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Last time:  
Topic Modeling!



Word Mixtures

Topics:Words:

Idea: Model text as a mixture over words (ignore order)
Generative model for LDA
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Topics Documents
Topic proportions and
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• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics

Latent Dirichlet allocation (LDA)

Simple intuition: Documents exhibit multiple topics.



Topic Modeling

Idea: Model corpus of documents with shared topics 
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Topic Modeling

• Each topic is a distribution over words 
• Each document is a mixture over topics 
• Each word is drawn from one topic distribution
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M-step: Update parameters

EM for Word Mixtures (PLSA)
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EM for Word Mixtures (PLSA)

Generative model for LDA

gene     0.04

dna      0.02

genetic  0.01

.,,

life     0.02

evolve   0.01

organism 0.01

.,,

brain    0.04

neuron   0.02

nerve    0.01

...

data     0.02

number   0.02

computer 0.01

.,,

Topics Documents
Topic proportions and

assignments

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics

E-step: Update assignmentsGenerative Model

M-step: Update parameters



Today: A Bayesian view — 
topic modeling with priors 

(or, LDA)



Latent Dirichlet Allocation
LDA as a graphical model
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• Encodes our assumptions about the data
• Connects to algorithms for computing with data
• See Pattern Recognition and Machine Learning (Bishop, 2006).

(a.k.a. PLSI/PLSA with priors)



Dirichlet Distribution



Dirichlet Distribution

Common choice in LDA: αk = 0.001



Estimation via sampling 
(board)



Extensions of LDA

• EM inference (PLSA/PLSI) yields similar results  
to Variational inference or MAP inference (LDA)  
on most data 

• Reason for popularity of LDA:  
can be embedded in more complicated models
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Extensions: Supervised LDASupervised LDA
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1 Draw topic proportions ✓ | ↵ ⇠ Dir(↵).
2 For each word

• Draw topic assignment zn | ✓ ⇠ Mult(✓).
• Draw word wn | zn, �1:K ⇠ Mult(�zn

).
3 Draw response variable y | z1:N , ⌘, �2 ⇠ N

�
⌘>z̄, �2�, where

z̄ = (1/N)
P

N

n=1 zn.
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Extensions: Supervised LDA
Example: Movie reviews
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector ⌘ is associated with a topic.







Extensions: Analyzing RateMDs 
ratings via “Factorial LDA”





Factors



Factorial LDA

• We use f-LDA to model topic and sentiment

• Each (topic,sentiment) pair has a word distribution

• e.g. (Systems/Staff, Negative):

office
time
doctor

appointment
rude
staff
room
didn’t
visit
wait



• We use f-LDA to model topic and sentiment

• Each (topic,sentiment) pair has a word distribution

• e.g. (Systems/Staff, Positive):

dr
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helpful
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questions
office
really
friendly

Factorial LDA



• We use f-LDA to model topic and sentiment

• Each (topic,sentiment) pair has a word distribution

• e.g. (Interpersonal, Positive):

dr
doctor
best
years
caring
care

patients
patient

recommend
family

Factorial LDA



• Why should the word distributions for pairs 
make any sense?

• Parameters are tied across the priors of 
each word distribution
– The prior for (Systems,Negative) shares parameters with 

(Systems,Positive) which shares parameters with the prior 
for (Interpersonal,Positive)
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Systems Positive
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Systems
Positive
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multinomial parameters 
sampled from Dirichlet





Extensions: Correlated Topic Model

Estimate a covariance matrix Σ that parameterizes 
correlations between topics in a document

The correlated topic model (CTM) (Blei and Lafferty, 2007)
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on topic proportions

• Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

• Use for:
• Providing a “map” of topics and how they are related
• Better prediction via correlated topics



Extensions: Dynamic Topic Models

Track changes in word distributions  
associated with a topic over time.

Dynamic topic models (Blei and Lafferty, 2006)

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.
• Not appropriate for corpora that span hundreds of years
• We may want to track how language changes over time.



Extensions: Dynamic Topic ModelsDynamic topic models
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Extensions: Dynamic Topic ModelsAnalyzing a topic
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Summing up

• Latent Dirichlet Allocation (LDA) is a Bayesian topic 
model that is readily extensible 

• To estimate parameters, we used a sampling based 
approach. General idea: draw samples of parameters 
and keep those that make the observed data likely 

• Gibbs sampling is a particular variant of this approach, 
and draws individual parameters conditioned on all others


