Machine Learning 2

DS 4420 - Spring 2020

Topic Modeling 2

Byron C. Wallace

Last time: Topic Modeling!

Word Mixtures

Idea: Model text as a mixture over words (ignore order)

Seeking Life's Bare (Genetic) Necessities

Haemophilus

genome

COLD SPRING HARBOR, NEW YORK— How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms

required a mere 128 genes. The other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

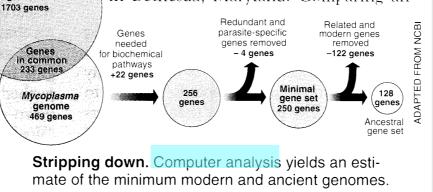
Although the numbers don't match precisely, those predictions

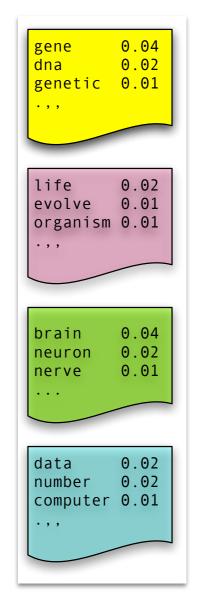
* Genome Mapping and Sequencing, Cold Spring Harbor, New York, May 8 to 12.

SCIENCE • VOL. 272 • 24 MAY 1996

"are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains

Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an





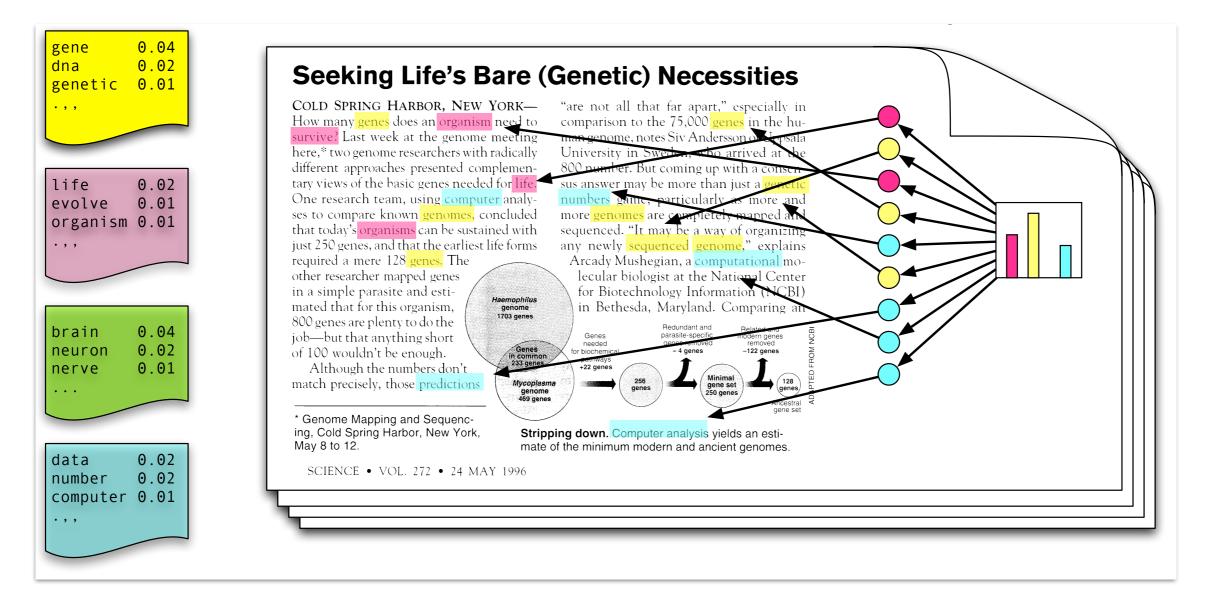
Words: $x_n | z_n = k \sim \text{Discrete}(\boldsymbol{\beta}_k)$

Topics: $z_n \sim \text{Discrete}(\boldsymbol{\theta})$

Topic Modeling

Topics (shared) Words in Document (mixture over topics)

Topic Proportions (document-specific)

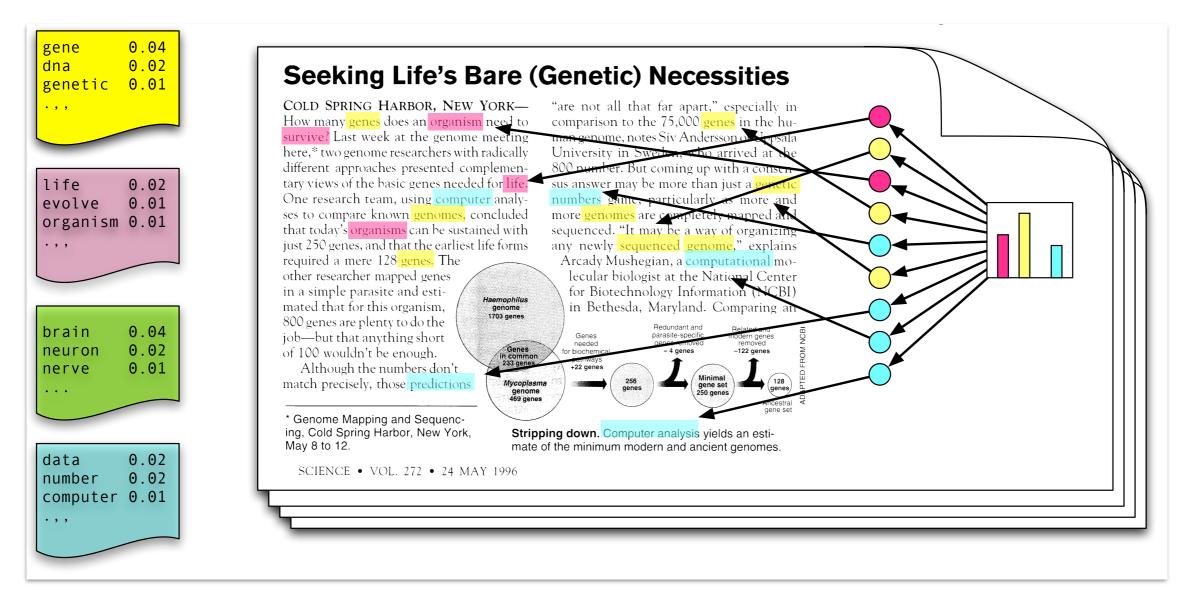


Idea: Model corpus of documents with shared topics

Topic Modeling

Topics (shared) Words in Document (mixture over topics)

