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Unsupervised learning
• So far we have reviewed some fundamentals, discussed 

Maximum Likelihood Estimation (MLE) for probabilistic models, 
and neural networks/backprop SGD 

• We have mostly considered supervised settings (implicitly) 
although the above methods are general; we will shift focus to 
unsupervised learning for a few weeks 

• Both the probabilistic and neural perspectives will continue to 
be relevant here — and we will consider the former explicitly for 
clustering next week
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Clustering

Unsupervised learning (no labels for training) 
Group data into similar classes that 
• Maximize inter-cluster similarity 
• Minimize intra-cluster similarity
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Employees Females Males

Choice of clustering criterion can be task-dependent
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Similarity over functions of inputs

• The preceding measures are distances defined on the original 
input space X 

• A better representation may be some function of these 
features 

388 Classification with Support Vector Machines

This result can be seen by multiplying out the individual classes
NX
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The objective function (12.48) and the constraint (12.50), along with the
assumption that ↵ > 0, give us a constrained (convex) optimization prob-
lem. This optimization problem can be shown to be the same as that of
the dual hard margin SVM (Bennett and Bredensteiner, 2000a).

Remark. To obtain the soft margin dual, we consider the reduced hull. The
reduced hull is similar to the convex hull but has an upper bound to thereduced hull

size of the coefficients ↵. The maximum possible value of the elements
of ↵ restricts the size that the convex hull can take. In other words, the
bound on ↵ shrinks the convex hull to a smaller volume (Bennett and
Bredensteiner, 2000b). }

12.4 Kernels

Consider the formulation of the dual SVM (12.41). Notice that the in-
ner product in the objective occurs only between examples xi and xj .
There are no inner products between the examples and the parameters.
Therefore, if we consider a set of features �(xi) to represent xi, the only
change in the dual SVM will be to replace the inner product. This mod-
ularity, where the choice of the classification method (the SVM) and the
choice of the feature representation �(x) can be considered separately,
provides flexibility for us to explore the two problems independently. In
this section, we discuss the representation �(x) and briefly introduce the
idea of kernels, but do not go into the technical details.

Since �(x) could be a non-linear function, we can use the SVM (which
assumes a linear classifier) to construct classifiers that are nonlinear in
the examples xn. This provides a second avenue, in addition to the soft
margin, for users to deal with a dataset that is not linearly separable. It
turns out that there are many algorithms and statistical methods that have
this property that we observed in the dual SVM: the only inner products
are those that occur between examples. Instead of explicitly defining a
non-linear feature map �(·) and computing the resulting inner product
between examples xi and xj , we define a similarity function k(xi,xj) be-
tween xi and xj . For a certain class of similarity functions, called kernels,kernel

the similarity function implicitly defines a non-linear feature map �(·).
Kernels are by definition functions k : X ⇥ X ! R for which there existsThe inputs X of the

kernel function can
be very general and
are not necessarily
restricted to RD .

a Hilbert space H and � : X ! H a feature map such that

k(xi,xj) = h�(xi),�(xj)iH . (12.52)

Draft (2019-12-11) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.



Similarity: Kernels

Radial Basis Function (RBF)

Polynomial

Linear (inner-product)



12.4 Kernels 389
Figure 12.10 SVM
with different
kernels. Note that
while the decision
boundary is
nonlinear, the
underlying problem
being solved is for a
linear separating
hyperplane (albeit
with a nonlinear
kernel).
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(b) SVM with RBF kernel

(c) SVM with polynomial (degree 2) kernel (d) SVM with polynomial (degree 3) kernel

There is a unique reproducing kernel Hilbert space associated with every
kernel k (Aronszajn, 1950; Berlinet and Thomas-Agnan, 2004). In this
unique association, �(x) = k(·,x) is called the canonical feature map. canonical feature

mapThe generalization from an inner product to a kernel function (12.52) is
known as the kernel trick (Schölkopf and Smola, 2002; Shawe-Taylor and kernel trick

