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Neural Networks!
• In 2020, neural networks are the dominant technology 

in machine learning (for better or worse)! 

• Today, we’ll spend a day going over some of the 
fundamentals of NNs and modern libraries (we saw a 
preview last time, with auto-diff)! 

• This will also serve as a refresher of gradient descent
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discussed maximum likelihood estimation for 
“generative” models 

Today we’ll take the view of learning as optimization

We’ll start with linear models, review gradient 
descent, and then talk about neural nets + backprop
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Loss

0 if we’re correct 
1 if we’re wrong

The simplest loss is probably 0/1 loss:

What’s an algo that minimizes this?
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Perceptron!

4 | THE PERCEPTRON

Dependencies: Chapter 1, Chapter 3

So far, you’ve seen two types of learning models: in decision
trees, only a small number of features are used to make decisions; in
nearest neighbor algorithms, all features are used equally. Neither of
these extremes is always desirable. In some problems, we might want
to use most of the features, but use some more than others.

In this chapter, we’ll discuss the perceptron algorithm for learn-
ing weights for features. As we’ll see, learning weights for features
amounts to learning a hyperplane classifier: that is, basically a di-
vision of space into two halves by a straight line, where one half is
“positive” and one half is “negative.” In this sense, the perceptron
can be seen as explicitly finding a good linear decision boundary.

4.1 Bio-inspired Learning

Figure 4.1: a picture of a neuron

Folk biology tells us that our brains are made up of a bunch of little
units, called neurons, that send electrical signals to one another. The
rate of firing tells us how “activated” a neuron is. A single neuron,
like that shown in Figure 4.1 might have three incoming neurons.
These incoming neurons are firing at different rates (i.e., have dif-
ferent activations). Based on how much these incoming neurons are
firing, and how “strong” the neural connections are, our main neu-
ron will “decide” how strongly it wants to fire. And so on through
the whole brain. Learning in the brain happens by neurons becom-
ming connected to other neurons, and the strengths of connections
adapting over time.

Figure 4.2: figure showing feature
vector and weight vector and products
and sum

The real biological world is much more complicated than this.
However, our goal isn’t to build a brain, but to simply be inspired
by how they work. We are going to think of our learning algorithm
as a single neuron. It receives input from D-many other neurons,
one for each input feature. The strength of these inputs are the fea-
ture values. This is shown schematically in Figure 4.1. Each incom-
ing connection has a weight and the neuron simply sums up all the
weighted inputs. Based on this sum, it decides whether to “fire” or

Learning Objectives:
• Describe the biological motivation

behind the perceptron.

• Classify learning algorithms based
on whether they are error-driven or
not.

• Implement the perceptron algorithm
for binary classification.

• Draw perceptron weight vectors
and the corresponding decision
boundaries in two dimensions.

• Contrast the decision boundaries
of decision trees, nearest neighbor
algorithms and perceptrons.

• Compute the margin of a given
weight vector on a given data set.

Algebra is nothing more than geometry, in words; geometry is
nothing more than algebra, in pictures. – Sophie Germain

the perceptron 43

Algorithm 5 PerceptronTrain(D, MaxIter)
1: wd  0, for all d = 1 . . . D // initialize weights
2: b  0 // initialize bias
3: for iter = 1 . . . MaxIter do
4: for all (x,y) 2 D do
5: a  ÂD

d=1 wd xd + b // compute activation for this example
6: if ya  0 then
7: wd  wd + yxd, for all d = 1 . . . D // update weights
8: b  b + y // update bias
9: end if

10: end for
11: end for
12: return w0, w1, . . . , wD, b

Algorithm 6 PerceptronTest(w0, w1, . . . , wD, b, x̂)
1: a  ÂD

d=1 wd x̂d + b // compute activation for the test example
2: return sign(a)

on to the next one. Second, it is error driven. This means that, so
long as it is doing well, it doesn’t bother updating its parameters.

