Notes on Dimensionaling Reduction
$$\begin{bmatrix} W/content from MML \\ Book (Devention) \\ Book (Devention) \\ Faisal Ong) \end{bmatrix}$$

Given: $\chi = \xi_{x_1}, x_1, \dots, x_N$?
 $x_i \in \mathbb{R}^p$ $\overline{\chi} = \emptyset$
Key Assumption: There exists a low-dimensional
representation
 $z_i = B^T x_i \in \mathbb{R}^M$ $B \in \mathbb{R}^{D \times M}$ $\begin{bmatrix} PCA \\ assumes \\ a \\ bin x \rightarrow z_i \end{bmatrix}$
Thu is a Projection and B is an orthonormal
matrix.
 $V_{L,K}$ $l \neq k$
 $b_{L}^T \cdot b_{k} = \emptyset$ \Leftrightarrow orthogonal
 $\forall k$
 $b_{L}^T \cdot b_{k} = 1$
 b_{k} b_{l} $b_{k} = 1$
 b_{k} b_{l} $b_{k} = 1$
 b_{k} b_{l} $b_{k} = B \xrightarrow{a} B(B^T x_i) M \rightarrow D$
 $\langle D_{KM} \rangle (M_{XI})$

So
$$Z_{i_{1}}$$
 is a Compressed representation of X_{i}
and \tilde{X}_{i} is a reconstruction.
When should our objection function be here?
One perspective: Maximize Variance in The
lower dimensional space \tilde{X} .
 \longrightarrow Leads to cool connection with
Eigenvalues!
Consider first dimension, \tilde{X}_{1} .
 $V_{2} = \frac{1}{N} \sum_{i}^{N} (b_{1}^{T} X_{i})^{2}$
 $1 \times D$ Dist
 $= b_{2}^{T} (\frac{1}{N} \sum_{i}^{N} X_{i} X_{i}^{T}) b_{1}$
 $S: Coverlance restrict $= b_{2}^{T} \int b_{2}$ Want to find b_{2} to
Maximize This but this is
Trivial without additional
 $Constraint$
 $Max b_{2}^{T} \int b_{2}$$

We have a constrained problem
$$\rightarrow Lograngian Opt.!$$

Re-write as
 $L(b_1, \lambda) = b_1^T \leq b_1 + \lambda(1 - b_2^T b_2)$
 $\frac{\partial L}{\partial b_1} = 2b_2^T \leq -2\lambda b_2^T$ $\frac{\partial L}{\partial \lambda} = 1 - b_2^T b_2$
Set both to \emptyset .
 $\rightarrow Sb_2 = \lambda b_2$ $\int_{X} b_1 definition b_2$ is an
 $b_2^T b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_2^T b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_2^T b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_2^T b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_1 b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_1 b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $b_1 b_2 = 1$ $\int_{X} b_1 definition b_2$ is an
 $\sum_{T_1} b_1 2_{11} = b_2(b_1^T \times i) \in \mathbb{R}^D$
 $To dimensions 1 dimension!$
To "compress" the information not copyined by
 b_1 , we can repeat this procedure on
 $X - b_1 b_2^T X$

This will yield
$$b_2$$
, b_2 where b_2 Maximizes
remaining Variance.
This interative approach actually not recessary;
The Eigenvectors of S are all we need!
 $B = \begin{bmatrix} B_{a} & B_{$

We can use this to generate Images from the latent space! [See notebook] Projection perspective $\tilde{X}_i = BZ_i$ Bagain orthonormal

Want to minimize reconstruction error

$$J_{M} \stackrel{\text{ouf}}{=} \frac{1}{N} \sum_{i=1}^{N} ||\chi_{i} - \tilde{\chi}_{i}||^{2}$$

What are the optimal Coordinates Z; for X; W.r.t. B?

$$\frac{\partial z^{ji}}{\partial J^{w}} = \frac{\partial z^{i}}{\partial J^{w}} \frac{\partial z^{ji}}{\partial z^{ji}}$$

$$\frac{\partial J_{m}}{\partial \tilde{x}_{i}} = -\frac{2}{N} \left(\times -\tilde{x}_{i} \right)^{T} \in \mathbb{R}^{L \times D}$$
$$\frac{\partial \tilde{x}_{i}}{\partial z_{ji}} = \frac{\partial}{\partial z_{ji}} \left(\sum_{M=1}^{M} z_{mi} b_{m} \right) = b_{j}$$

$$\frac{\partial J_{M}}{\partial Z_{ji}} = -\frac{2}{N} \left(\times_{i} - \tilde{\times}_{i} \right)^{T} b_{j}$$

$$= -\frac{2}{N} \left(x_{i} - \sum_{m=1}^{M} 2_{mi} b_{m} \right)^{T} b_{j}$$

$$= -\frac{2}{N} \left(x_{i}^{T} b_{j} - Z_{ji} b_{j}^{T} b_{j} \right) = -\frac{2}{N} \left(x_{i}^{T} b_{j} - Z_{ji} \right)$$

$$= -\frac{2}{N} \left(x_{i}^{T} b_{j} - Z_{ji} b_{j}^{T} b_{j} \right) = -\frac{2}{N} \left(x_{i}^{T} b_{j} - Z_{ji} \right)$$
Set To $\phi \rightarrow Z_{ji} = b_{j}^{T} x_{i}$

A similar argument for choice of B Chasis) can be made, yielding again the M largest Eigenvectors (see reading!)