Machine Learning 2

DS 4420 - Spring 2020

Neural Networks & backprop
Byron C Wallace

Neural Networks!

e |n 2020, neural networks are the dominant technology
iINn machine learning (for better or worse)!

Neural Networks!

e |n 2020, neural networks are the dominant technology
iINn machine learning (for better or worse)!

e Joday, we'll go over some of the fundamentals of NNs
and modern libraries (we saw a preview last week,
with auto-diff)!

Neural Networks!

e |n 2020, neural networks are the dominant technology
iINn machine learning (for better or worse)!

e Joday, we'll go over some of the fundamentals of NNs
and modern libraries (we saw a preview last week,
with auto-diff)!

* This will also serve as a refresher on gradient descent

Gradient Descent in Linear Models

Last time we thought in probabilistic terms and
discussed maximum likelihood estimation for
‘generative” models

Gradient Descent in Linear Models

Last time we thought in probabilistic terms and
discussed maximum likelihood estimation for

“‘generative” models

Today we'll take the view of learning as search/
optimization

Gradient Descent in Linear Models

Last time we thought in probabilistic terms and
discussed maximum likelihood estimation for
“‘generative” models

Today we'll take the view of learning as search/
optimization

We'll start with linear models, review gradient descent,
and then talk about neural nets + backprop

| 0SS

The simplest loss is probably 0/1 loss:

O if we're correct
11f we're wrong

What's an algo that minimizes this?

I'he Perceptron!

Training data <></ v P

Consider a simple linear model with parameters w

A ilt-‘:(w-x;')?

Lg/“' - -1 OTLM\SL

—

Training data <></ v P

Consider a simple linear model with parameters w

—

A ~t-F(\:\/?¢ >0

-
LQ/L l OTLM\SL ol (ASSUMES bias term
moved into x or omitted)

Training data < 7

Consider a simple linear model with parameters w

—

A ~l-F(\:\/?¢ >0

-
LQ/L l OTLM\SL ol (ASSUMES bias term
moved into x or omitted)

The learning problem is to estimate w

Training data < 7

Consider a simple linear model with parameters w

&, (assumes bias term
moved into x or omitted)

The learning problem is to estimate w

What is our criterion for a good w? Minimal loss

Perceptron!

Algorithm 5 PERCEPTRONTRAIN(D, MaxlIter)

: wy 4o, forall d=1...D // initialize weights
= b4+ o0 // initialize bias
5 foriter =1 ... MaxlIter do

¢+ forall (x,y) € Ddo

5: a <$— ZEZI Wy Xy + b // compute activation for this example
6: if ya < o then

7 wy — wg +yxg, forall d=1...D // update weights
8: b<—b+y // update bias
o end if

o end for

.+ end for

= return wy, wy, ..., wp, b

Fig and Alg from CIML [Daume]

Problems with O/1 loss

e |[f we're wrong by .0001 it is "as bad” as being
wrong by .9999

e Because it is discrete, optimization is hard if the
instances are not linearly separable

Smooth loss

|dea: Introduce a “smooth” loss function to make optimization easier
Example: Hinge loss

o/t Luss
“l\u?‘, L(S
Lo b o,

"o rewhrd

— —> 9

wnmz Covrec T

C_é\‘,\'\b\\ MAT g

Zero/one:

Hinge:
Logistic:

Exponential:

Squared:

| 0OSSesS

¢ QDJ frhic doos
| | v Oorp. foos
6(0/1)<y’y) 1 <0 [gKng\WQJ (055
g(hln) (y, ?) = maX{O, 1— yy} 1
1
(log) (1,) — N
¢109) (17) o2 log (1 + exp[—y7])
E(exp) (y,]2) = exp[—]/yA] -

Ma(gin= wa X b»

Fig and Eq’s from CIML [Daume]

Regularization

min Zé(yn,w - X, + b)
w,b ”

Regularization

min Y ((ya,w- x; +b) + AR(,b)

Prevent w from “getting to crazy”

Gradient descent

By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355

Algorithm 21 GRADIENTDESCENT(F, K, 771, ...)

w29« {o0,0,...,0) // initialize variable we are optimizing
 fork=1...Kdo

s W« Vo F| wn // compute gradient at current location
¢z kD) 0 gk // take a step down the gradient
5. end for

return zK)

A

Alg from CIML [Daume]

A
Vil = Vi Y exp [= yu(w - xn +)] + Vi [[w]
n

A
Vil = Vi Loexp [= (w0 +)] + Vaoy [0l

_Z — yYn(w - xn+b))exp[—yn(w-xn+b)}+Aw

A
Vil = Vi Loexp [= (w0 +)] + Vaoy [0l

_Z — yYn(w - xn+b))exp[—yn(w-xn+b)}+Aw

= = L ynxnexp [= yu(w xy +b)] + Aw

L imitations of linear models

Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)

X\)(_L X~
X Q. o o,
@ o W
{b \'\/ / h, \'\1
) \l\ll

Y \nf""} L

Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)

(Non-linear) activation functions

Neural networks

ldea: Basically stack together a bunch of linear models.

This introduces hidden units which are neither observations (x) nor
outputs (y)

X\ XL X~
» Q O .
0 @ o W
\'\/ / h, \'\1
(2) Wi

Y \J"‘"} L

The challenge: How do we update weights associated with each node
in this multi-layer regime?

back-propagation = gradient descent + chain rule

Algorithm 27 FORWARDPROPAGATION(x)

. for all input nodes u do
hy, < corresponding feature of x
. end for
. for all nodes v in the network whose parent’s are computed do

1
2
3
4
5 Ay <= Zuepar(v) w(u,v)hu
6
7
8

hy < tanh(ay)
. end for B
. return a,

Tanh is another common activation function

Algorithm 28 BACKPROPAGATION(x, V)

i run FORWARDPROPAGATION(x) to compute activations

2 €y <Y —dy // compute overall network error
5 for all nodes v in the network whose error ¢, is computed do

¢ forallu € par(v) do

5: Suov — —ephy // compute gradient of this edge
6: ey < ey + epwy (1 — tanhz(au)) // compute the “error” of the parent node
- end for

s. end for

o return all gradients g,

What are we doing with these
gradients again?

Gradient descent

By Gradient_descent.png: The original uploader was Olegalexandrov at English Wikipedia.derivative work: Zerodamage - This file was
derived from: Gradient descent.png:, Public Domain, https://commons.wikimedia.org/w/index.php?curid=20569355

Neural Networks!

If you're interested Iin learning more...

DS4440 // practical neural networks // spring 2019

| —————