The algorithm maintains a “guess” at good parameters (weights
and bias) as it runs. It processes one example at a time. For a given
example, it makes a prediction. It checks to see if this prediction
is correct (recall that this is training data, so we have access to true
labels). If the prediction is correct, it does nothing. Only when the
prediction is incorrect does it change its parameters, and it changes
them in such a way that it would do better on this example next
time around. It then goes on to the next example. Once it hits the
last example in the training set, it loops back around for a specified
number of iterations.

The training algorithm for the perceptron is shown in Algo-
rithm 4.2 and the corresponding prediction algorithm is shown in
Algorithm 4.2. There is one “trick” in the training algorithm, which
probably seems silly, but will be useful later. It is in line 6, when we
check to see if we want to make an update or not. We want to make
an update if the current prediction (just sign(a)) is incorrect. The
trick is to multiply the true label y by the activation a and compare
this against zero. Since the label y is either +1 or �1, you just need
to realize that ya is positive whenever a and y have the same sign.
In other words, the product ya is positive if the current prediction is
correct. It is very very important to check

ya  0 rather than ya < 0. Why??The particular form of update for the perceptron is quite simple.
The weight wd is increased by yxd and the bias is increased by y. The
goal of the update is to adjust the parameters so that they are “bet-
ter” for the current example. In other words, if we saw this example

Fig and Alg from CIML [Daume]
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Problems with 0/1 loss
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•  If we’re wrong by .0001 it is “as bad” as being 
wrong by .9999 

•  Because it is discrete, optimization is hard if the 
instances are not linearly separable



Smooth loss

0 1
This is just one possible loss function and
arguably not a great one

For example we might use Hinge loss

Langley
2 Max o l g z

2 w Xi
raw outputyE I I

0 1 loss

i

2 But regardless of
wrong correct

signed margin which we use

xiw mum LCxi.si w

In addition to the loss function we often
want To keep the weight parameters
small to avoid Overfitting This is

accomplished w a Regularization Tem

RCW e.g
RCW 11Wh w

Greg

Idea: Introduce a “smooth” loss function to make optimization easier
Example: Hinge loss

0 1
This is just one possible loss function and
arguably not a great one

For example we might use Hinge loss

Langley
2 Max o l g z

2 w Xi
raw outputyE I I

0 1 loss

i

2 But regardless of
wrong correct

signed margin which we use

xiw mum LCxi.si w

In addition to the loss function we often
want To keep the weight parameters
small to avoid Overfitting This is

accomplished w a Regularization Tem

RCW e.g
RCW 11Wh w

Greg



Losses

90 a course in machine learning

If you remember from calculus, a convex function is one that looks
like a happy face (^). (On the other hand, a concave function is one
that looks like a sad face (_); an easy mnemonic is that you can hide
under a concave function.) There are two equivalent definitions of
a convex function. The first is that it’s second derivative is always
non-negative. The second, more geometric, defition is that any chord
of the function lies above it. This is shown in Figure 7.3. There you
can see a convex function and a non-convex function, both with two
chords drawn in. In the case of the convex function, the chords lie
above the function. In the case of the non-convex function, there are
parts of the chord that lie below the function.

Figure 7.3: plot of convex and non-
convex functions with two chords each

Convex functions are nice because they are easy to minimize. Intu-
itively, if you drop a ball anywhere in a convex function, it will even-
tually get to the minimum. This is not true for non-convex functions.
For example, if you drop a ball on the very left end of the S-function
from Figure 7.2, it will not go anywhere.

This leads to the idea of convex surrogate loss functions. Since
zero/one loss is hard to optimize, you want to optimize something
else, instead. Since convex functions are easy to optimize, we want
to approximate zero/one loss with a convex function. This approxi-
mating function will be called a surrogate loss. The surrogate losses
we construct will always be upper bounds on the true loss function:
this guarantees that if you minimize the surrogate loss, you are also
pushing down the real loss.

Figure 7.4: surrogate loss fns

There are four common surrogate loss functions, each with their
own properties: hinge loss, logistic loss, exponential loss and
squared loss. These are shown in Figure 7.4 and defined below.
These are defined in terms of the true label y (which is just {�1,+1})
and the predicted value ŷ = w · x + b.