Topic Proportions (document-specific)

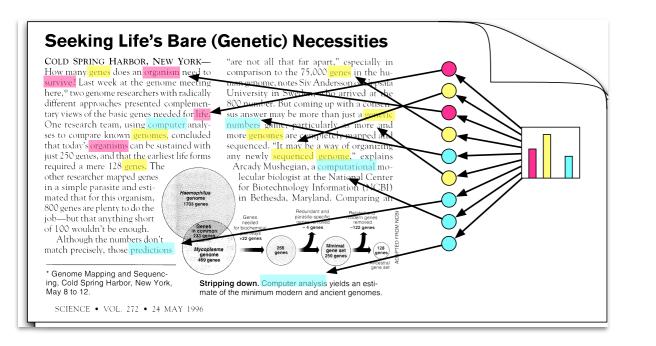


- Each topic is a distribution over words
- Each **document** is a mixture over topics
- Each word is drawn from one topic distribution

EM for Word Mixtures (PLSA)

Generative Model

 $z_n \sim \text{Discrete}(\boldsymbol{\theta})$ $x_n | z_n = k \sim \text{Discrete}(\boldsymbol{\beta}_k)$



E-step: Update assignments

M-step: Update parameters

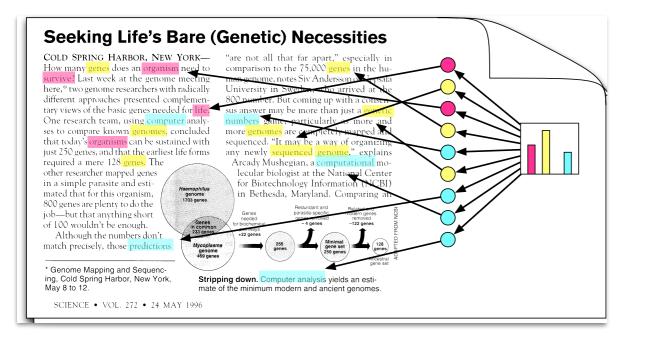
EM for Word Mixtures (PLSA)

Generative Model

 $z_n \sim \text{Discrete}(\boldsymbol{\theta})$ $x_n | z_n = k \sim \text{Discrete}(\boldsymbol{\beta}_k)$

E-step: Update assignments

$$\phi_{nk} = \frac{\theta_k \beta_{k\nu}}{\sum_l \theta_l \beta_{l\nu}} \qquad x_\nu = \nu$$



M-step: Update parameters

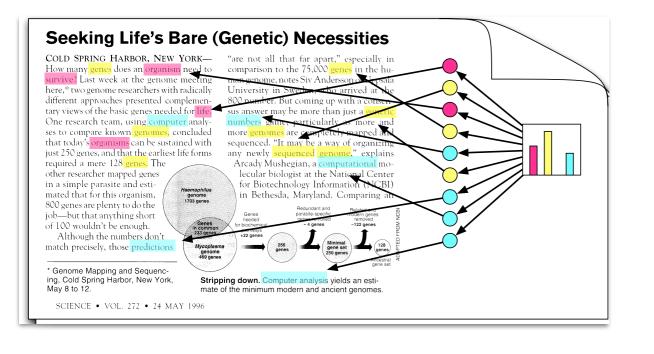
EM for Word Mixtures (PLSA)

Generative Model

 $z_n \sim \text{Discrete}(\boldsymbol{\theta})$ $x_n | z_n = k \sim \text{Discrete}(\boldsymbol{\beta}_k)$

E-step: Update assignments

$$\phi_{nk} = \frac{\theta_k \beta_{k\nu}}{\sum_l \theta_l \beta_{l\nu}} \qquad x_\nu = \nu$$

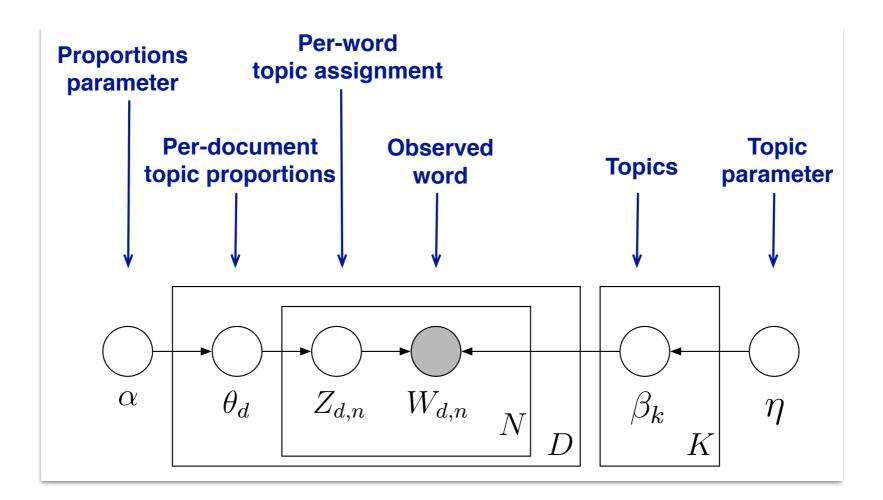


M-step: Update parameters

$$\beta_{k\nu} = \frac{N_{k\nu}}{\sum_{w} N_{kw}} \quad N_{k\nu} := \sum_{n=1}^{N} \phi_{nk} x_{n\nu}$$
$$\theta_k = \frac{N_k}{\sum_{l} N_l} \quad N_k := \sum_{n=1}^{N} \phi_{nk}$$

Today: A Bayesian view topic modeling with priors (or, LDA)

Latent Dirichlet Allocation (a.k.a. PLSI/PLSA with priors)

