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Examples: Independent Events

What’s the probability of getting a sequence of 
1,2,3,4,5,6 if we roll a dice six times?



Examples: Independent Events

A school survey found that 9 out of 10 students 
like pizza. If three students are chosen at random 
with replacement, what is the probability that all 
three students like pizza?



Urns!

12 1. INTRODUCTION

give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.

Red bin Blue bin
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If I randomly pick a fruit from the red bin,  
what is the probability that I get an apple?
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Conditional Probability 
P(fruit = apple | bin = red) = 2 / 8
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Apple

Orange

Joint Probability 
P(fruit = orange , bin = blue) = ?
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.

Apple

Orange

Joint Probability 
P(fruit = orange , bin = blue) = 1 / 12



Two rules of Probability

1. Sum Rule (Marginal Probabilities) 
P(fruit = apple) =  P(fruit = apple , bin = blue) 
                             + P(fruit = apple , bin = red) 
                         =  ?
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.



Two rules of Probability

1. Sum Rule (Marginal Probabilities) 
P(fruit = apple) =  P(fruit = apple , bin = blue) 
                             + P(fruit = apple , bin = red) 
                         =  3 / 12 + 2 / 12 = 5 / 12
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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2. Product Rule 
P(fruit = apple , bin = red) =  ?
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.



Two rules of Probability

2. Product Rule 
P(fruit = apple , bin = red) =   
    P(fruit = apple | bin = red) p(bin = red) 
    = ?
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.



Two rules of Probability

2. Product Rule 
P(fruit = apple , bin = red) =   
    P(fruit = apple | bin = red) p(bin = red) 
    = 2 / 8 * 8 / 12 = 2 / 12
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.



Two rules of Probability

2. Product Rule (reversed) 
P(fruit = apple , bin = red) =   
    P(bin = red | fruit = apple) p(fruit = apple) 
    = ?
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.



Two rules of Probability

2. Product Rule (reversed) 
P(fruit = apple , bin = red) =   
    P(bin = red | fruit = apple) p(fruit = apple) 
    = 2 / 5 * 5 / 12 = 2 / 12
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give us some important insights into the concepts we have introduced in the con-
text of polynomial curve fitting and will allow us to extend these to more complex
situations.

1.2. Probability Theory

A key concept in the field of pattern recognition is that of uncertainty. It arises both
through noise on measurements, as well as through the finite size of data sets. Prob-
ability theory provides a consistent framework for the quantification and manipula-
tion of uncertainty and forms one of the central foundations for pattern recognition.
When combined with decision theory, discussed in Section 1.5, it allows us to make
optimal predictions given all the information available to us, even though that infor-
mation may be incomplete or ambiguous.

We will introduce the basic concepts of probability theory by considering a sim-
ple example. Imagine we have two boxes, one red and one blue, and in the red box
we have 2 apples and 6 oranges, and in the blue box we have 3 apples and 1 orange.
This is illustrated in Figure 1.9. Now suppose we randomly pick one of the boxes
and from that box we randomly select an item of fruit, and having observed which
sort of fruit it is we replace it in the box from which it came. We could imagine
repeating this process many times. Let us suppose that in so doing we pick the red
box 40% of the time and we pick the blue box 60% of the time, and that when we
remove an item of fruit from a box we are equally likely to select any of the pieces
of fruit in the box.

In this example, the identity of the box that will be chosen is a random variable,
which we shall denote by B. This random variable can take one of two possible
values, namely r (corresponding to the red box) or b (corresponding to the blue
box). Similarly, the identity of the fruit is also a random variable and will be denoted
by F . It can take either of the values a (for apple) or o (for orange).

To begin with, we shall define the probability of an event to be the fraction
of times that event occurs out of the total number of trials, in the limit that the total
number of trials goes to infinity. Thus the probability of selecting the red box is 4/10

Figure 1.9 We use a simple example of two
coloured boxes each containing fruit
(apples shown in green and or-
anges shown in orange) to intro-
duce the basic ideas of probability.
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Bayes' Rule

Posterior Likelihood Prior

Probability of rare disease:  0.005

Probability of detection:  0.98
Probability of false positive:  0.05

Probability of disease when test positive?



