
Machine Learning 2
DS 4420 - Spring 2020

Dimensionality reduction I
Byron C Wallace

Machine Learning 2
DS 4420 - Spring 2020

Some slides today borrowing from:  
Percy Liang (Stanford)

Other material from the MML book (Faisal and
Ong)

Motivation

• We often want to work with high dimensional data (e.g.,
images). We also often have lots of it.

• This is computationally expensive to store and work with.

Fundamental idea Exploit redundancy in the data;
find lower-dimensional representation

Dimensionality Reduction

10

Dimensionality Reduction with Principal
Component Analysis

Working directly with high-dimensional data, such as images, comes with A 640⇥ 480 pixel
color image is a data
point in a
million-dimensional
space, where every
pixel responds to
three dimensions,
one for each color
channel (red, green,
blue).

some difficulties: It is hard to analyze, interpretation is difficult, visualiza-
tion is nearly impossible, and (from a practical point of view) storage of
the data vectors can be expensive. However, high-dimensional data often
has properties that we can exploit. For example, high-dimensional data is
often overcomplete, i.e., many dimensions are redundant and can be ex-
plained by a combination of other dimensions. Furthermore, dimensions
in high-dimensional data are often correlated so that the data possesses an
intrinsic lower-dimensional structure. Dimensionality reduction exploits
structure and correlation and allows us to work with a more compact rep-
resentation of the data, ideally without losing information. We can think
of dimensionality reduction as a compression technique, similar to jpeg or
mp3, which are compression algorithms for images and music.

In this chapter, we will discuss principal component analysis (PCA), an principal component
analysis
PCA

algorithm for linear dimensionality reduction. PCA, proposed by Pearson

dimensionality
reduction

(1901) and Hotelling (1933), has been around for more than 100 years
and is still one of the most commonly used techniques for data compres-
sion and data visualization. It is also used for the identification of simple
patterns, latent factors, and structures of high-dimensional data. In the

Figure 10.1
Illustration:
dimensionality
reduction. (a) The
original dataset
does not vary much
along the x2

direction. (b) The
data from (a) can be
represented using
the x1-coordinate
alone with nearly no
loss.

�5.0 �2.5 0.0 2.5 5.0
x1

�4

�2

0

2

4

x
2

(a) Dataset with x1 and x2 coordinates.

�5.0 �2.5 0.0 2.5 5.0
x1

�4

�2

0

2

4

x
2

(b) Compressed dataset where only the x1 coor-
dinate is relevant.

317
This material will be published by Cambridge University Press as Mathematics for Machine Learn-
ing by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. This pre-publication version is
free to view and download for personal use only. Not for re-distribution, re-sale or use in deriva-
tive works. c�by M. P. Deisenroth, A. A. Faisal, and C. S. Ong, 2019. https://mml-book.com.

Example (from lecture 5):
Dimensionality reduction via k-means

Example (from lecture 5):
Dimensionality reduction via k-means

This highlights the natural connection between dimensionality
reduction and compression.

Dimensionality reduction

Original Data (4 dims) Projection with PCA (2 dims)

Goal: Map high dimensional data onto lower-dimensional
 data in a manner that preserves distances/similarities

Objective: projection should
“preserve” relative distances

Linear dimensionality reductionBasic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U>x

z 2 R10

5

Idea: Project high-dimensional vector  
onto a lower dimensional space

Linear dimensionality reduction
10.1 Problem Setting 319

Figure 10.2
Graphical
illustration of PCA.
In PCA, we find a
compressed version
z of original data x.
The compressed
data can be
reconstructed into
x̃, which lives in the
original data space,
but has an intrinsic
lower-dimensional
representation than
x.

x x̃z

Original

Compressed

Reconstructed

RD RD

RM

Chapter 2, we know that x 2 R2 can be represented as a linear combina-
tion of these basis vectors, e.g.,


5
3

�
= 5e1 + 3e2 . (10.4)

However, when we consider vectors of the form

x̃ =


0
z

�
2 R2

, z 2 R , (10.5)

they can always be written as 0e1 + ze2. To represent these vectors it is
sufficient to remember/store the coordinate/code z of x̃ with respect to
the e2 vector. The dimension of a

vector space
corresponds to the
number of its basis
vectors (see
Section 2.6.1).

More precisely, the set of x̃ vectors (with the standard vector addition
and scalar multiplication) forms a vector subspace U (see Section 2.4)
with dim(U) = 1 because U = span[e2].

In Section 10.2, we will find low-dimensional representations that re-
tain as much information as possible and minimize the compression loss.
An alternative derivation of PCA is given in Section 10.3, where we will
be looking at minimizing the squared reconstruction error kxn � x̃nk

2 be-
tween the original data xn and its projection x̃n.

