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Motivation

 We often want to work with high dimensional data (e.g.,
images). We also often have lots of it.

* This is computationally expensive to store and work with.



Dimensionality Reduction

Fundamental idea Exploit redundancy in the data;
find lower-dimensional representation
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Example (from lecture 5):
Dimensionality reduction via k-means

Original Image 16-color Image
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Example (from lecture 5):
Dimensionality reduction via k-means

Original Image 16-color Image

This highlights the natural connection between dimensionality
reduction and compression.



Dimensionality reduction

Goal: Map high dimensional data onto lower-dimensional
data in a manner that preserves distances/similarities

Original Data (4 dims)

Iris Data (red=setosa,green=versicolor,blue=virginica)
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Projection with PCA (2 dims)
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Obijective: projection should
“‘preserve’ relative distances



Linear dimensionality reduction

[dea: Project high-dimensional vector
onto a lower dimensional space



Linear dimensionality reduction

Original Reconstructed

R R

Compressed



Objective

Key intuition:

variance of data = captured variance 4+ reconstruction error
—_— | —V———

fixed want large want small



Principal Component Analysis
(on board)



In Sum: Principal Component Analysis

Data Orthonormal Basis
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[dea. Take top-k eigenvectors to maximize variance



Getting the eigenvalues, two ways

e Direct eigenvalue decomposition of the covariance matrix

anmT — iXXT

S = n =N



Getting the eigenvalues, two ways

e Direct eigenvalue decomposition of the covariance matrix

anmg = %XXT

e Singular Value Decomposition (SVD)



[dea: Decompose the
d X n matrix X into

1. Anxnbasis V

Singular Value Decomposition
(unitary matrix)

B 4
A
V* U
2. Adxnmatrix 2

Y
0 2 e (diagonal projection)

MeU.5. 7 3. Adxdbasis U
(unitary matrix)

X = UgxaZaxnV,

nxn




SVD for PCA

X =U ¥ V'
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SVD for PCA

X =U ¥ V'
—~— O~~~
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't turns out the columns of U are the eigenvectors of XXT



Principal Component Analysis

Example 10.3 (MNIST Digits Embedding)




Principal Component Analysis
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Data: three varieties of wheat: Kama, Rosa, Canadian

Attributes: Area, Perimeter, Compactness, Length of Kernel,
Width of Kernel, Asymmetry Coefficient, Length of Groove



Eigen-tfaces [ Turk & Pentland 1991]

e d = number of pixels

® Each x; € R? is a face image
e x;; = intensity of the j-th pixel in image 1
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Eigen-tfaces [ Turk & Pentland 1991]

e d = number of pixels

® Each x; € R? is a face image
e x;; = intensity of the j-th pixel in image 1
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ldea: z; more “meaningful” representation of i-th face than x;

&

Can use z; for nearest-neighbor classification



Eigen-tfaces [ Turk & Pentland 1991]

e d = number of pixels

® Each x; € R? is a face image
e x;; = intensity of the j-th pixel in image 1

Xan

&

Ugxk L wn
| |

ldea: z; more “meaningful” representation of i-th face than x;

Can use z; for nearest-neighbor classification
Much faster: O(dk + nk) time instead of O(dn) when n,d > k



Aside: How many components”

e Magnitude of eigenvalues indicate fraction of variance captured.

e Eigenvalues on a face image dataset:
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e Eigenvalues typically drop off sharply, so don't need that many.
e Of course variance isn't everything...



Latent Semantic Analysis [Deerwater 1990]

e d = number of words in the vocabulary

® Each x;, € R% is a vector of word counts



Latent Semantic Analysis [Deerwater 1990]

e d = number of words in the vocabulary

® Each x;, € R% is a vector of word counts
e x;; = frequency of word 7 in document ¢
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Latent Semantic Analysis [Deerwater 1990]

e d = number of words in the vocabulary

® Each x;, € R% is a vector of word counts
e x;; = frequency of word 7 in document ¢
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How to measure similarity between two documents?

7| 7 is probably better than x| x5,



Probabilistic PCA

* |f we define a prior over zthen we can sample from
the latent space and hallucinate images



_imitations of Linearity

~P.CA Is effective PCA is ineffective



Nonlinear PCA

Broken solution Desired solution



Nonlinear PCA

Broken solution Desired solution

Idea: Use kernels

Linear dimensionality reduction in ¢(x) space

)

Nonlinear dimensionality reduction in X space
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Projection by KPCA
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Wrapping up

 PCA is alinear model for dimensionality reduction which
finds a mapping to a lower dimensional space that
maximizes variance
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 We saw that this is equivalent to performing an
eigendecomposition on the covariance matrix of X



Wrapping up

 PCA is alinear model for dimensionality reduction which
finds a mapping to a lower dimensional space that
maximizes variance

 We saw that this is equivalent to performing an
eigendecomposition on the covariance matrix of X

 Next time Auto-encoders and neural compression for
non-linear projections