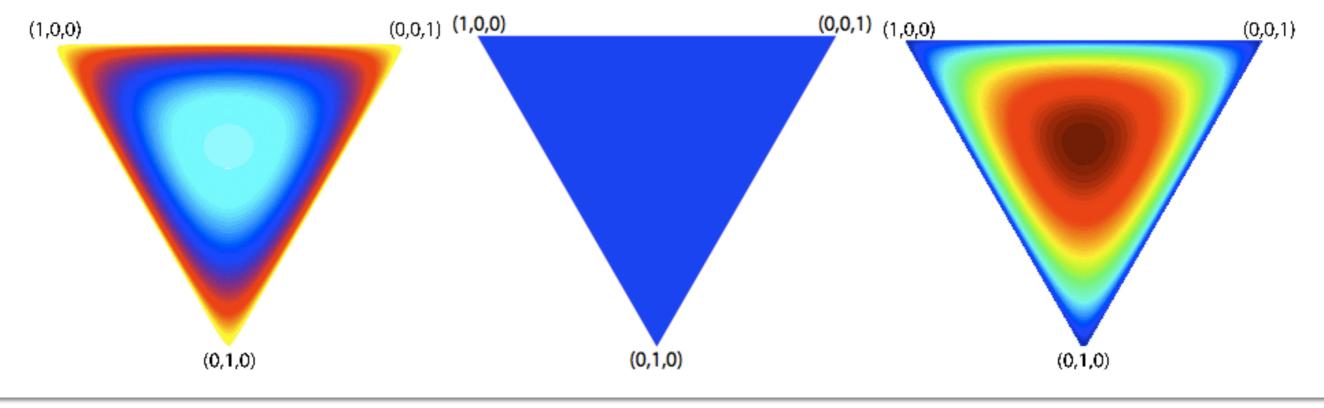


 $\beta_k \sim \text{Dirichlet}(\eta) \quad k = 1, \dots, K$ $\theta_d \sim \text{Dirichlet}(\alpha) \quad d = 1, \dots, D$ $Z_{d,n} \sim \text{Discrete}(\theta_d) \quad n = 1, \dots, N_d$ $W_{d,n} | Z_{d,n} = k \sim \text{Discrete}(\beta_k) \quad n = 1, \dots, N_d$

Dirichlet Distribution

$$p(\boldsymbol{\theta}) = \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} \qquad B(\boldsymbol{\alpha}) := \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}$$

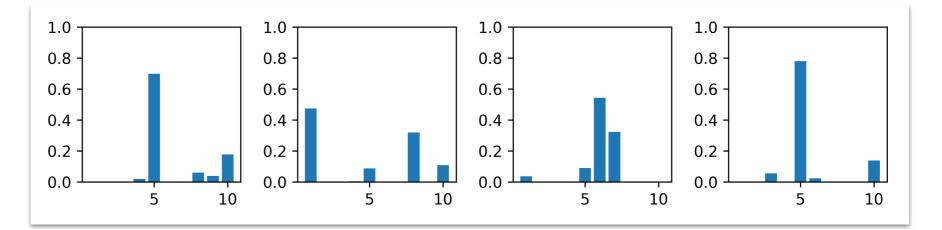
 $\alpha = (0.1, 0.1, 0.1)$ $\alpha = (1.0, 1.0, 1.0)$ $\alpha = (10.0, 10.0, 10.0)$

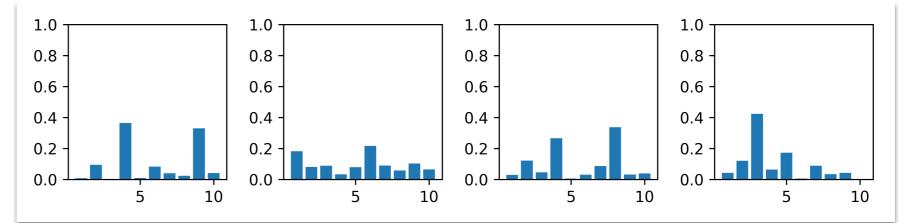


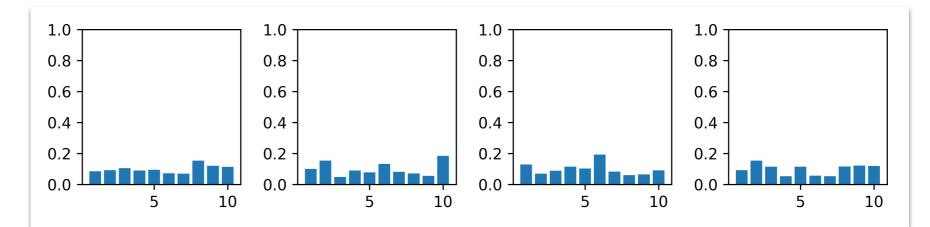
Dirichlet Distribution

 $\alpha_k = 0.1$

 $\alpha_k = 1.0$







 $\alpha_{k} = 10.0$

Common choice in LDA: $\alpha_k = 0.001$

Estimation via sampling (board)

Extensions of LDA

Latent dirichlet allocation

<u>DM Blei</u>, AY Ng, <u>MI Jordan</u> - Journal of machine Learning research, 2003 - jmlr.org Abstract We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying ... Cited by 15971 Related articles All 124 versions Cite Save