Cristianini, 2004), as it hides away the explicit non-linear feature map.
The matrix K 2 RN⇥N , resulting from the inner products or the appli-

cation of k(·, ·) to a dataset, is called the Gram matrix, and is often just Gram matrix

referred to as the kernel matrix. Kernels must be symmetric and positive kernel matrix

semidefinite functions so that every kernel matrix K is symmetric and
positive semidefinite (Section 3.2.3):

8z 2 RN : z
>
Kz > 0 . (12.53)

Some popular examples of kernels for multivariate real-valued data xi 2

RD are the polynomial kernel, the Gaussian radial basis function kernel,
and the rational quadratic kernel (Schölkopf and Smola, 2002; Rasmussen

c�2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

Linear RBF kernel

Figure from MML book



Why kernels?
“The key insight in kernel-based learning is that you can 
rewrite many linear models in a way that doesn’t require you 
to ever explicitly compute φ(x) 
                                                    - Daume, CIML




Similarities vs Distance Measure

• D(A, B) = D(B, A)
• D(A, A) ≥ 0
• D(A, B) = 0 iff  A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry  
Reflexivity 
Positivity (Separation) 
Triangular Inequality

Distance Measure
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Similarities vs Distance Measure

Similarity functions
• Less formal; encodes some notion of similarity but not 
necessarily well defined  

• Can be negative 
• May not satisfy triangular inequality

• D(A, B) = D(B, A)
• D(A, A) ≥ 0
• D(A, B) = 0 iff  A = B
• D(A, B) ≤ D(A, C) + D(B, C)

Symmetry  
Reflexivity 
Positivity (Separation) 
Triangular Inequality

Distance Measure



Cosine similarity



Four Types of Clustering
1. Centroid-based (K-means, K-medoids)



Four Types of Clustering
2. Connectivity-based (Hierarchical)

Notion of Clusters: Cut off dendrogram at some depth



Four Types of Clustering
3. Density-based (DBSCAN, OPTICS)

Notion of Clusters: Connected regions of high density



Four Types of Clustering
4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features



K-Means clustering 
(board)



K-means AlgorithmK-means Algorithm

Input: X = {x1, x2, . . . , xN}
Number of clusters K

Initialize: K random centroids µ1, µ2, . . . , µK

Repeat Until Convergence

1 For i = 1, . . . ,K do
Ci = {x 2 X |i = arg min

1jK

k x� µj k2}
2 For i = 1, . . . ,K do

µi = argmin
z

P
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Output: C1,C2, . . . ,CK

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms
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K-means Clustering

33
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K-means Clustering: Step 1
Algorithm: K-means, Distance Metric: Euclidean Distance

μ1

μ2

μ3

Slide based on one by Eamonn Keogh  
Yijun Zhao DATA MINING TECHNIQUES Clustering AlgorithmsRandomly initialize K centroids μk
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K-means Clustering: Step 2

μ1

μ2

μ3

Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance

 
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K-means Clustering

Assign each point to closest centroid, 
then update centroids to average of points
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K-means Clustering

Assign each point to closest centroid, 
then update centroids to average of points
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K-means Clustering: Step 4
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Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance
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K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)
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K-means Clustering: Step 5
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Slide based on one by Eamonn Keogh

Algorithm: K-means, Distance Metric: Euclidean Distance
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K-means Clustering

Repeat until convergence  
(no points reassigned, means unchanged)



K-means AlgorithmK-means Algorithm

Input: X = {x1, x2, . . . , xN}
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Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

• K-means: Set μ to mean of points in C 
• K-medoids: Set μ=x for point in C with minimum SSE



Let's see some examples in Python

https://colab.research.google.com/drive/1H9ekAE6wQ4Eusuzq192fP2ysWiGcoDcZ


“Good” Initialization of Centroids
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“Bad” Initialization of Centroids
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Example: 10 Clusters
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Importance of Initial Centroids