Figure 10.2 illustrates the setting we consider in PCA, where z repre-
sents the lower-dimensional representation of the compressed data x̃ and
plays the role of a bottleneck, which controls how much information can
flow between x and x̃. In PCA, we consider a linear relationship between
the original data x and its low-dimensional code z so that z = B

>
x

and x̃ = Bz for a suitable matrix B. Based the motivation of thinking
of PCA as a data compression technique, we can interpret the arrows in
Figure 10.2 as a pair of operations representing encoders and decoders.
The linear mapping represented by B can be thought of a decoder, which
maps the low-dimensional code z 2 RM back into the original data space
RD. Similarly, B

> can be thought of an encoder, which encodes the orig-
inal data x as a low-dimensional (compressed) code z.

Throughout this chapter, we will use the MNIST digits dataset as a re-

c�2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

Objective
Equivalence in two objectives

Key intuition:

variance of data| {z }
fixed

= captured variance| {z }
want large

+ reconstruction error| {z }
want small

Pythagorean decomposition: x = UU>x + (I �UU>)x

kUU>xk

k(I �UU>)xk
kxk

Take expectations; note rotation U doesn’t a↵ect length:

Ê[kxk2] = Ê[kU>xk2] + Ê[kx�UU>xk2]
Minimize reconstruction error $ Maximize captured variance

Principal component analysis (PCA) / Basic principles 11

Principal Component Analysis
(on board)

⇤ =

0
B@
�1

�2
. . .

�d

1
CA

Dimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn 2 Rd

X = (x1 · · · · · · xn) 2 Rd⇥n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = (u1 ·· uk) 2 Rd⇥k

For each uj, compute “similarity” zj = u>j x

Project x down to z = (z1, . . . , zk)> = U>x
How to choose U?

Principal component analysis (PCA) / Basic principles 8

Data Orthonormal Basis
Dimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn 2 Rd

X = (x1 · · · · · · xn) 2 Rd⇥n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = (u1 ·· uk) 2 Rd⇥k

For each uj, compute “similarity” zj = u>j x

Project x down to z = (z1, . . . , zk)> = U>x
How to choose U?

Principal component analysis (PCA) / Basic principles 8

dd

Eigenvectors of Covariance Eigen-decomposition

Idea: Take top-k eigenvectors to maximize variance

In Sum: Principal Component Analysis

Getting the eigenvalues, two ways

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

• Direct eigenvalue decomposition of the covariance matrix

Getting the eigenvalues, two ways

• Direct eigenvalue decomposition of the covariance matrix

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

• Singular Value Decomposition (SVD)

Singular Value Decomposition

Idea: Decompose the  
d x n matrix X into
1. A n x n basis V 

(unitary matrix)
2. A d x n matrix Σ 

(diagonal projection)
3. A d x d basis U  

(unitary matrix)

Computing PCA
Method 1: eigendecomposition

U are eigenvectors of covariance matrix C = 1
nXX>

Computing C already takes O(nd
2) time (very expensive)

Method 2: singular value decomposition (SVD)

Find X = Ud⇥d⌃d⇥nV>
n⇥n

where U>U = Id⇥d, V>V = In⇥n, ⌃ is diagonal
Computing top k singular vectors takes only O(ndk)

Relationship between eigendecomposition and SVD:

Left singular vectors are principal components (C = U⌃2U>)

Principal component analysis (PCA) / Basic principles 16

SVD for PCA

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

SVD for PCA

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

10.4 Eigenvector Computation and Low-Rank Approximations 333

cluster. Four embeddings of the digits “0” and “1” in the principal subspace
are highlighted in red with their corresponding original digit. The figure
reveals that the variation within the set of “0” is significantly greater than
the variation within the set of “1”.

10.4 Eigenvector Computation and Low-Rank Approximations

In the previous sections, we obtained the basis of the principal subspace
as the eigenvectors that are associated with the largest eigenvalues of the
data covariance matrix

S =
1

N

NX

n=1

xnx
>

n =
1

N
XX

>
, (10.45)

X = [x1, . . . ,xN] 2 RD⇥N
. (10.46)

Note that X is a D ⇥ N matrix, i.e., it is the transpose of the “typical”
data matrix (Bishop, 2006; Murphy, 2012). To get the eigenvalues (and
the corresponding eigenvectors) of S, we can follow two approaches: Use

eigendecomposition
or SVD to compute
eigenvectors.

We perform an eigendecomposition (see Section 4.2) and compute the
eigenvalues and eigenvectors of S directly.
We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes into XX

> (ignoring the factor 1
N

), the eigen-
values of S are the squared singular values of X.