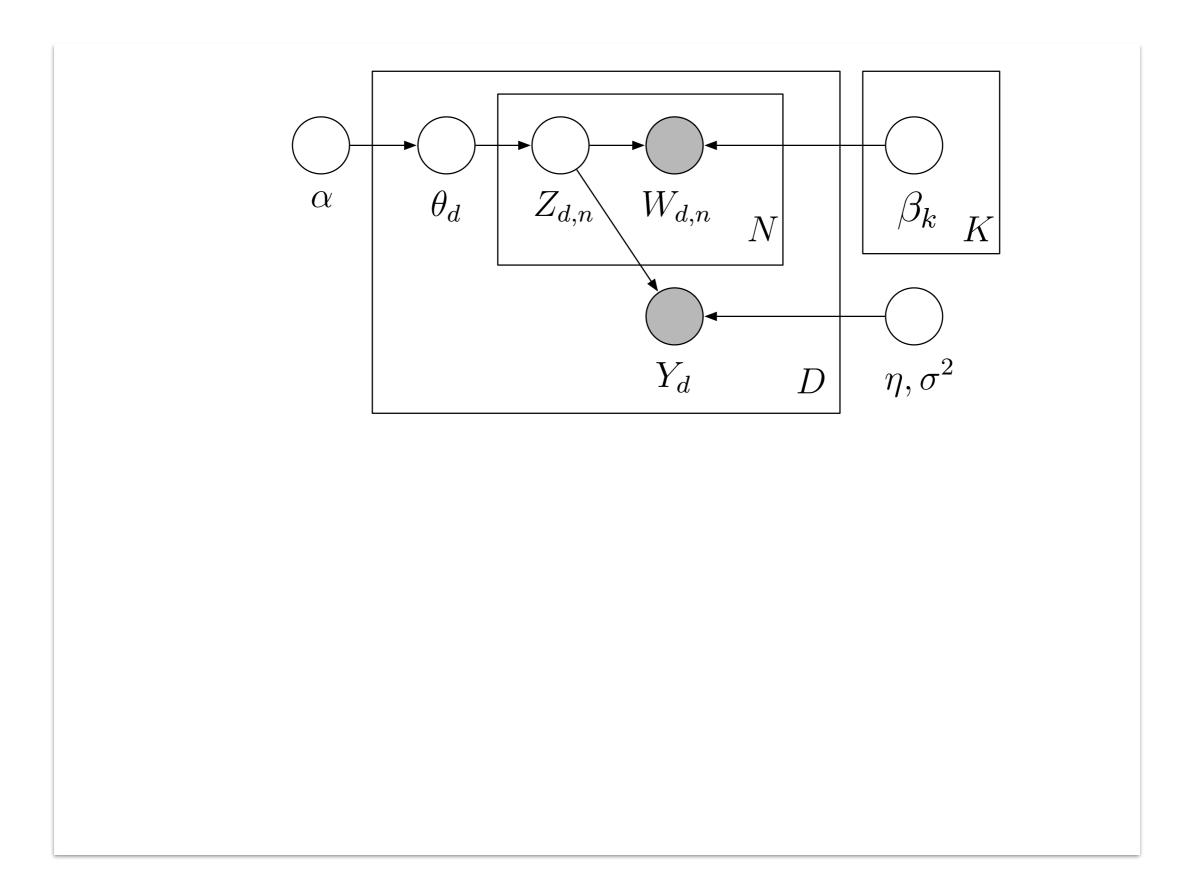
• EM inference (PLSA/PLSI) yields similar results to Variational inference or MAP inference (LDA) on most data

