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Unsupervised learning

e SO far we have reviewed some fundamentals, discussed
Maximum Likelihood Estimation (MLE) for probabilistic models,
and neural networks/backprop SGD

« We have mostly considered supervised settings (implicitly)
although the above methods are general; we will shift focus to
unsupervised learning for a few weeks

o Both the probabilistic and neural perspectives will continue to
be relevant here — and we will consider the former explicitly for
clustering next week
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Unsupervised learning (no labels for training)
Group data into similar classes that
 Maximize inter-cluster similarity

 Minimize intra-cluster similarity
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Unsupervised learning (no labels for training)
Group data into similar classes that
 Maximize inter-cluster similarity

 Minimize intra-cluster similarity



What Is a natural groupmg?

Choice of clustering criterion can be task-dependent
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Defining Distance Measures
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X2) } Proximity: p(x1, X2)



Defining Distance Measures

342.7

Dissimilarity/distance: d(xi, x2
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Similarity: s(x1, x2) } Proximity: piXi, Xe)



Distance Measures
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Distance Measures

K

@ Euclidean Distance \/(Z(X/ — )/i)z)

=1

k
@ Mahattan Distance Z |Xi — )/i\
i=1

1

k q
@ Minkowski Distance (Z(\XI — )/i|)q>
=1



Similarity over functions of inputs

* The preceding measures are distances defined on the original
iInput space X

* A better representation may be some function of these
features ¢(x)



Similarity: Kernels

Linear (inner-product) k(x,x")=({x,x) +c)

Polynomial k(x,x")=({x,x") +c)"

Radlal Basis Function (RBF)  k(x,x') = exp 2" x=xI



Second feature

First feature

Linear

Second feature

First feature

RBF kernel

Figure from MML book



Why kernels®

“The key insight in kernel-based learning is that you can
rewrite many linear models in a way that doesn’t require you
to ever explicitly compute ¢(x)

- Daume, CIML



Similarities vs Distance Measure
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Similarities vs Distance Measure

Distance Measure

* D(A, B) = D(B A) Symmetry

* D(A,A) = Reflexivity

* D(A, B) = O iff A=B Positivity (Separation)
D(A, B) =D(A, C) + D(B, C) Triangular Inequality

Similarity functions

e [ ess formal; encodes some notion of similarity but not
necessarily well defined

e Can be negative

e May not satisty triangular inequality



Cosine similarity

A-B 2

similarity(A,B) =

|Al x| 8]



Four Types of Clustering

1. Centroid-based (K-means, K-medoids)




Four Types of Clustering

2. Connectivity-based (Hierarchical)
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Notion of Clusters: Cut off dendrogram at some depth



Four Types of Clustering

3. Density-based (DBSCAN, OPTICS)
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Notion of Clusters: Connected regions of high density



Four Types of Clustering

4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features



K-Means clustering
(board)



K-means Algorithm

Input: X ={X1,X0, ..., XN}
Number of clusters K

Initialize: K random centroids (i1, tio, .. ., ik
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K-means Algorithm

Input: X ={X1,X0, ..., Xy}
Number of clusters K

Initialize: K random centroids (i1, tio, .. ., ik
Repeat Until Convergence

Q Fori=1,..., K do

Ci={xeX|i= in |l x— s |2
{x € X]|i=arg min | x— ;||

@ Fori=1,....Kdo
pi=argmin 3 [z —x ||°

xeC;

Output: Cl, CQ, Ce ey CK



K-means Clustering
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Randomly initialize K centroids pix



K-means Clustering
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Assign each point to closest centroid,
then update centroids to average of points



K-means Clustering
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Assign each point to closest centroid,
then update centroids to average of points



K-means Clustering
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Repeat until convergence
(no points reassigned, means unchanged)



K-means Clustering
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(no points reassigned, means unchanged)



K-means Algorithm

Input: X ={X1,X0, ..., XN}
Number of clusters K

Initialize: K random centroids (i1, tio, .. ., ik
Repeat Until Convergence

Q Fori=1,..., K do

Ci={xeX|i= in |l x— s |2
{x € X]|i=arg min | x— ;||

Output: Cl, CQ, Ce ey CK

 K-means: Set yto mean of points in C
o K-medoids: Set u=x for point in C with minimum SSE



Let's see some examples in Python



https://colab.research.google.com/drive/1H9ekAE6wQ4Eusuzq192fP2ysWiGcoDcZ
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Initialization of Centroids
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Example: 10 Clusters

lteration 4

5 pairs of clusters, two initial points in each pair



Example: 10 Clusters

lteration 4

5 pairs of clusters, two initial points in each pair



Importance of Initial Centroids

Initialization tricks
* Use multiple restarts
* |nitialize with hierarchical clustering

e Select more than K points,
keep most widely separated points



Choosing K

K=1, 5SSE=873

1 2 3 4 5 6 7 8 910

K=2, SSE=173

1 2 3 4 5 6 7 8 910

K=3, 5SSE=134

l...r...;:.
SN '

1 2 3 4 5 6 7 8 910




Choosing K

1.00E+03
9.00E+02
8.00E+02
7.00E+02
6.00E+02
5.00E+02
4.00E+02
3.00E+02

2.00E+02

Cost Function

1.00E+02

0.00E+00

“Elbow finding” (a.k.a. “knee finding”)
Set K to value just above “abrupt” increase




K-means Limitations: Differing Sizes
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K-means Limitations: Different Densities
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K-means Limitations: Non-globular Shapes
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Overcoming K-means Limitations

Intuition: “Combine” smaller clusters into larger clusters

e One Solution: Hierarchical Clustering
e Another Solution: Density-based Clustering



K-means in action: Download

the notebook starter for today
from blackboard (and CSV file)



Density-based
Clustering



DBSCAN

. <— noise

A

/

arbitrarily shaped clusters

[PDF] A density-based algorithm for discovering clusters in large spatial

databases with noise.

