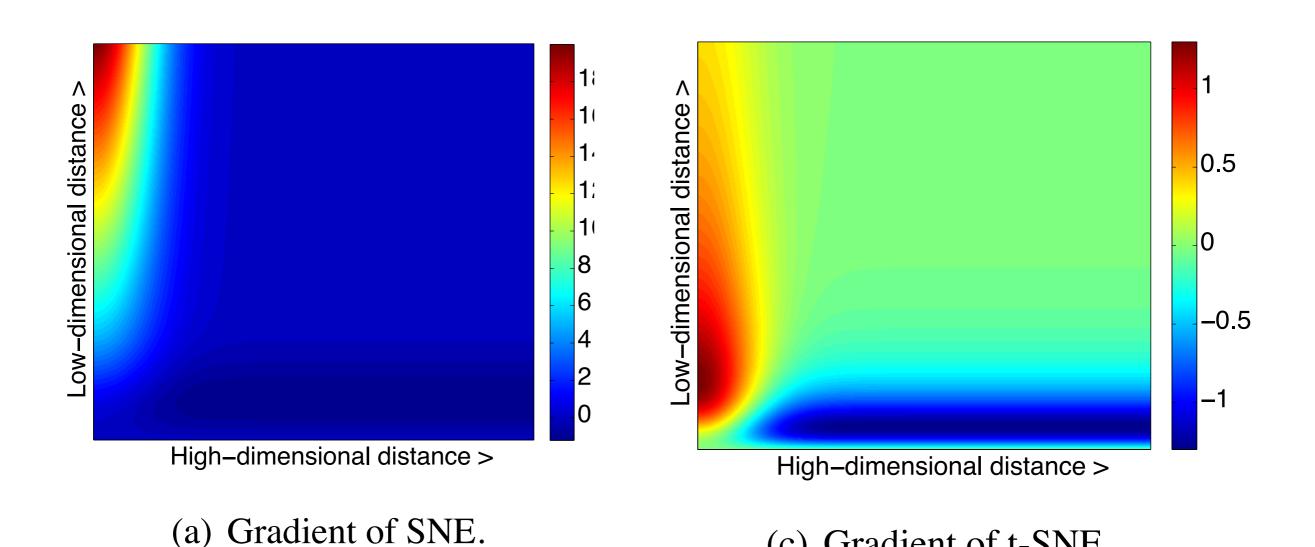
(a) Gradient of SNE.

Basically, the gradient has nice properties



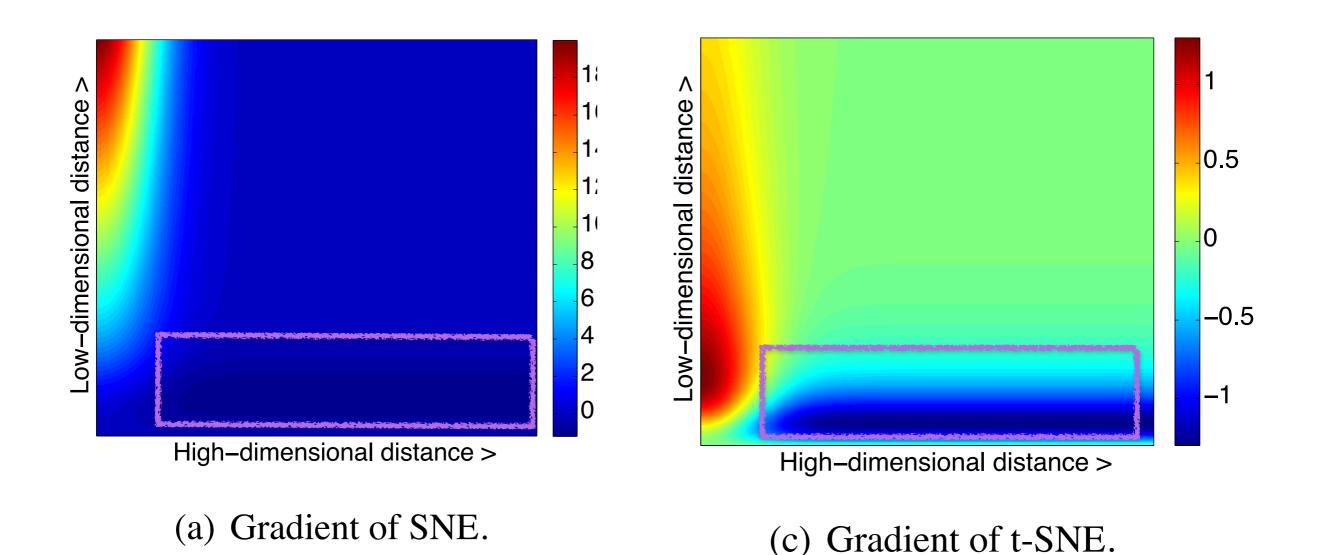
(a) Gradient of SNE.