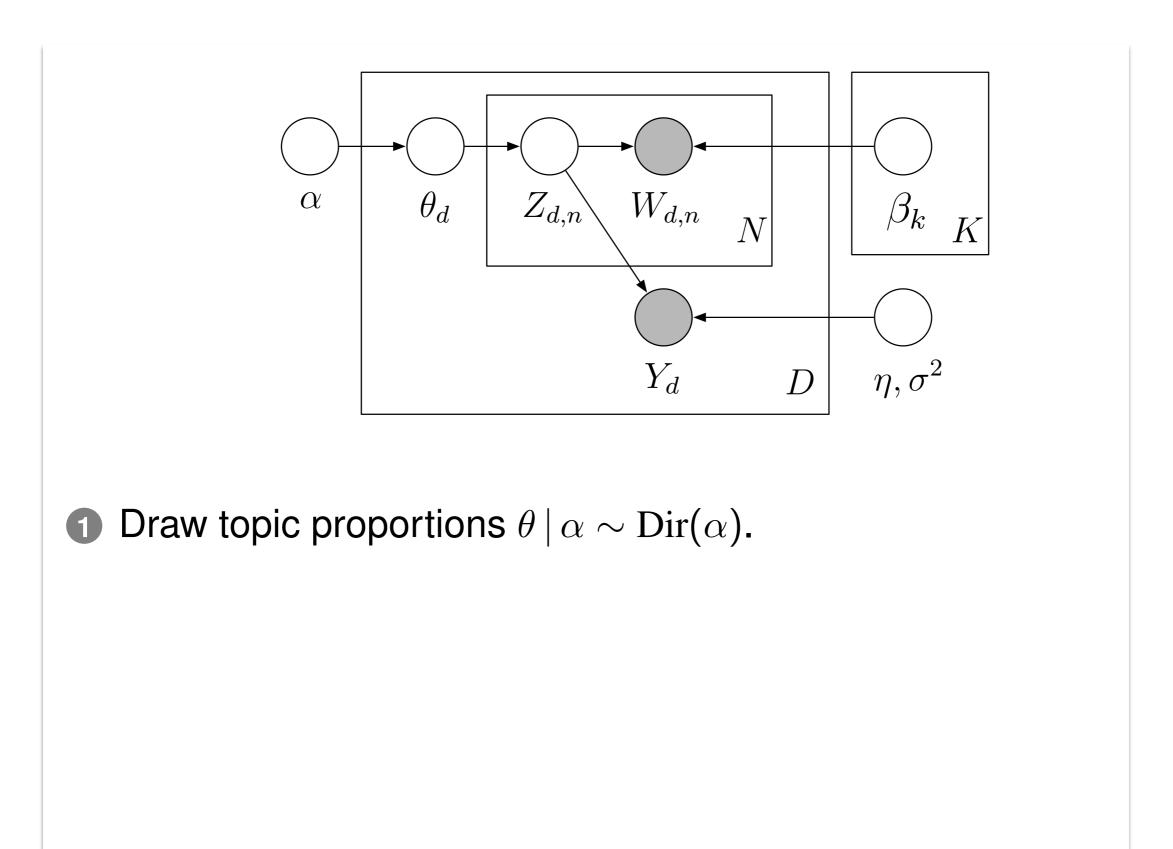
Extensions of LDA

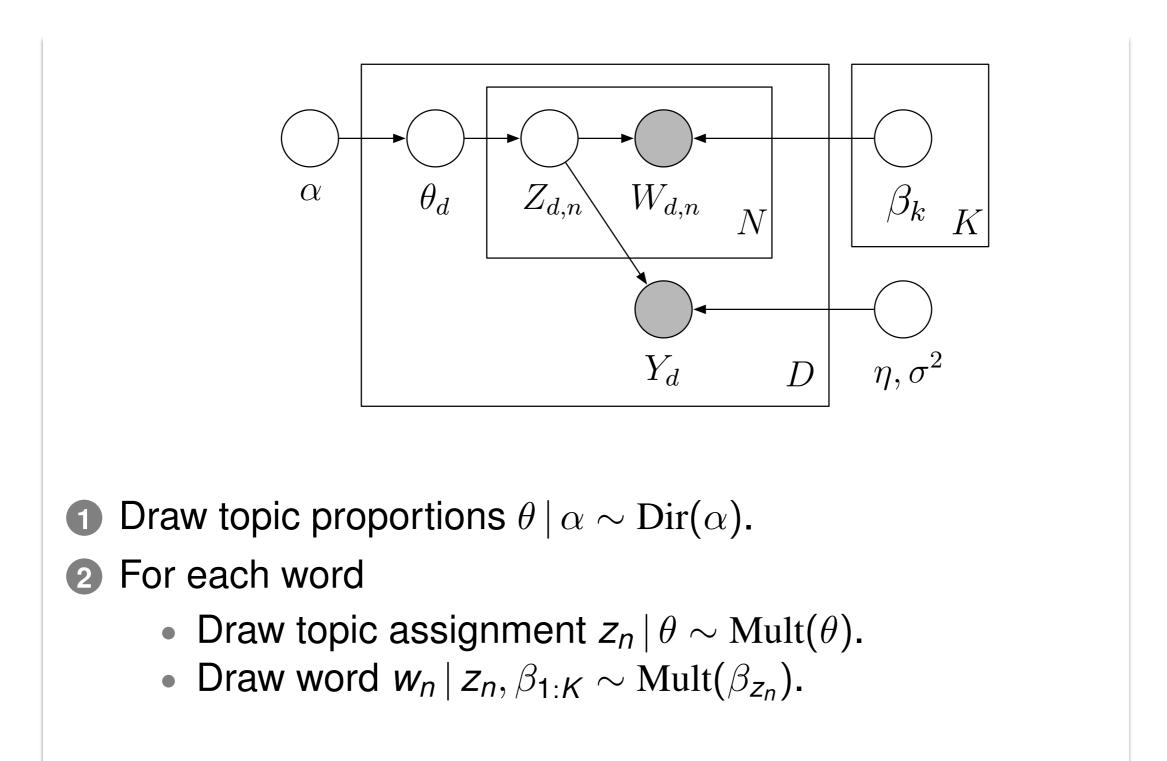
Latent dirichlet allocation

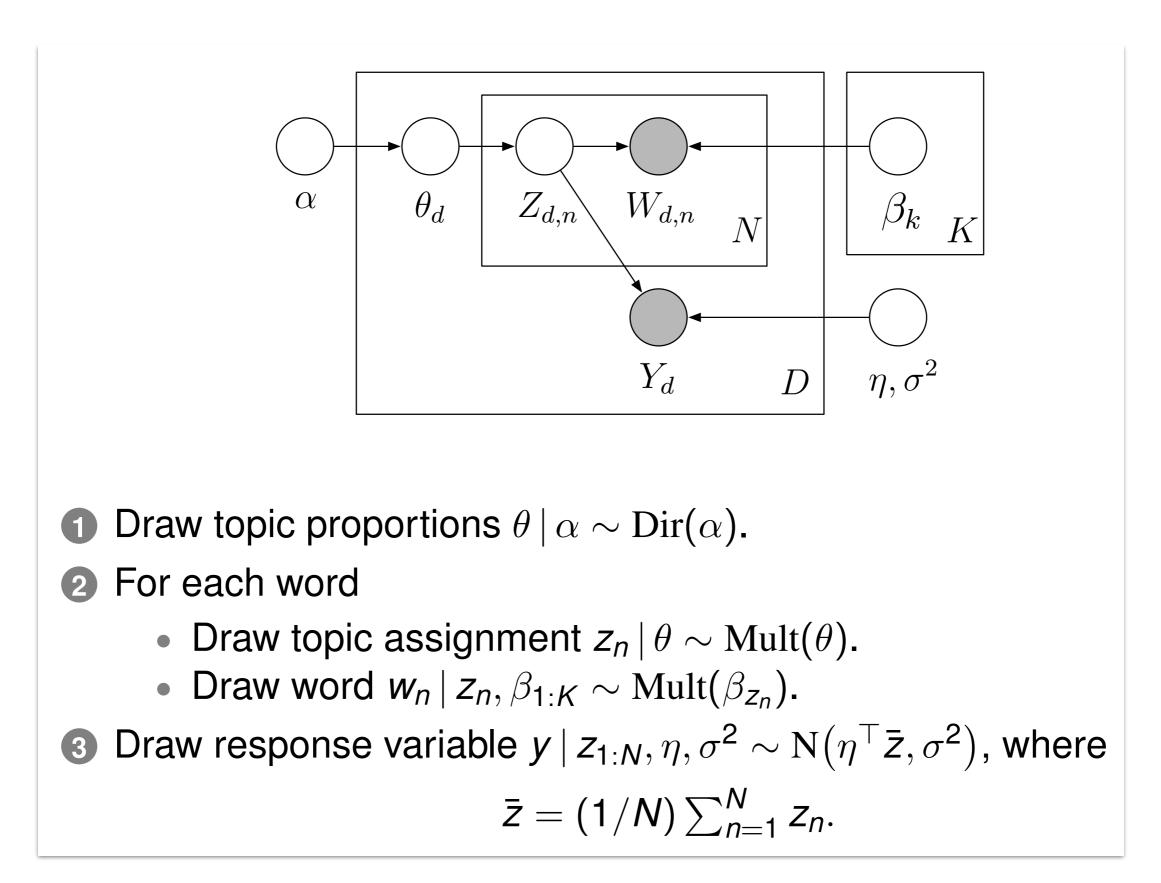
<u>DM Blei</u>, AY Ng, <u>MI Jordan</u> - Journal of machine Learning research, 2003 - jmlr.org Abstract We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying ... Cited by 15971 Related articles All 124 versions Cite Save

- EM inference (PLSA/PLSI) yields similar results to Variational inference or MAP inference (LDA) on most data
- Reason for popularity of LDA: can be embedded in more complicated models