Initialization tricks 
• Use multiple restarts  
• Initialize with hierarchical clustering 
• Select more than K points,  

keep most widely separated points  



Choosing K

55

1 2 3 4 5 6 7 8 9 10

When k = 1, the objective function is 873.0

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=1, SSE=873
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1 2 3 4 5 6 7 8 9 10

When k = 2, the objective function is 173.1

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=2, SSE=173
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1 2 3 4 5 6 7 8 9 10

When k = 3, the objective function is 133.6

Slide based on one by Eamonn Keogh  

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

K=3, SSE=134



Choosing K
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The abrupt change at K = 2, is highly suggestive of two clusters in the 
data. This technique for determining the number of clusters is known 
as “elbow finding” or “knee finding”.
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Slide based on one by Eamonn Keogh  
Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms

“Elbow finding” (a.k.a. “knee finding”)  
Set K to value just above “abrupt” increase 



K-means Limitations: Differing Sizes

Original Points K-means (3 clusters)



K-means Limitations: Different Densities

Original Points K-means (3 clusters)



K-means Limitations: Non-globular Shapes

Original Points K-means (2 clusters)



Overcoming K-means Limitations

Intuition: “Combine” smaller clusters into larger clusters

• One Solution: Hierarchical Clustering 
• Another Solution: Density-based Clustering



K-means in action: Download 
the notebook starter for today 

from blackboard (and CSV file)



Density-based 
Clustering



DBSCAN
  

DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise 

(one of the most-cited clustering methods)



DBSCAN

Intuition 
• A cluster is a region of high density 
• Noise points lie in regions of low density

  
DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise 



Defining “High Density”  

Naïve approach 
 
  

For each point in a cluster there are at least a minimum number (MinPts)  
 

of points in an Eps-neighborhood of that point. 
 
 
 

DBSCAN 

cluster  



  

Eps-neighborhood of a point p 
 
  NEps(p)  =  { q ∈ D | dist (p, q) ≤ Eps }  

 
  
 
 
 
 Eps 

p 

Neighborhood of a Point 
 

Defining “High Density”



Defining “High Density”
  

Problem 
 
  

•  In each cluster there are two kinds of points: 
 
 

      ̶   points inside the cluster  (core points) 
 
 

      ̶   points on the border  (border points) 
 
 
 

An Eps-neighborhood of a border point contains significantly less points than  
 

an  Eps-neighborhood of a core point. 
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Defining “High Density”  
Better idea 
 

For every point p in a cluster C there is a point q ∈ C,  
so that      
 

(1) p is inside of the Eps-neighborhood of q          
 

and 
 

(2) NEps(q) contains at least MinPts points.  
 
 
 

p 

q 

core points = high density 

border points are connected to core points 

  
Remark  
  
 

Directly density-reachable is symmetric for pairs of core points. 
 

It is not symmetric if one core point and one border point are involved. 
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 p ∈ NEps(q)  
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  | NEps (p) | = 4 < 5 = MinPts   (core point condition) 
 

  
Better idea 
 

For every point p in a cluster C there is a point q ∈ C,  
so that      
 

(1) p is inside of the Eps-neighborhood of q          
 

and 
 

(2) NEps(q) contains at least MinPts points.  
 
 
 

p 

q 

core points = high density 

border points are connected to core points 

  
Better idea 
 

For every point p in a cluster C there is a point q ∈ C,  
so that      
 

(1) p is inside of the Eps-neighborhood of q          
 

and 
 

(2) NEps(q) contains at least MinPts points.  
 
 
 

p 

q 

core points = high density 

border points are connected to core points 

Better notion of cluster



Density Reachability  
Definition   
  

A point p is directly density-reachable from a point q  
 

with regard to the parameters Eps and MinPts, if 
 
 
 
 

1) p ∈ NEps(q) 
 
 

2) | NEps(q) | ≥ MinPts  
 
 
 

(core point condition) 
 
 
 

p 

MinPts = 5 
q 

| NEps(q) | = 6 ≥ 5 = MinPts  (core point condition) 

(reachability) 
 
 
 

  
Remark  
  
 

Directly density-reachable is symmetric for pairs of core points. 
 