Zero/one: `(0/1)(y, ŷ) = 1[yŷ  0] (7.3)

Hinge: `(hin)(y, ŷ) = max{0, 1 � yŷ} (7.4)

Logistic: `(log)(y, ŷ) =
1

log 2
log (1 + exp[�yŷ]) (7.5)

Exponential: `(exp)(y, ŷ) = exp[�yŷ] (7.6)

Squared: `(sqr)(y, ŷ) = (y � ŷ)2 (7.7)

In the definition of logistic loss, the 1
log 2 term out front is there sim-

ply to ensure that `(log)(y, 0) = 1. This ensures, like all the other
surrogate loss functions, that logistic loss upper bounds the zero/one
loss. (In practice, people typically omit this constant since it does not
affect the optimization.)

There are two big differences in these loss functions. The first
difference is how “upset” they get by erroneous predictions. In the
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Fig and Eq’s from CIML [Daume]
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case of hinge loss and logistic loss, the growth of the function as ŷ
goes negative is linear. For squared loss and exponential loss, it is
super-linear. This means that exponential loss would rather get a few
examples a little wrong than one example really wrong. The other
difference is how they deal with very confident correct predictions.
Once yŷ > 1, hinge loss does not care any more, but logistic and
exponential still think you can do better. On the other hand, squared
loss thinks it’s just as bad to predict +3 on a positive example as it is
to predict �1 on a positive example.

7.3 Weight Regularization

In our learning objective, Eq (7.2), we had a term correspond to the
zero/one loss on the training data, plus a regularizer whose goal
was to ensure that the learned function didn’t get too “crazy.” (Or,
more formally, to ensure that the function did not overfit.) If you re-
place to zero/one loss with a surrogate loss, you obtain the following
objective:

min
w,b

Â
n
`(yn, w · xn + b) + lR(w, b) (7.8)

The question is: what should R(w, b) look like?
From the discussion of surrogate loss function, we would like

to ensure that R is convex. Otherwise, we will be back to the point
where optimization becomes difficult. Beyond that, a common desire
is that the components of the weight vector (i.e., the wds) should be
small (close to zero). This is a form of inductive bias.

Why are small values of wd good? Or, more precisely, why do
small values of wd correspond to simple functions? Suppose that we
have an example x with label +1. We might believe that other ex-
amples, x0 that are nearby x should also have label +1. For example,
if I obtain x0 by taking x and changing the first component by some
small value e and leaving the rest the same, you might think that the
classification would be the same. If you do this, the difference be-
tween ŷ and ŷ0 will be exactly ew1. So if w1 is reasonably small, this
is unlikely to have much of an effect on the classification decision. On
the other hand, if w1 is large, this could have a large effect.

Another way of saying the same thing is to look at the derivative
of the predictions as a function of w1. The derivative of w · x + b with
respect to w1 is:

∂ [w · x + b]
∂w1

=
∂ [Âd wdxd + b]

∂w1
= x1 (7.9)

Interpreting the derivative as the rate of change, we can see that
the rate of change of the prediction function is proportional to the
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Gradient descent
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Algorithm 21 GradientDescent(F , K, h1, . . . )
1: z(0)  h0, 0, . . . , 0i // initialize variable we are optimizing
2: for k = 1 . . . K do
3: g(k)  rzF|z(k-1) // compute gradient at current location
4: z(k)  z(k-1) � h(k)g(k) // take a step down the gradient
5: end for
6: return z(K)

learning problems will be framed as minimization problems (trying
to reach the bottom of a ditch, rather than the top of a hill). There-
fore, descent is the primary approach you will use. One of the major
conditions for gradient ascent being able to find the true, global min-
imum, of its objective function is convexity. Without convexity, all is
lost.

The gradient descent algorithm is sketched in Algorithm 7.4.
The function takes as arguments the function F to be minimized,
the number of iterations K to run and a sequence of learning rates
h1, . . . , hK. (This is to address the case that you might want to start
your mountain climbing taking large steps, but only take small steps
when you are close to the peak.)