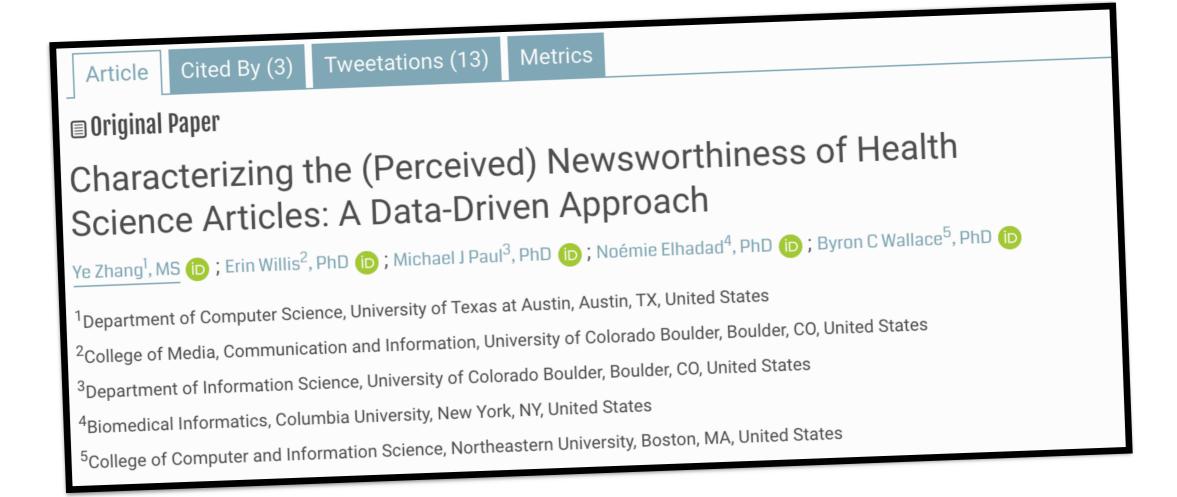








least problem unfortunately supposed worse flat dull	y	bad guys watchable its not one movie	more has than films director will characte	featuring routine dry offered charlie	his their character many while performance between	both motion simple perfect fascinating power complex
-30	-20	-10	like you was just some	not one about from movie there all which would who they much its what	n performances pictures n effective	ıy



	cell binding food proteins breast cancer stem inhibitor viral molecular	care responses performance brain blood health changes antibody hypertension dopamine	brain structure functional response social memory ability discorder imaging healthy					
cells know schizoph subje signall recep gen rena mh-m	rn express arenia ger cts funct ing dat tor prote e neuro il mod ice metat	sions death ne diabetes ion disease a associated ein developmer ons causes del mice polic light		visual motor stimulation brain pain intelligence cortex stimuli genetic life	association replication genetic disease exhaust diesel locus ti-genome-wide European live	risk years 95% Cl childhood obesity smoking age disease weight children		women screening studies outcome heart birth tuberculosis congenital infection labour
1.134 years rates mortality life age population diabetes aged women diagnosis	children activity problems helath physical genetic self-harm genes families adolescence	-0.641 risk women pregnancy birth weeks exposure 95% CI early age iron		0.4 influenza memory global transmission virus school recognition mh-animals networks pandemic	patients survival control group cancer breast toxicity therapy children acid	1.3	306	2.119
express mice cells mh-anim cardia mh-mic proliferat vitro patient diabet	mh-fema mh-mal mutation c clinica ce adolesce tion resistan depressi ss self-har	ale care e patients ns primary I months nce trials ce intervention on weeks m violence	patients mortality outcomes disease years mh-aged mh-middle-age England blood 95% CI	ed				

Extensions: Analyzing RateMDs ratings via "Factorial LDA"

What Affects Patient (Dis)satisfaction? Analyzing Online Doctor Ratings with a Joint Topic-Sentiment Model

Michael J. Paul

Dept. of Computer Science Johns Hopkins University Baltimore, MD 21218 mpaul@cs.jhu.edu

Byron C. Wallace

Center for Evidence-based Medicine Brown University Providence, RI 02903 byron_wallace@brown.edu

Mark Dredze

Human Language Technology Center of Excellence Johns Hopkins University Baltimore, MD 21211 mdredze@cs.jhu.edu

ratings		<i>zs</i>	review text
5	5	5	Dr. X has a gentle and reassuring manner with the kids, her office staff is prompt, pleasant, responsive, and she seems very knowledgeable.
1	2	1	We were told outright that my wife, without ques- tion, did not have a uterine infection. She was dis- charged. 4 hours later she was very sick. We went back to triage and lo and behold, a uterine infection.

Table 1: A positive and negative review from our corpus. Ratings correspond to *helpfulness*, *staff* and *knowledgeability*, respectively; higher numbers convey positive sentiment.

Factors

Interpersonal manner		Technic	al competence	Systems issues	
positive	negative	positive	negative	positive	negative
shows empathy, professional, communicates well	poor listener, judgmental, racist	good decision maker, follows up on issues, knowledgeable	poor decision maker, prescribes the wrong medication, disorganized	friendly staff, short wait times, convenient location	difficult to park, rude staff, expensive

Factorial LDA

- We use f-LDA to model topic and sentiment
- Each (topic, sentiment) pair has a word distribution
- e.g. (Systems/Staff, Negative):