Positive gradient —> "attraction" between points

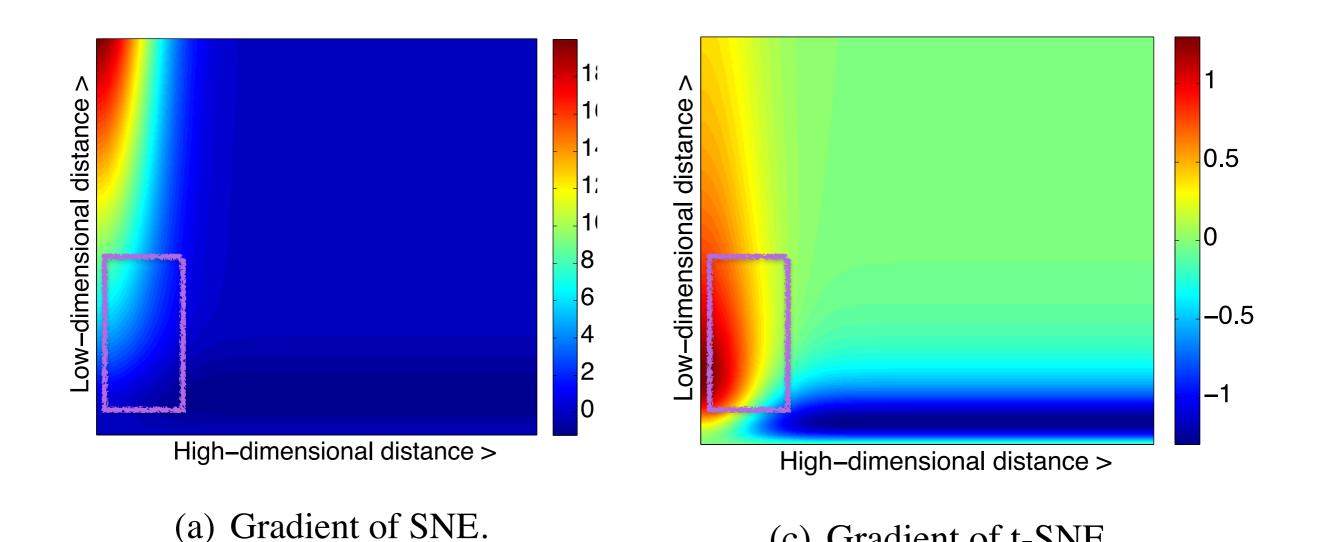


Positive gradient —> "attraction" between points

(c) Gradient of t-SNE.



t-SNE *repels* points in low dim space that are different in the high dim space



Also strongly attracts points nearby in high dim space

(c) Gradient of t-SNE.

Let's see some code

Another perspective: Auto-encoders

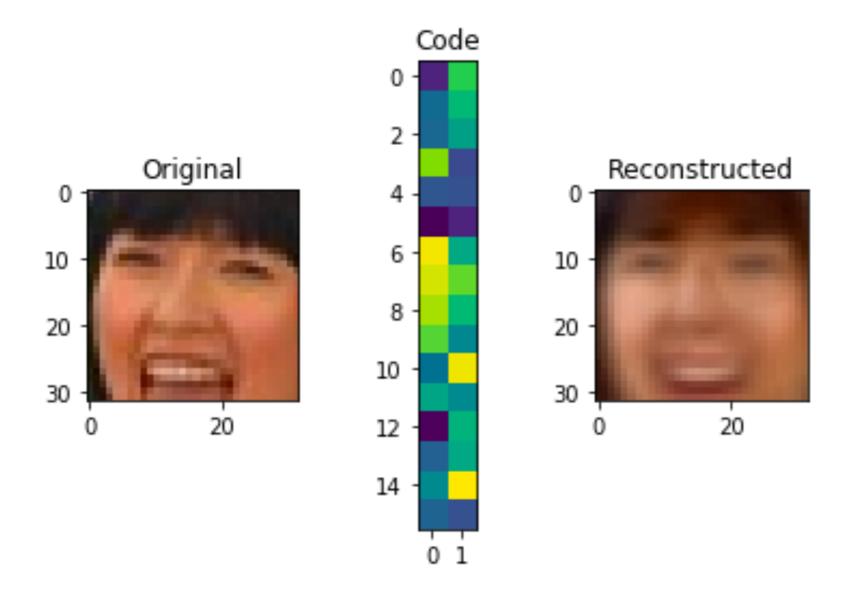


Figure credit: https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/