Bayes' Rule

Posterior Likelihood Prior

0.98 * 0.005 + 0.05 * 0.995 = 0.0547

0.98 * 0.005 = 0.0049

0.0049 / 0.0547 = 0.089
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Random Variables
• Random Variable: A variable with a stochastic outcome  
 
     X = x      x  ∈ {1, 2, 3, 4, 5, 6} 

• Event: A set of outcomes 
 
     X >= 3     {3, 4, 5, 6} 

• Probability: The chance that a randomly selected  
outcome is part of an event 
 
     P(X >= 3) = 4 / 6



Random Variables
• Random Variable: A variable with a stochastic outcome  
 
     X = x      x  ∈ {1, 2, 3, 4, 5, 6} 

• Event: A set of outcomes 
 
     X >= 3     {3, 4, 5, 6} 

• Probability: The chance that a randomly selected  
outcome is part of an event 
 
     P(X >= 3) = 4 / 6



Random Variables
• Random Variable: A variable with a stochastic outcome  
 
     X = x      x  ∈ {1, 2, 3, 4, 5, 6} 

• Event: A set of outcomes 
 
     X >= 3     {3, 4, 5, 6} 

• Probability: The chance that a randomly selected  
outcome is part of an event 
 
     P(X >= 3) = 4 / 6



Distribution
• A distribution maps outcomes to probabilities 
 
     P(X = x)  = 1 / 6 

• Commonly used (or abused) shorthand:  
 
     P(x)  is equivalent to  P(X = x) 



Probability Spaces
Definition: A probability space (Ω, F, P) consists of 

• A sample space Ω (i.e. the set of outcomes)

• A set of events F (i.e. the set possible sets)

• A probability measure P (maps events to probabilities)

P : F ! R
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Axioms of Probability

<latexit sha1_base64="lf+f7t3rAnWp0LosZvdc4nt/pT8="></latexit>



Conditional Probabilities
• Definition: Joint Probability

Events (i.e. sets of outcomes)

Outcomes in both A and B 
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• Definition: Conditional Probability
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Conditional Probability



Conditional Probability

What is the probability P(B3)? 0.1 / 0.34



Conditional Probability

What is the probability P(B2 | A)? 0.12 / 0.3



Conditional Probability

What is the probability P(B1 | B3)? 0.0 / 0.1



Examples: Conditional Probability

1. A math teacher gave her class two tests.  
• 25% of the class passed both tests  
• 42% of the class passed the first test.  

What percent of those who passed the first test 
also passed the second test? 



Examples: Conditional Probability

2. Suppose that for houses in New England  
• 84% of the houses have a garage  
• 65% of the houses have a garage and a back 

yard.  

What is the probability that a house has a 
backyard given that it has a garage?



To Jupyter…



Probability Density Functions
• Problem: If X is a continuous variable, then  
P(X=x) is 0 for any outcome x
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• Solution: Define a density function as a derivative
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Event
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Capital P for probability

Small p for density

Single Outcome



Probability Density Functions
18 1. INTRODUCTION

Figure 1.12 The concept of probability for
discrete variables can be ex-
tended to that of a probability
density p(x) over a continuous
variable x and is such that the
probability of x lying in the inter-
val (x, x+δx) is given by p(x)δx
for δx → 0. The probability
density can be expressed as the
derivative of a cumulative distri-
bution function P (x).

xδx

p(x) P (x)

Because probabilities are nonnegative, and because the value of x must lie some-
where on the real axis, the probability density p(x) must satisfy the two conditions

p(x) ! 0 (1.25)∫ ∞

−∞
p(x) dx = 1. (1.26)

Under a nonlinear change of variable, a probability density transforms differently
from a simple function, due to the Jacobian factor. For instance, if we consider
a change of variables x = g(y), then a function f(x) becomes f̃(y) = f(g(y)).
Now consider a probability density px(x) that corresponds to a density py(y) with
respect to the new variable y, where the suffices denote the fact that px(x) and py(y)
are different densities. Observations falling in the range (x, x + δx) will, for small
values of δx, be transformed into the range (y, y + δy) where px(x)δx ≃ py(y)δy,
and hence

py(y) = px(x)
∣∣∣∣
dx

dy

∣∣∣∣

= px(g(y)) |g′(y)| . (1.27)

One consequence of this property is that the concept of the maximum of a probability
density is dependent on the choice of variable.Exercise 1.4

The probability that x lies in the interval (−∞, z) is given by the cumulative
distribution function defined by