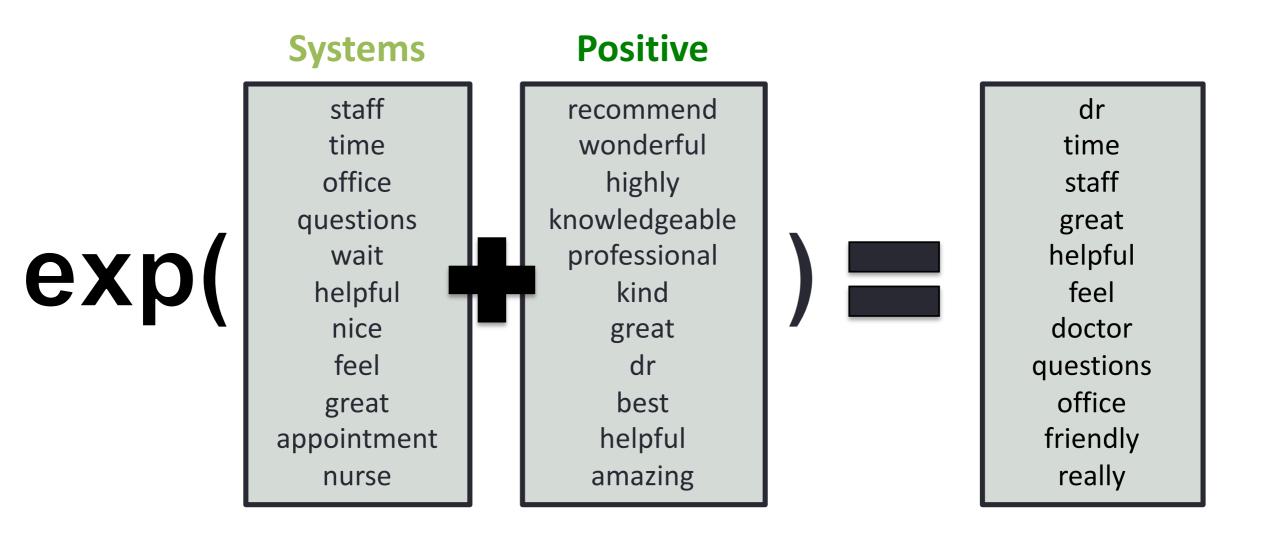
Factorial LDA

- We use f-LDA to model topic and sentiment
- Each (topic, sentiment) pair has a word distribution
- e.g. (Systems/Staff, Positive):

Factorial LDA

- We use f-LDA to model topic and sentiment
- Each (topic, sentiment) pair has a word distribution
- e.g. (Interpersonal, Positive):

- Why should the word distributions for pairs make any sense?
- Parameters are tied across the priors of each word distribution
 - The prior for (Systems, Negative) shares parameters with (Systems, Positive) which shares parameters with the prior for (Interpersonal, Positive)



Systems Positive

dr time staff great helpful feel questions office really friendly doctor

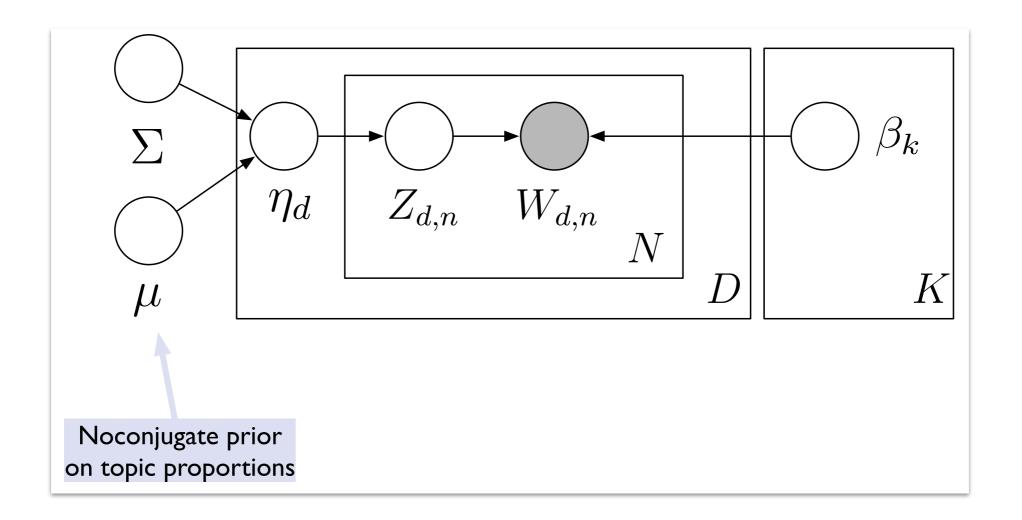
multinomial parameters sampled from Dirichlet

dr time staff great helpful feel doctor questions office friendly really

Table 2 Highest ranking (most probable) words for each aspect and polarity							
Systems		Technical		Interpersonal			
Positive	Negative	Positive	Negative	Positive	Negative		
Loves	Charged	Son	MRI	Excellent	Arrogant		
Kids	Pharmacy	Gyn	Foot	Notch	Report		
Awesome	Told	Delivered	Bleeding	Caring	Drug		
Wonderful	Awful	Breast	Ray	Compassionate	Misdiagnosed		
Love	Unprofessional	Thankful	Nerve	Highly	Reaction		
Loved	Paying	Delivery	Hurt	Exceptional	Prescribed		
Comfortable	Terrible	Ob	Bone	Best	License		
Knowledgeable	Billed	Children	Antibiotic	Knowledgeable	Lack		
Explains	Rude	Baby	Remove	Outstanding	Drugs		

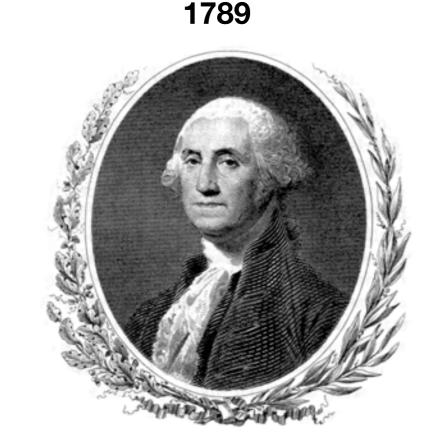
Table 2 Highest ranking (most probable) words for each aspect and polarity

Extensions: Correlated Topic Model



Estimate a covariance matrix Σ that parameterizes correlations between topics in a document

Extensions: Dynamic Topic Models



My fellow citizens: I stand here today humbled by the task before us, grateful for the trust you have bestowed, mindful of the sacrifices borne by our ancestors...

