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Neural Networks!

e |n 2020, neural networks are the dominant technology
iINn machine learning (for better or worse)!

e Joday, we'll go over some of the fundamentals of NNs
and modern libraries (we saw a preview last week,
with auto-diff)!

* This will also serve as a refresher on gradient descent
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Gradient Descent in Linear Models

Last time we thought in probabilistic terms and
discussed maximum likelihood estimation for
“‘generative” models

Today we'll take the view of learning as search/
optimization

We'll start with linear models, review gradient descent,
and then talk about neural nets + backprop
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The simplest loss is probably 0/1 loss:

O if we're correct
11f we're wrong

What's an algo that minimizes this?



I'he Perceptron!
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Training data < 7

Consider a simple linear model with parameters w

&, (assumes bias term
moved into x or omitted)

The learning problem is to estimate w

What is our criterion for a good w? Minimal loss



Perceptron!

Algorithm 5 PERCEPTRONTRAIN(D, MaxlIter)

: wy 4o, forall d=1...D // initialize weights
= b4+ o0 // initialize bias
5 foriter =1 ... MaxlIter do

¢+ forall (x,y) € Ddo

5: a <$— ZEZI Wy Xy + b // compute activation for this example
6: if ya < o then

7 wy — wg +yxg, forall d=1...D // update weights
8: b<—b+y // update bias
o end if

o end for

.+ end for

= return wy, wy, ..., wp, b

Fig and Alg from CIML [Daume]






Problems with O/1 loss

e |[f we're wrong by .0001 it is "as bad” as being
wrong by .9999

e Because it is discrete, optimization is hard if the
instances are not linearly separable




Smooth loss

|dea: Introduce a “smooth” loss function to make optimization easier
Example: Hinge loss
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Zero/one:

Hinge:
Logistic:

Exponential:

Squared:
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Fig and Eq’s from CIML [Daume]



Regularization

min Zé(yn,w - X, + b)
w,b ”



Regularization

min Y ((ya,w- x; +b) + AR(,b)

Prevent w from “getting to crazy”



Gradient descent

By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355



Algorithm 21 GRADIENTDESCENT(F, K, 771, ...)

w29« {o0,0,...,0) // initialize variable we are optimizing
 fork=1...Kdo

s W« Vo F| wn // compute gradient at current location
¢z kD) 0 gk // take a step down the gradient
5. end for

return zK)

A

Alg from CIML [Daume]
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A
Vil = Vi Loexp [ = (w0 + )] + Vaoy [0l

_Z — yYn(w - xn+b))exp[—yn(w-xn+b)}+Aw

= = L ynxnexp [ = yu(w xy +b)] + Aw



L imitations of linear models



Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)
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Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)

(Non-linear) activation functions



Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)
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The challenge: How do we update weights associated with each node
in this multi-layer regime?



back-propagation = gradient descent + chain rule



Algorithm 27 FORWARDPROPAGATION(x)

. for all input nodes u do
hy, < corresponding feature of x
. end for
. for all nodes v in the network whose parent’s are computed do

1
2
3
4
5 Ay <= Zuepar(v) w(u,v)hu
6
7
8

hy < tanh(ay)
. end for B
. return a,

Tanh is another common activation function



Algorithm 28 BACKPROPAGATION(x, V)

i run FORWARDPROPAGATION(x) to compute activations

2 €y <Y —dy // compute overall network error
5 for all nodes v in the network whose error ¢, is computed do

¢ forallu € par(v) do

5: Suov — —ephy // compute gradient of this edge
6: ey < ey + epwy (1 — tanhz(au)) // compute the “error” of the parent node
- end for

s. end for

o return all gradients g,




What are we doing with these
gradients again?



Gradient descent

By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355



Neural Networks!

If you're interested Iin learning more...

DS4440 // practical neural networks // spring 2019

| —————