P (z) =
∫ z

−∞
p(x) dx (1.28)

which satisfies P ′(x) = p(x), as shown in Figure 1.12.
If we have several continuous variables x1, . . . , xD, denoted collectively by the

vector x, then we can define a joint probability density p(x) = p(x1, . . . , xD) such
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Cumulative
Distribution
Function (CDF)

Probability 
Density 
Function (PDF)
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Expected Values

Statistics Machine Learning
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X is a random variable
with density p(x)



Mean, Variance, Covariance
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Variance

Covariance

⌃X ,Y = Cov[X , Y ] = E[(X �µX )(Y �µY )] = E[X Y ]�µXµY ke
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Properties of 
Gaussians



Normal Distribution
Normal Distribution

mean = median = mode
symmetry about the center
x ⇠ N(µ, �2) =) f (x) = 1

�
p
2⇡
e�

1
2�2

(x�µ)2

 

Yijun Zhao Linear Regression

Density:
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Multivariate Normal

• 1. CRIM: per capita crime rate by town  

Density: p(x ;µ,⌃) =
1p

(2⇡)D|⌃|
exp�

1
2 (x�µ)>⌃�1(x�µ)
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Vectors
(x1, …, xD)
(μ1, …, μD)

Covariance Matrix

Mean:
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Covariance: Cov[Xd , Xe] = ⌃de
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Covariance Matrices
Density:

Name:

Midterm Exam - CS6220 - Fall 2016 - Section 3

This exam contains 7 questions on 4 pages, with a total of 100 points. You should be able to

provide the answers to each question in the white space allotted below it. Please remember
to put your name on each sheet.

1. (10 points) Below is a set of contour plots for bivariate Gaussian densities, along with a

set of covariance matrices. Draw lines to connect each density plot to the corresponding

covariance matrix.
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2. (10 points) You are given the task of performing linear regression on a dataset with

N = 100 examples and D = 100 000 features. Would you use ordinary least squares

(OLS) to compute the pseudo-inverse, over least mean squares (LMS) to perform gra-

dient descent? Provide argumentation for your answer by listing the computational

complexity of each method.

Answer: Calculation of the pseudo-inverse requires O(ND
2
+D

3
)

computation, whereas a single gradient step requires O(ND) com-

putation. In this case we would use gradient descent, since the

D
3
inverse calculation becomes prohibitively expensive.

3. (10 points) You are given a binary classification task on a dataset with N = 10
9

examples and D = 100 features, which includes both discrete and real-valued columns.

Explain what classifier you would try first for this data and motivate your answer.

Answer: Random forests are a good choice here since they (a) can

handle mixed features and (b) can easily be trained in parallel on

datasets that do not fit in memory, and (c) are typically one of

the best performing black box classifiers.

1

Question: Which covariance matrix Σ  
corresponds to which plot?
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Suppose that x and y are jointly Gaussian:
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(OLS) to compute the pseudo-inverse, over least mean squares (LMS) to perform gra-

dient descent? Provide argumentation for your answer by listing the computational

complexity of each method.

Answer: Calculation of the pseudo-inverse requires O(ND
2
+D

3
)
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examples and D = 100 features, which includes both discrete and real-valued columns.
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handle mixed features and (b) can easily be trained in parallel on

datasets that do not fit in memory, and (c) are typically one of

the best performing black box classifiers.
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Question: What are the marginal  
distributions p(x) and p(y)?

0.3 marginal and conditional distributions

let the vector z = [xTyT ]T be normally distributed according to:

z =

x
y

�
s N

✓
a
b

�
,


A C
CT B

�◆
(5a)

where C is the (non-symmetric) cross-covariance matrix between x and y
which has as many rows as the size of x and as many columns as the size of
y. then the marginal distributions are:

x s N (a,A) (5b)
y s N (b,B) (5c)

and the conditional distributions are:

x|y s N
�
a + CB�1(y � b),A�CB�1CT

�
(5d)

y|x s N
�
b + CTA�1(x� a),B�CTA�1C

�
(5e)

0.4 multiplication

the multiplication of two gaussian functions is another gaussian function
(although no longer normalized). in particular,

N (a,A) · N (b,B) / N (c,C) (6a)

where

C =
�
A�1 + B�1

��1 (6b)

c = CA�1a + CB�1b (6c)

amazingly, the normalization constant zc is Gaussian in either a or b:

zc = (2⇡)�d/2|C|+1/2|A|�1/2|B|�1/2 exp

�1

2
(aTA�1a + bTB�1b� cTC�1c)