The only real work you need to do to apply a gradient descent
method is be able to compute derivatives. For concreteness, suppose
that you choose exponential loss as a loss function and the 2-norm as
a regularizer. Then, the regularized objective function is:

L(w, b) = Â
n

exp
⇥
� yn(w · xn + b)

⇤
+

l

2
||w||2 (7.13)

The only “strange” thing in this objective is that we have replaced
l with l

2 . The reason for this change is just to make the gradients
cleaner. We can first compute derivatives with respect to b:

∂L
∂b

=
∂

∂b Â
n

exp
⇥
� yn(w · xn + b)

⇤
+

∂

∂b
l

2
||w||2 (7.14)

= Â
n

∂

∂b
exp

⇥
� yn(w · xn + b)

⇤
+ 0 (7.15)

= Â
n

✓
∂

∂b
� yn(w · xn + b)

◆
exp

⇥
� yn(w · xn + b)

⇤
(7.16)

= �Â
n

yn exp
⇥
� yn(w · xn + b)

⇤
(7.17)

Before proceeding, it is worth thinking about what this says. From a
practical perspective, the optimization will operate by updating b  
b � h ∂L

∂b . Consider positive examples: examples with yn = +1. We
would hope for these examples that the current prediction, w · xn + b,
is as large as possible. As this value tends toward •, the term in the
exp[] goes to zero. Thus, such points will not contribute to the step.

Alg from CIML [Daume]
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However, if the current prediction is small, then the exp[] term will
be positive and non-zero. This means that the bias term b will be
increased, which is exactly what you would want. Moreover, once all
points are very well classified, the derivative goes to zero. This considered the case of posi-

tive examples. What happens with
negative examples?

?Now that we have done the easy case, let’s do the gradient with
respect to w.

rwL = rw Â
n

exp
⇥
� yn(w · xn + b)

⇤
+rw

l

2
||w||2 (7.18)

= Â
n
(rw � yn(w · xn + b)) exp

⇥
� yn(w · xn + b)

⇤
+ lw

(7.19)

= �Â
n

ynxn exp
⇥
� yn(w · xn + b)

⇤
+ lw (7.20)

Now you can repeat the previous exercise. The update is of the form
w  w � hrwL. For well classified points (ones that tend toward
yn•), the gradient is near zero. For poorly classified points, the gra-
dient points in the direction �ynxn, so the update is of the form
w  w + cynxn, where c is some constant. This is just like the per-
ceptron update! Note that c is large for very poorly classified points
and small for relatively well classified points.

By looking at the part of the gradient related to the regularizer,
the update says: w  w � lw = (1� l)w. This has the effect of
shrinking the weights toward zero. This is exactly what we expect the
regulaizer to be doing!

Figure 7.7: good and bad step sizes

The success of gradient descent hinges on appropriate choices
for the step size. Figure 7.7 shows what can happen with gradient
descent with poorly chosen step sizes. If the step size is too big, you
can accidentally step over the optimum and end up oscillating. If the
step size is too small, it will take way too long to get to the optimum.
For a well-chosen step size, you can show that gradient descent will
approach the optimal value at a fast rate. The notion of convergence
here is that the objective value converges to the true minimum.

Theorem 8 (Gradient Descent Convergence). Under suitable condi-
tions1, for an appropriately chosen constant step size (i.e., h1 = h2, · · · = 1 Specifically the function to be opti-

mized needs to be strongly convex.
This is true for all our problems, pro-
vided l > 0. For l = 0 the rate could
be as bad as O(1/

p
k).

h), the convergence rate of gradient descent is O(1/k). More specifi-
cally, letting z⇤ be the global minimum of F , we have: F (z(k))� F (z⇤) 
2||z(0)�z⇤||2

hk .

A naive reading of this theorem
seems to say that you should choose
huge values of h. It should be obvi-
ous that this cannot be right. What
is missing?

?
The proof of this theorem is a bit complicated because it makes

heavy use of some linear algebra. The key is to set the learning rate
to 1/L, where L is the maximum curvature of the function that is
being optimized. The curvature is simply the “size” of the second
derivative. Functions with high curvature have gradients that change
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function.”
This is a remarkable theorem. Practically, it says that if you give

me a function F and some error tolerance parameter e, I can construct
a two layer network that computes F. In a sense, it says that going
from one layer to two layers completely changes the representational
capacity of your model.