More specifically, the SVD of X is given by

X|{z}
D⇥N

= U|{z}
D⇥D

⌃|{z}
D⇥N

V
>

|{z}
N⇥N

, (10.47)

where U 2 RD⇥D and V
>

2 RN⇥N are orthogonal matrices and ⌃ 2

RD⇥N is a matrix whose only nonzero entries are the singular values �ii >
0. It then follows that

S =
1

N
XX

> =
1

N
U⌃V

>
V| {z }

=IN

⌃>
U

> =
1

N
U⌃⌃>

U
>
. (10.48)

With the results from Section 4.5, we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors of XX
> (and therefore S). Furthermore, the eigenvalues

�d of S are related to the singular values of X via

�d =
�
2
d

N
. (10.49)

This relationship between the eigenvalues of S and the singular values
of X provides the connection between the maximum variance view (Sec-
tion 10.2) and the singular value decomposition.

c�2020 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

It turns out the columns of U are the eigenvectors of XXT

Principal Component Analysis

332 Dimensionality Reduction with Principal Component Analysis

projected onto the orthogonal complement of the principal subspace. Min-
imizing the average squared reconstruction error is therefore equivalent toMinimizing the

average squared
reconstruction error
is equivalent to
minimizing the
projection of the
data covariance
matrix onto the
orthogonal
complement of the
principal subspace.

minimizing the variance of the data when projected onto the subspace we
ignore, i.e., the orthogonal complement of the principal subspace. Equiva-
lently, we maximize the variance of the projection that we retain in the
principal subspace, which links the projection loss immediately to the
maximum-variance formulation of PCA discussed in Section 10.2. But this
then also means that we will obtain the same solution that we obtained

Minimizing the
average squared
reconstruction error
is equivalent to
maximizing the
variance of the
projected data.

for the maximum-variance perspective. Therefore, we omit a derivation
that is identical to the one presented in Section 10.2 and summarize the
results from earlier in the light of the projection perspective.

The average squared reconstruction error, when projecting onto the M -
dimensional principal subspace, is

JM =
DX

j=M+1

�j , (10.44)

where �j are the eigenvalues of the data covariance matrix. Therefore,
to minimize (10.44) we need to select the smallest D � M eigenvalues,
which then implies that their corresponding eigenvectors are the basis of
the orthogonal complement of the principal subspace. Consequently, this
means that the basis of the principal subspace comprises the eigenvectors
b1, . . . , bM that are associated with the largest M eigenvalues of the data
covariance matrix.

Example 10.3 (MNIST Digits Embedding)

Figure 10.10
Embedding of
MNIST digits 0
(blue) and 1
(orange) in a
two-dimensional
principal subspace
using PCA. Four
embeddings of the
digits “0” and “1” in
the principal
subspace are
highlighted in red
with their
corresponding
original digit.

Figure 10.10 visualizes the training data of the MMIST digits “0” and “1”
embedded in the vector subspace spanned by the first two principal com-
ponents. We observe a relatively clear separation between “0”s (blue dots)
and “1”s (orange dots), and we see the variation within each individual

Draft (2020-01-27) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

Projection onto two first PCs
Projection onto two last PCs

Top 2 components Bottom 2 components

Data: three varieties of wheat: Kama, Rosa, Canadian  

Attributes: Area, Perimeter, Compactness, Length of Kernel,  
Width of Kernel, Asymmetry Coefficient, Length of Groove

Principal Component Analysis

Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi 2 Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd⇥n u Ud⇥k Zk⇥n

(. . .) u () (z1 . . . zn)
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18

Eigen-faces [Turk & Pentland 1991]

Eigen-faces [Turk & Pentland 1991]
Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi 2 Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd⇥n u Ud⇥k Zk⇥n

(. . .) u () (z1 . . . zn)
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18

Eigen-faces [Turk & Pentland 1991]
Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi 2 Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd⇥n u Ud⇥k Zk⇥n

(. . .) u () (z1 . . . zn)
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18

Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi 2 Rd is a face image

• xji = intensity of the j-th pixel in image i

Xd⇥n u Ud⇥k Zk⇥n

(. . .) u () (z1 . . . zn)
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18

Eigen-faces [Turk & Pentland 1991]

Aside: How many components?How many principal components?
• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate fraction of variance captured.

• Eigenvalues on a face image dataset:

2 3 4 5 6 7 8 9 10 11

i

287.1

553.6

820.1

1086.7

1353.2

�i

• Eigenvalues typically drop o↵ sharply, so don’t need that many.

• Of course variance isn’t everything...