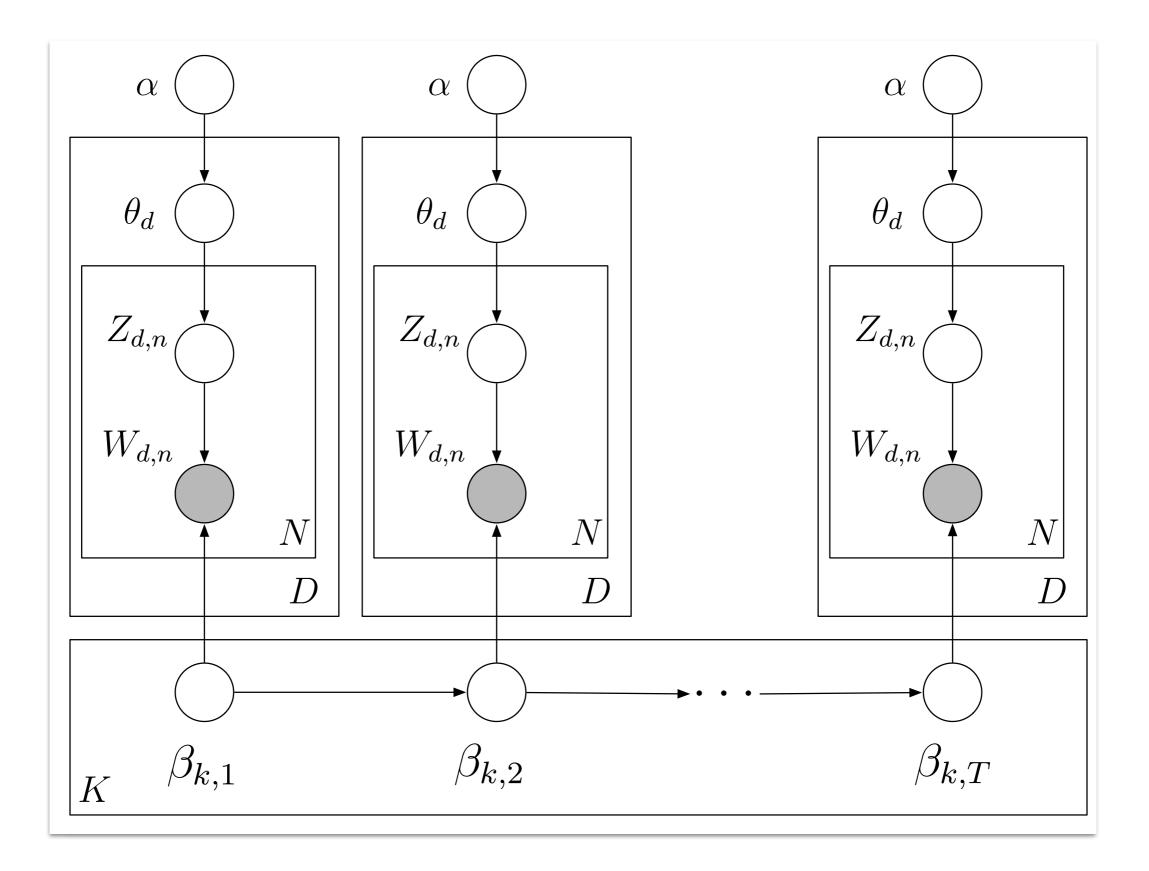
Inaugural addresses

2009

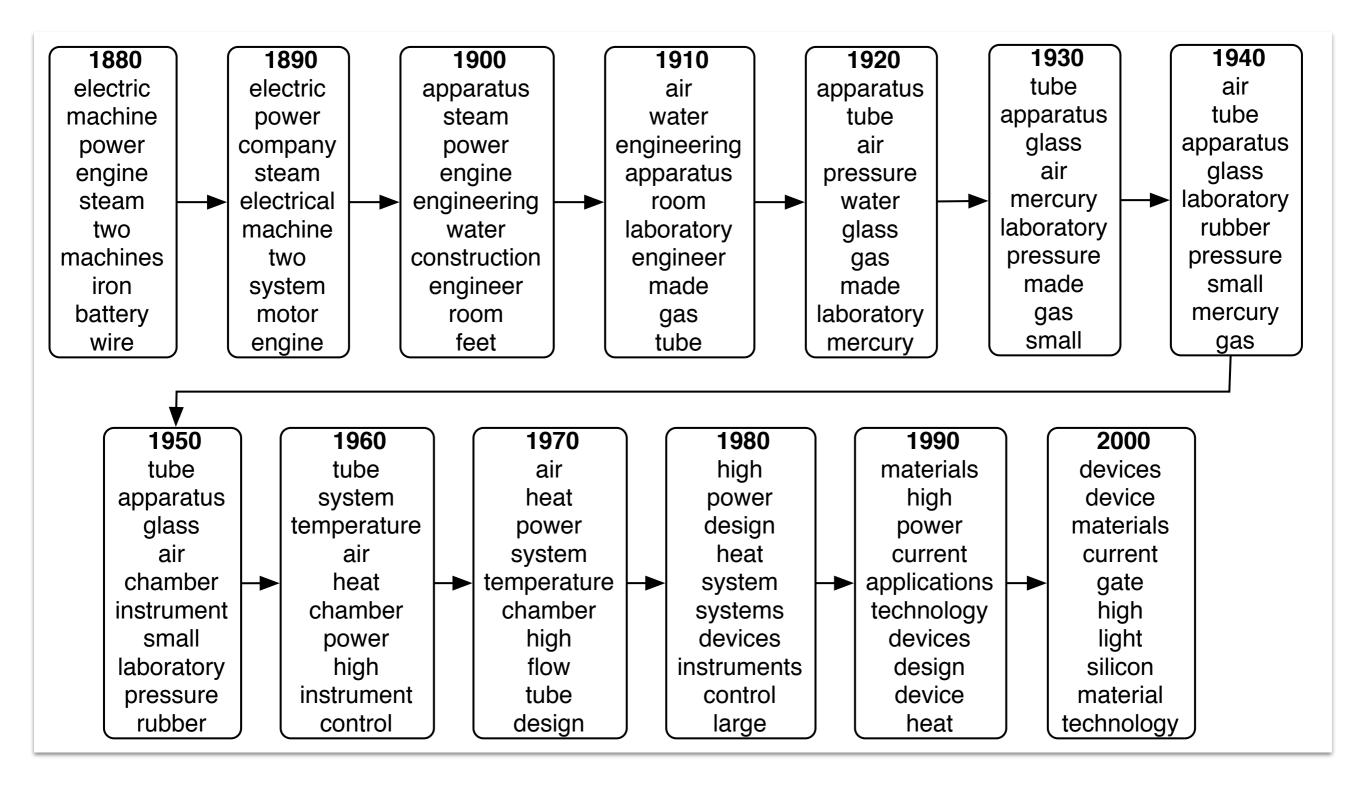
AMONG the vicissitudes incident to life no event could have filled me with greater anxieties than that of which the notification was transmitted by your order...

Track changes in word distributions associated with a topic over time.

Extensions: Dynamic Topic Models



Extensions: Dynamic Topic Models



Summing up

- Latent Dirichlet Allocation (LDA) is a Bayesian topic model that is readily extensible
- To estimate parameters, we used a sampling based approach. General idea: draw samples of parameters and keep those that make the observed data likely
- *Gibbs* sampling is a particular variant of this approach, and draws individual parameters conditioned on all others