When working with two-layer networks, the key question is: how
many hidden units should I have? If your data is D dimensional
and you have K hidden units, then the total number of parameters
is (D + 2)K. (The first +1 is from the bias, the second is from the
second layer of weights.) Following on from the heuristic that you
should have one to two examples for each parameter you are trying
to estimate, this suggests a method for choosing the number of hid-
den units as roughly bN

D c. In other words, if you have tons and tons
of examples, you can safely have lots of hidden units. If you only
have a few examples, you should probably restrict the number of
hidden units in your network.

The number of units is both a form of inductive bias and a form
of regularization. In both view, the number of hidden units controls
how complex your function will be. Lots of hidden units ) very
complicated function. As the number increases, training performance
continues to get better. But at some point, test performance gets
worse because the network has overfit the data.

10.2 The Back-propagation Algorithm

The back-propagation algorithm is a classic approach to training
neural networks. Although it was not originally seen this way, based
on what you know from the last chapter, you can summarize back-
propagation as:

back-propagation = gradient descent + chain rule (10.4)

More specifically, the set up is exactly the same as before. You are
going to optimize the weights in the network to minimize some ob-
jective function. The only difference is that the predictor is no longer
linear (i.e., ŷ = w · x + b) but now non-linear (i.e., v · tanh(Wx̂)).
The only question is how to do gradient descent on this more compli-
cated objective.

For now, we will ignore the idea of regularization. This is for two
reasons. The first is that you already know how to deal with regular-
ization, so everything you’ve learned before applies. The second is
that historically, neural networks have not been regularized. Instead,
people have used early stopping as a method for controlling overfit-
ting. Presently, it’s not obvious which is a better solution: both are
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Algorithm 27 ForwardPropagation(x)
1: for all input nodes u do
2: hu  corresponding feature of x
3: end for
4: for all nodes v in the network whose parent’s are computed do
5: av  Âu2par(v) w(u,v)hu
6: hv  tanh(av)
7: end for
8: return ay

Algorithm 28 BackPropagation(x, y)
1: run ForwardPropagation(x) to compute activations
2: ey  y� ay // compute overall network error
3: for all nodes v in the network whose error ev is computed do
4: for all u 2 par(v) do
5: gu,v  �evhu // compute gradient of this edge
6: eu  eu + evwu,v(1� tanh2(au)) // compute the “error” of the parent node
7: end for
8: end for
9: return all gradients ge

on the output unit). The graph has D-many inputs (i.e., nodes with
no parent), whose activations hu are given by an input example. An
edge (u, v) is from a parent to a child (i.e., from an input to a hidden
unit, or from a hidden unit to the sink). Each edge has a weight wu,v.
We say that par(u) is the set of parents of u.

There are two relevant algorithms: forward-propagation and back-
propagation. Forward-propagation tells you how to compute the
activation of the sink y given the inputs. Back-propagation computes
derivatives of the edge weights for a given input.

Figure 10.6: picture of forward prop

The key aspect of the forward-propagation algorithm is to iter-
atively compute activations, going deeper and deeper in the DAG.
Once the activations of all the parents of a node u have been com-
puted, you can compute the activation of node u. This is spelled out
in Algorithm 10.4. This is also explained pictorially in Figure 10.6.

Figure 10.7: picture of back prop

Back-propagation (see Algorithm 10.4) does the opposite: it com-
putes gradients top-down in the network. The key idea is to compute
an error for each node in the network. The error at the output unit is
the “true error.” For any input unit, the error is the amount of gradi-
ent that we see coming from our children (i.e., higher in the network).
These errors are computed backwards in the network (hence the
name back-propagation) along with the gradients themselves. This is
also explained pictorially in Figure 10.7.

Given the back-propagation algorithm, you can directly run gradi-
ent descent, using it as a subroutine for computing the gradients.

Tanh is another common activation function
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