�

(6d)

zc(a) s N
�
(A�1CA�1)�1(A�1CB�1)b, (A�1CA�1)�1

�
(6e)

zc(b) s N
�
(B�1CB�1)�1(B�1CA�1)a, (B�1CB�1)�1

�
(6f)
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2. (10 points) You are given the task of performing linear regression on a dataset with

N = 100 examples and D = 100 000 features. Would you use ordinary least squares

(OLS) to compute the pseudo-inverse, over least mean squares (LMS) to perform gra-

dient descent? Provide argumentation for your answer by listing the computational

complexity of each method.
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computation, whereas a single gradient step requires O(ND) com-

putation. In this case we would use gradient descent, since the

D
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inverse calculation becomes prohibitively expensive.

3. (10 points) You are given a binary classification task on a dataset with N = 10
9

examples and D = 100 features, which includes both discrete and real-valued columns.

Explain what classifier you would try first for this data and motivate your answer.

Answer: Random forests are a good choice here since they (a) can

handle mixed features and (b) can easily be trained in parallel on

datasets that do not fit in memory, and (c) are typically one of

the best performing black box classifiers.
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Once can derive the conditional distributions  
p(x | y) and p(y | x) in closed form as well; 
they are also Normals!

0.3 marginal and conditional distributions

let the vector z = [xTyT ]T be normally distributed according to:
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Question: Suppose that X1 and X2 are independent  
Gaussian variables with diagonal covariance

Curse of Dimensionality

<latexit sha1_base64="7cd02X77ncleItmuA8+OnMwdIRg="></latexit><latexit sha1_base64="KZVIsruyvcqbl7l4eOCLVuIuruU="></latexit>

How does the distribution on the distance |X1 - X2|  
change as we increase the dimension D ? 



Central Limit Theorem
2.3. The Gaussian Distribution 79

N = 1

0 0.5 1
0

1

2

3
N = 2

0 0.5 1
0

1

2

3
N = 10

0 0.5 1
0

1

2

3

Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.

If X1, …, XN are  
1. Independent identically distributed (i.i.d.) 
2. Have finite variance  0 < σX 2 < ∞ 
Then, as N approaches ∞, the mean is distributed as
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N

NX

n=1

Xn
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In sum, the Normal (or Gaussian) distribution pops 
up everywhere and is easy to work with; familiarize 
yourself with it!

Summary of Gaussians
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Figure 5.2 A mind
map of the concepts
introduced in this
chapter, along with
when they are used
in other parts of the
book.
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Section 2.7.3 provides much more detailed discussion in the context of
linear functions. We often write

f : RD
! R (5.1a)

x 7! f(x) (5.1b)

to specify a function, where (5.1a) specifies that f is a mapping from
RD to R and (5.1b) specifies the explicit assignment of an input x to
a function value f(x). A function f assigns every input x exactly one
function value f(x).

Example 5.1
Recall the dot product as a special case of an inner product (Section 3.2).
In the previous notation, the function f(x) = x

>
x, x 2 R2, would be

specified as

f : R2
! R (5.2a)

x 7! x
2
1 + x

2
2 . (5.2b)

In this chapter, we will discuss how to compute gradients of functions,
which is often essential to facilitate learning in machine learning models
since the gradient points in the direction of steepest ascent. Therefore,

Draft (2019-12-11) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.
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Figure 5.3 The
average incline of a
function f between
x0 and x0 + �x is
the incline of the
secant (blue)
through f(x0) and
f(x0 + �x) and
given by �y/�x.�y

�x
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vector calculus is one of the fundamental mathematical tools we need in
machine learning. Throughout this book, we assume that functions are
differentiable. With some additional technical definitions, which we do
not cover here, many of the approaches presented can be extended to
sub-differentials (functions that are continuous but not differentiable at
certain points). We will look at an extension to the case of functions with
constraints in Chapter 7.

5.1 Differentiation of Univariate Functions

In the following, we briefly revisit differentiation of a univariate function,
which may be familiar from high school mathematics. We start with the
difference quotient of a univariate function y = f(x), x, y 2 R, which we
will subsequently use to define derivatives.

Definition 5.1 (Difference Quotient). The difference quotient difference quotient

�y

�x
:=

f(x + �x) � f(x)

�x
(5.3)

computes the slope of the secant line through two points on the graph of
f . In Figure 5.3, these are the points with x-coordinates x0 and x0 + �x.