M Ester, HP Kriegel, J Sander, X Xu - Kdd, 1996 - aaai.org

Abstract Clustering algorithms are attractive for the task of class identification in spatial
databases. However, the application to large spatial databases rises the following
requirements for clustering algorithms: minimal requirements of domain knowledge to ...
Cited by 8901 Related articles All 70 versions Cite Save More

(one of the most-cited clustering methods)



. <— noise

arbitrarily shaped clusters

Intuition
e A clusteris a region of high density
e Noise points lie in regions of low density



Defining “High Density”

Naive approach

For each point in a cluster there are at least a minimum number (MinPts)
of points in an Eps-neighborhood of that point.

cluster




Defining “High Density”

Eps-neighborhood of a point p

Neos(P) = {a €D | dist(p, q) <Eps}




Defining “High Density”

* |n each cluster there are two kinds of points: o o

— points inside the cluster (core points) . ::.. o

— points on the border (border points) e o ° o

cluster

An Eps-neighborhood of a border point contains significantly less points than
an Eps-neighborhood of a core point.




Defining “High Density”

Better notion of cluster

For every point p in a cluster C there is a point q € C,
so that

(1) p is inside of the Eps-neighborhood of g

and
(2) Ngys(q) contains at least MinPts points.

border points are connected to core points

— core points = high density



Density Reachabillity

Definition

A point p is directly density-reachable from a point q
with regard to the parameters Eps and MinPts, if

1) p e Ng,la) (reachability)

2) | Ngys(a) | 2 MinPts (core point condition)




Density Reachabillity

Definition

A point p is directly density-reachable from a point q
with regard to the parameters Eps and MinPts, if

1) p e Ng,la) (reachability)

2) | Ngys(a) | 2 MinPts (core point condition)

Parameter: MinPts=5

p directly density reachable from g

¢ P e NEps(q)
o | Neps(d) | =6 25 =MinPts  (core point condition)

g not directly density reachable from p

| Neps (P) | =4 <5 =MinPts (core point condition)

Note: This Is an asymmetric relationship



Density Reachabillity

Definition

A point p is density-reachable from a point g

with regard to the parameters Eps and MinPts

if there is a chain of points p4, p,, ... ,ps With p,=q and p,=p
such that p,,, is directly density-reachable from p; for all 1 <i < s-1.

) ° MinPts = 5
y * . | Neps(@) [ =5 = MinPts (core point condition)

° . N | Neps(Pq) [ =6 25 =MinPts (core point condition)




Density Connectivity

Definition (density-connected)

A point p is density-connected to a point g
with regard to the parameters Eps and MinPts
if there is a point v such that both p and g are density-reachable from v.

MinPts = 5

Note: This Is a symmetric relationship



Definition of a Cluster

A cluster with regard to the parameters Eps and MinPts
IS a non-empty subset C of the database D with

1) Forall p, q € D: (Maximality)
If pe C and qisdensity-reachable from p
with regard to the parameters Eps and MinPts,

then g € C.

2) Forall p,q e C: (Connectivity)
The point p is density-connected to g
with regard to the parameters Eps and MinPts.



Definition of Noise

Let C,,...,C, be the clusters of the database D
with regard to the parameters Eps; and MinPts | (i=1,...,k).

The set of points in the database D not belonging to any cluster C,,...,C,
Is called noise:

Noise={peD|pegC forall i=1,...,k}

Mr.-« Noise

/
Cluster




DBSCAN Algorithm

(1) Start with an arbitrary point p from the database and
retrieve all points density-reachable from p
with regard to Eps and MinPts.



DBSCAN Algorithm

(1) Start with an arbitrary point p from the database and
retrieve all points density-reachable from p
with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster
with regard to Eps and MinPts
and all points in the cluster are classified.



DBSCAN Algorithm

(1) Start with an arbitrary point p from the database and
retrieve all points density-reachable from p
with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster
with regard to Eps and MinPts
and all points in the cluster are classified.

(3) If p is a border point, no points are density-reachable from p
and DBSCAN visits the next unclassified point in the database.
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DBSCAN Algorithm

Point types: core,
border and noise

Original Points




DBSCAN strengths

Original Points Clusters

+ Resistant to noise
+ Can handle arbitrary shapes



DBSCAN Weaknesses
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Ground Truth MinPits= 4, Eps=9.92 MinPts= 4, Eps=9.75

Sensitive to hyperparameters



K-means vs DBSCAN
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| et’'s see what It does
with Trump’s tweets...