It is not symmetric if one core point and one border point are involved. 
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  | NEps (p) | = 4 < 5 = MinPts   (core point condition) 
 

Note: This is an asymmetric relationship

  
Remark  
  
 

Directly density-reachable is symmetric for pairs of core points. 
 

It is not symmetric if one core point and one border point are involved. 
 
 

p 

Parameter:   MinPts = 5 

q 

p directly density reachable from q 
 

 p ∈ NEps(q)  
 

  | NEps(q) | = 6 ≥ 5 = MinPts  (core point condition) 

q not directly density reachable from p 
 
 

  | NEps (p) | = 4 < 5 = MinPts   (core point condition) 
 



Density Reachability  
Definition   
  

A point p is directly density-reachable from a point q  
 

with regard to the parameters Eps and MinPts, if 
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Density Connectivity
  

Definition  (density-connected) 
  

A point p is density-connected to a point q  
 

with regard to the parameters Eps and MinPts 
 

if there is a point v such that both p and q are density-reachable from v. 
 

p 

MinPts = 5 

q 

v 

Remark:   Density-connectivity is a symmetric relation. 
 
 

Note: This is a symmetric relationship



Definition of a Cluster  
Definition  (cluster) 
  

A cluster with regard to the parameters Eps and MinPts 
 

is a non-empty subset C of the database D with 
 
 1) For all  p, q ∈ D: 

 

If   p ∈ C    and   q is density-reachable from p  
 

with regard to the parameters Eps and MinPts,   
 

then q ∈ C.  
 

2) For all p, q ∈ C: 
 

The point p is density-connected to q  
 

with regard to the parameters Eps and MinPts. 
 
 

(Maximality) 
 

(Connectivity) 
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Definition of Noise

  
DBSCAN 
 

Density based spatial clustering of applications with noise 
 
 
 
 

 arbitrarily shaped clusters 

noise Noise

Cluster

  
Definition  (noise) 
  

Let C1,...,Ck be the clusters of the database D 
with regard to the parameters Eps i and MinPts I (i=1,...,k). 
 
The set of points in the database D not belonging to any cluster C1,...,Ck  
is called noise: 
 
 
 

Noise = { p ∈ D | p ∉ Ci  for all  i = 1,...,k} 
 

noise 



DBSCAN Algorithm  
DBSCAN  (algorithm) 

 
  

(1) Start with an arbitrary point p from the database and  
 

retrieve all points density-reachable from p  
 

with regard to Eps and MinPts.  
 
(2) If p is a core point, the procedure yields a cluster  

 

with regard to Eps and MinPts 
 

and the point is classified. 
 
(3) If p is a border point, no points are density-reachable from p  

 

and DBSCAN visits the next unclassified point in the database. 
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DBSCAN Algorithm
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DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4
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When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes



© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               79

DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               80

When DBSCAN Works Well

Original Points Clusters

• Resistant to Noise

• Can handle clusters of different shapes and sizes

DBSCAN strengths

+ Resistant to noise 
+ Can handle arbitrary shapes



DBSCAN Weaknesses

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               81

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

• Varying densities

• High-dimensional data
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DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther 
distance

O So, plot sorted distance of every point to its kth

nearest neighbor
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DBSCAN: Determining EPS and MinPts

O Idea is that for points in a cluster, their kth nearest 
neighbors are at roughly the same distance

O Noise points have the kth nearest neighbor at farther 
distance

O So, plot sorted distance of every point to its kth

nearest neighbor

Ground Truth MinPts = 4, Eps=9.92 MinPts = 4, Eps=9.75

Sensitive to hyperparameters



K-means vs DBSCANK-means vs. DBSCAN

 

K-means 

DBSCAN 

 

Yijun Zhao DATA MINING TECHNIQUES Clustering Algorithms



Let’s see what it does 
with Trump’s tweets…