The difference quotient can also be considered the average slope of f
between x and x + �x if we assume f to be a linear function. In the limit
for �x ! 0, we obtain the tangent of f at x, if f is differentiable. The
tangent is then the derivative of f at x.

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of f derivative

at x is defined as the limit
df

dx
:= lim

h!0

f(x + h) � f(x)

h
, (5.4)

and the secant in Figure 5.3 becomes a tangent.

The derivative of f points in the direction of steepest ascent of f .

c�2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.
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differentiable. With some additional technical definitions, which we do
not cover here, many of the approaches presented can be extended to
sub-differentials (functions that are continuous but not differentiable at
certain points). We will look at an extension to the case of functions with
constraints in Chapter 7.

5.1 Differentiation of Univariate Functions

In the following, we briefly revisit differentiation of a univariate function,
which may be familiar from high school mathematics. We start with the
difference quotient of a univariate function y = f(x), x, y 2 R, which we
will subsequently use to define derivatives.

Definition 5.1 (Difference Quotient). The difference quotient difference quotient

�y

�x
:=

f(x + �x) � f(x)

�x
(5.3)

computes the slope of the secant line through two points on the graph of
f . In Figure 5.3, these are the points with x-coordinates x0 and x0 + �x.

The difference quotient can also be considered the average slope of f
between x and x + �x if we assume f to be a linear function. In the limit
for �x ! 0, we obtain the tangent of f at x, if f is differentiable. The
tangent is then the derivative of f at x.

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of f derivative

at x is defined as the limit
df

dx
:= lim

h!0

f(x + h) � f(x)

h
, (5.4)

and the secant in Figure 5.3 becomes a tangent.

The derivative of f points in the direction of steepest ascent of f .
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where we used the power series representations power series
representation

cos(x) =
1X

k=0

(�1)k
1

(2k)!
x
2k
, (5.26)

sin(x) =
1X

k=0

(�1)k
1

(2k + 1)!
x
2k+1

. (5.27)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

Remark. A Taylor series is a special case of a power series

f(x) =
1X

k=0

ak(x � c)k (5.28)

where ak are coefficients and c is a constant, which has the special form
in Definition 5.4. }

5.1.2 Differentiation Rules

In the following, we briefly state basic differentiation rules, where we
denote the derivative of f by f

0.

Product rule: (f(x)g(x))0 = f
0(x)g(x) + f(x)g0(x) (5.29)

Quotient rule:
✓
f(x)

g(x)

◆0

=
f
0(x)g(x) � f(x)g0(x)

(g(x))2
(5.30)

Sum rule: (f(x) + g(x))0 = f
0(x) + g

0(x) (5.31)

Chain rule:
�
g(f(x))

�0
= (g � f)0(x) = g

0(f(x))f 0(x) (5.32)

Here, g � f denotes function composition x 7! f(x) 7! g(f(x)).

Example 5.5 (Chain rule)
Let us compute the derivative of the function h(x) = (2x + 1)4 using the
chain rule. With

h(x) = (2x + 1)4 = g(f(x)) , (5.33)
f(x) = 2x + 1 , (5.34)
g(f) = f

4
, (5.35)

we obtain the derivatives of f and g as

f
0(x) = 2 , (5.36)

g
0(f) = 4f3

, (5.37)

c�2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.
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such that the derivative of h is given as

h
0(x) = g

0(f)f 0(x) = (4f3) · 2
(5.34)
= 4(2x + 1)3 · 2 = 8(2x + 1)3 , (5.38)

where we used the chain rule (5.32) and substituted the definition of f
in (5.34) in g

0(f).

5.2 Partial Differentiation and Gradients

Differentiation as discussed in Section 5.1 applies to functions f of a
scalar variable x 2 R. In the following, we consider the general case
where the function f depends on one or more variables x 2 Rn, e.g.,
f(x) = f(x1, x2). The generalization of the derivative to functions of sev-
eral variables is the gradient.

We find the gradient of the function f with respect to x by varying one
variable at a time and keeping the others constant. The gradient is then
the collection of these partial derivatives.