Principal component analysis (PCA) / Basic principles 15

Latent Semantic Analysis [Deerwater 1990]
Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi 2 Rd
is a vector of word counts

• xji = frequency of word j in document i

Xd⇥n u Ud⇥k Zk⇥n

(stocks: 2 · · · · · · · · · 0

chairman: 4 · · · · · · · · · 1

the: 8 · · · · · · · · · 7

· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2

game: 1 · · · · · · · · · 3

) u (0.4 ·· -0.001

0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3

0.003 ·· 1.9

) (z1 . . . zn)
How to measure similarity between two documents?

z>1 z2 is probably better than x>1 x2

Applications: information retrieval

Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies 19

Latent Semantic Analysis [Deerwater 1990]
Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi 2 Rd
is a vector of word counts

• xji = frequency of word j in document i

Xd⇥n u Ud⇥k Zk⇥n

(stocks: 2 · · · · · · · · · 0

chairman: 4 · · · · · · · · · 1

the: 8 · · · · · · · · · 7

· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2

game: 1 · · · · · · · · · 3

) u (0.4 ·· -0.001

0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3

0.003 ·· 1.9

) (z1 . . . zn)
How to measure similarity between two documents?

z>1 z2 is probably better than x>1 x2

Applications: information retrieval

Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies 19

Latent Semantic Analysis [Deerwater 1990]
Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi 2 Rd
is a vector of word counts

• xji = frequency of word j in document i

Xd⇥n u Ud⇥k Zk⇥n

(stocks: 2 · · · · · · · · · 0

chairman: 4 · · · · · · · · · 1

the: 8 · · · · · · · · · 7

· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2

game: 1 · · · · · · · · · 3

) u (0.4 ·· -0.001

0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3

0.003 ·· 1.9

) (z1 . . . zn)
How to measure similarity between two documents?

z>1 z2 is probably better than x>1 x2

Applications: information retrieval

Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies 19

Probabilistic PCA

• If we define a prior over z then we can sample from
the latent space and hallucinate images

Limitations of Linearity
Limitations of linearity

PCA is e↵ective PCA is ine↵ective

Problem is that PCA subspace is linear:

S = {x = Uz : z 2 Rk}

In this example:

S = {(x1, x2) : x2 = u2
u1

x1}

Principal component analysis (PCA) / Kernel PCA 25

Nonlinear PCA

Going beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1, x2) : x2 = u2
u1

x2
1}

We can get this: S = {�(x) = Uz} with �(x) = (x2
1, x2)>

Linear dimensionality reduction in �(x) space

,

Nonlinear dimensionality reduction in x space

In general, can set �(x) = (x1, x2
1, x1x2, sin(x1), . . .)>

Problems: (1) ad-hoc and tedious
(2) �(x) large, computationally expensive

Principal component analysis (PCA) / Kernel PCA 26

Nonlinear PCAGoing beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1, x2) : x2 = u2
u1

x2
1}

We can get this: S = {�(x) = Uz} with �(x) = (x2
1, x2)>

Linear dimensionality reduction in �(x) space
,

Nonlinear dimensionality reduction in x space

In general, can set �(x) = (x1, x2
1, x1x2, sin(x1), . . .)>

Problems: (1) ad-hoc and tedious
(2) �(x) large, computationally expensive

Principal component analysis (PCA) / Kernel PCA 26

Going beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1, x2) : x2 = u2
u1

x2
1}

We can get this: S = {�(x) = Uz} with �(x) = (x2
1, x2)>

Linear dimensionality reduction in �(x) space
,

Nonlinear dimensionality reduction in x space

In general, can set �(x) = (x1, x2
1, x1x2, sin(x1), . . .)>

Problems: (1) ad-hoc and tedious
(2) �(x) large, computationally expensive

Principal component analysis (PCA) / Kernel PCA 26

Idea: Use kernels

Kernel PCA

Wrapping up

• PCA is a linear model for dimensionality reduction which
finds a mapping to a lower dimensional space that
maximizes variance

• We saw that this is equivalent to performing an
eigendecomposition on the covariance matrix of X

• Next time Auto-encoders and neural compression for
non-linear projections

Wrapping up

• PCA is a linear model for dimensionality reduction which
finds a mapping to a lower dimensional space that
maximizes variance

• We saw that this is equivalent to performing an
eigendecomposition on the covariance matrix of X

• Next time Auto-encoders and neural compression for
non-linear projections

Wrapping up

• PCA is a linear model for dimensionality reduction which
finds a mapping to a lower dimensional space that
maximizes variance

• We saw that this is equivalent to performing an
eigendecomposition on the covariance matrix of X

• Next time Auto-encoders and neural compression for
non-linear projections

