Machine Learning 2 DS 4420 - Spring 2020

Dimensionality reduction I Byron C Wallace

Machine Learning 2 DS 4420 - Spring 2020

Some slides today borrowing from: Percy Liang (Stanford)

Other material from the MML book (Faisal and Ong)

Motivation

- We often want to work with *high dimensional* data (e.g., images). We also often have lots of it.
- This is computationally expensive to store and work with.

Dimensionality Reduction

Fundamental idea Exploit *redundancy* in the data; find *lower-dimensional* representation

Example (from lecture 5): Dimensionality reduction via *k*-means

Example (from lecture 5): Dimensionality reduction via *k*-means

This highlights the natural connection between dimensionality reduction and *compression*.

Dimensionality reduction

Goal: Map high dimensional data onto lower-dimensional data in a manner that preserves *distances/similarities*

Original Data (4 dims)

Projection with PCA (2 dims)

Objective: projection should "preserve" relative distances

Linear dimensionality reduction

Idea: Project high-dimensional vector onto a lower dimensional space

Linear dimensionality reduction

Objective

Principal Component Analysis (on board)

In Sum: Principal Component Analysis

Data

Orthonormal Basis

$$\mathbf{X} = \left(egin{array}{cccc} ert \ \mathbf{x}_1 \ \cdots \ \mathbf{x}_n \ ert \ ert \end{array}
ight) \in \mathbb{R}^{d imes n}$$

$$\mathbf{U} = \begin{pmatrix} | & | \\ \mathbf{u}_1 \cdots \mathbf{u}_d \\ | & | \end{pmatrix} \in \mathbb{R}^{d \times d}$$

Eigenvectors of Covariance

Eigen-decomposition

 λ_2

U A U ⁺

$$\mathbf{C} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j} \mathbf{x}_{j}^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \qquad \qquad \mathbf{C} = \\ \mathbf{C} \mathbf{u}_{j} = \lambda_{j} \mathbf{u}_{j} \qquad \qquad \mathbf{\Lambda} = \begin{pmatrix} \lambda_{1} \\ \lambda_{1} \end{pmatrix}$$

Idea: Take top-k eigenvectors to maximize variance

Getting the eigenvalues, two ways

• Direct eigenvalue decomposition of the covariance matrix

$$oldsymbol{S} = rac{1}{N}\sum_{n=1}^N oldsymbol{x}_n oldsymbol{x}_n^ op = rac{1}{N}oldsymbol{X}oldsymbol{X}^ op$$

Getting the eigenvalues, two ways

• Direct eigenvalue decomposition of the covariance matrix

$$oldsymbol{S} = rac{1}{N}\sum_{n=1}^N oldsymbol{x}_n oldsymbol{x}_n^ op = rac{1}{N}oldsymbol{X}oldsymbol{X}^ op$$

• Singular Value Decomposition (SVD)

Singular Value Decomposition

Idea: Decompose the **d x n** matrix **X** into

- A n x n basis V (unitary matrix)
- 2. A d x n matrix Σ (diagonal projection)
- 3. A d x d basis *U* (unitary matrix)

SVD for PCA

 $X = U \Sigma V^{\top}$ $D \times N$ $D \times D D \times N N \times N$

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \underbrace{\boldsymbol{V}^{\top} \boldsymbol{V}}_{=\boldsymbol{I}_{N}} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top}$$

SVD for PCA

$$\boldsymbol{S} = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \underbrace{\boldsymbol{V}^{\top} \boldsymbol{V}}_{=\boldsymbol{I}_{N}} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top} = \frac{1}{N} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top}$$

It turns out the columns of **U** are the eigenvectors of **XX⁷**

Principal Component Analysis

Principal Component Analysis

Top 2 components

Bottom 2 components

Data: three varieties of wheat: Kama, Rosa, Canadian

Attributes: Area, Perimeter, Compactness, Length of Kernel, Width of Kernel, Asymmetry Coefficient, Length of Groove

- d =number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

- \bullet d = number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

- \bullet d = number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

Idea: \mathbf{z}_i more "meaningful" representation of *i*-th face than \mathbf{x}_i Can use \mathbf{z}_i for nearest-neighbor classification

- d =number of pixels
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a face image
- $\mathbf{x}_{ji} = \text{intensity of the } j\text{-th pixel in image } i$

Idea: \mathbf{z}_i more "meaningful" representation of *i*-th face than \mathbf{x}_i Can use \mathbf{z}_i for nearest-neighbor classification Much faster: O(dk + nk) time instead of O(dn) when $n, d \gg k$

Aside: How many components?

- Magnitude of eigenvalues indicate fraction of variance captured.
- Eigenvalues on a face image dataset:

- Eigenvalues typically drop off sharply, so don't need that many.
- Of course variance isn't everything...

Latent Semantic Analysis [Deerwater 1990]

- $\bullet \ d = \mathsf{number}$ of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts

Latent Semantic Analysis [Deerwater 1990]

- $\bullet \ d = \mathsf{number}$ of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts
- $\mathbf{x}_{ji} = \text{frequency of word } j \text{ in document } i$

Latent Semantic Analysis [Deerwater 1990]

- $\bullet \ d = \mathsf{number}$ of words in the vocabulary
- Each $\mathbf{x}_i \in \mathbb{R}^d$ is a vector of word counts
- $\mathbf{x}_{ji} = \text{frequency of word } j \text{ in document } i$

How to measure similarity between two documents? $\mathbf{z}_1^\top \mathbf{z}_2$ is probably better than $\mathbf{x}_1^\top \mathbf{x}_2$

Probabilistic PCA

 If we define a *prior* over *z* then we can **sample** from the latent space and hallucinate images

Limitations of Linearity

Nonlinear PCA

Idea: Use kernels

Linear dimensionality reduction in $\phi(\mathbf{x})$ space $\$

Kernel PCA

Wrapping up

 PCA is a linear model for dimensionality reduction which finds a mapping to a lower dimensional space that maximizes variance

Wrapping up

- PCA is a linear model for dimensionality reduction which finds a mapping to a lower dimensional space that maximizes variance
- We saw that this is equivalent to performing an eigendecomposition on the covariance matrix of **X**

Wrapping up

- PCA is a linear model for dimensionality reduction which finds a mapping to a lower dimensional space that maximizes variance
- We saw that this is equivalent to performing an eigendecomposition on the covariance matrix of **X**
- **Next time** Auto-encoders and neural compression for non-linear projections