Definition 5.5 (Partial Derivative). For a function f : Rn
! R, x 7!

f(x), x 2 Rn of n variables x1, . . . , xn we define the partial derivatives aspartial derivative

@f

@x1
= lim

h!0

f(x1 + h, x2, . . . , xn) � f(x)

h

...
@f

@xn
= lim

h!0

f(x1, . . . , xn�1, xn + h) � f(x)

h

(5.39)

and collect them in the row vector

rxf = gradf =
df

dx
=


@f(x)

@x1

@f(x)

@x2
· · ·

@f(x)

@xn

�
2 R1⇥n

, (5.40)

where n is the number of variables and 1 is the dimension of the image/
range/codomain of f . Here, we defined the column vector x = [x1, . . . , xn]>

2 Rn. The row vector in (5.40) is called the gradient of f or the Jacobiangradient

Jacobian and is the generalization of the derivative from Section 5.1.

Remark. This definition of the Jacobian is a special case of the general
definition of the Jacobian for vector-valued functions as the collection of
partial derivatives. We will get back to this in Section 5.3. }

We can use results
from scalar
differentiation: Each
partial derivative is
a derivative with
respect to a scalar.

Example 5.6 (Partial Derivatives Using the Chain Rule)
For f(x, y) = (x + 2y3)2, we obtain the partial derivatives

@f(x, y)

@x
= 2(x + 2y3)

@

@x
(x + 2y3) = 2(x + 2y3) , (5.41)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are

@f(x1, x2)

@x1
= 2x1x2 + x

3
2 (5.43)

@f(x1, x2)

@x2
= x

2
1 + 3x1x

2
2 (5.44)

and the gradient is then

df

dx
=


@f(x1, x2)

@x1

@f(x1, x2)

@x2

�
=

⇥
2x1x2 + x

3
2 x

2
1 + 3x1x

2
2

⇤
2 R1⇥2

.

(5.45)

5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are

@f(x1, x2)

@x1
= 2x1x2 + x

3
2 (5.43)

@f(x1, x2)

@x2
= x

2
1 + 3x1x

2
2 (5.44)

and the gradient is then

df

dx
=


@f(x1, x2)

@x1

@f(x1, x2)

@x2

�
=

⇥
2x1x2 + x

3
2 x

2
1 + 3x1x

2
2

⇤
2 R1⇥2

.

(5.45)

5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
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2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are
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and the gradient is then
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are
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= 2x1x2 + x

3
2 (5.43)
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and the gradient is then

df
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⇥
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are
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3
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and the gradient is then
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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Chain rule:
@

@x
(g � f)(x) =

@

@x

�
g(f(x))

�
=

@g

@f

@f

@x
(5.48)

Let us have a closer look at the chain rule. The chain rule (5.48) resem-This is only an
intuition, but not
mathematically
correct since the
partial derivative is
not a fraction.

bles to some degree the rules for matrix multiplication where we said that
neighboring dimensions have to match for matrix multiplication to be de-
fined; see Section 2.2.1. If we go from left to right, the chain rule exhibits
similar properties: @f shows up in the “denominator” of the first factor
and in the “numerator” of the second factor. If we multiply the factors to-
gether, multiplication is defined, i.e., the dimensions of @f match, and @f

“cancels”, such that @g/@x remains.

5.2.2 Chain Rule

Consider a function f : R2
! R of two variables x1, x2. Furthermore,

x1(t) and x2(t) are themselves functions of t. To compute the gradient of
f with respect to t, we need to apply the chain rule (5.48) for multivariate
functions as

df

dt
=

h
@f
@x1

@f
@x2

i "@x1(t)
@t

@x2(t)
@t

#

=
@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.49)

where d denotes the gradient and @ partial derivatives.

Example 5.8
Consider f(x1, x2) = x

2
1 + 2x2, where x1 = sin t and x2 = cos t, then

df

dt
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
(5.50a)

= 2 sin t
@ sin t

@t
+ 2

@ cos t

@t
(5.50b)

= 2 sin t cos t � 2 sin t = 2 sin t(cos t � 1) (5.50c)

is the corresponding derivative of f with respect to t.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are
themselves functions of two variables s and t, the chain rule yields the
partial derivatives

@f

@s
=

@f

@x1

@x1

@s
+

@f

@x2

@x2

@s
, (5.51)

@f

@t
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.52)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x

3
2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are

@f(x1, x2)

@x1
= 2x1x2 + x

3
2 (5.43)

@f(x1, x2)

@x2
= x

2
1 + 3x1x

2
2 (5.44)

and the gradient is then

df

dx
=


@f(x1, x2)

@x1

@f(x1, x2)

@x2

�
=

⇥
2x1x2 + x

3
2 x

2
1 + 3x1x

2
2

⇤
2 R1⇥2

.

(5.45)

5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x

�
f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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@f(x, y)

@y
= 2(x + 2y3)

@

@y
(x + 2y3) = 12(x + 2y3)y2

. (5.42)

where we used the chain rule (5.32) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature
to define the gradient vector as a column vector, following the conven-
tion that vectors are generally column vectors. The reason why we define
the gradient vector as a row vector is twofold: First, we can consistently
generalize the gradient to vector-valued functions f : Rn

! Rm (then
the gradient becomes a matrix). Second, we can immediately apply the
multi-variate chain rule without paying attention to the dimension of the
gradient. We will discuss both points in Section 5.3. }

Example 5.7 (Gradient)
For f(x1, x2) = x

2
1x2 + x1x
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2 2 R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are
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5.2.1 Basic Rules of Partial Differentiation
Product rule:
(fg)0 = f 0g + fg0,
Sum rule:
(f + g)0 = f 0 + g0,
Chain rule:
(g(f))0 = g0(f)f 0

In the multivariate case, where x 2 Rn, the basic differentiation rules that
we know from school (e.g., sum rule, product rule, chain rule; see also
Section 5.1.2) still apply. However, when we compute derivatives with re-
spect to vectors x 2 Rn we need to pay attention: Our gradients now
involve vectors and matrices, and matrix multiplication is not commuta-
tive (Section 2.2.1), i.e., the order matters.

Here are the general product rule, sum rule, and chain rule:

Product rule:
@

@x

�
f(x)g(x)

�
=

@f

@x
g(x) + f(x)

@g

@x
(5.46)

Sum rule:
@

@x
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f(x) + g(x)

�
=

@f

@x
+

@g

@x
(5.47)
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Chain rule:
@

@x
(g � f)(x) =

@

@x

�
g(f(x))

�
=

@g

@f

@f

@x
(5.48)

Let us have a closer look at the chain rule. The chain rule (5.48) resem-This is only an
intuition, but not
mathematically
correct since the
partial derivative is
not a fraction.

bles to some degree the rules for matrix multiplication where we said that
neighboring dimensions have to match for matrix multiplication to be de-
fined; see Section 2.2.1. If we go from left to right, the chain rule exhibits
similar properties: @f shows up in the “denominator” of the first factor
and in the “numerator” of the second factor. If we multiply the factors to-
gether, multiplication is defined, i.e., the dimensions of @f match, and @f

“cancels”, such that @g/@x remains.

5.2.2 Chain Rule

Consider a function f : R2
! R of two variables x1, x2. Furthermore,

x1(t) and x2(t) are themselves functions of t. To compute the gradient of
f with respect to t, we need to apply the chain rule (5.48) for multivariate
functions as

df

dt
=

h
@f
@x1

@f
@x2

i "@x1(t)
@t

@x2(t)
@t

#

=
@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.49)

where d denotes the gradient and @ partial derivatives.

Example 5.8
Consider f(x1, x2) = x

2
1 + 2x2, where x1 = sin t and x2 = cos t, then

df

dt
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
(5.50a)

= 2 sin t
@ sin t

@t
+ 2

@ cos t

@t
(5.50b)

= 2 sin t cos t � 2 sin t = 2 sin t(cos t � 1) (5.50c)

is the corresponding derivative of f with respect to t.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are
themselves functions of two variables s and t, the chain rule yields the
partial derivatives

@f

@s
=

@f

@x1

@x1

@s
+

@f

@x2

@x2

@s
, (5.51)

@f

@t
=

@f

@x1

@x1

@t
+

@f

@x2

@x2

@t
, (5.52)
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For review: Problem 5.7 in MML



Exerc.se 5.7MML
ar

a f z log It 2 2 Ix X E IRD

ff log a it xxx

t
Itxtx 2x 2

Citrix

b f Cz Sin z z Ax b AEIRE'D x EIR

In
bEIRE

dx
cos M Axtb

I

Cos Axtb A
1 ExD



Exerc.se 5.7MML
ar

a f z log It 2 2 Ix X E IRD

ff log a it xxx

t
Itxtx 2x 2

Citrix

b f Cz Sin z z Ax b AEIRE'D x EIR

In
bEIRE

dx
cos M Axtb

I

Cos Axtb A
1 ExD



intermezzo: the joys of auto-diff…
… or, first steps in pytorch


