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Propabillity



Examples: Independent Events

What's the probability of getting a sequence of
1,2,3,4,5,6 it we roll a dice six times?



Examples: Independent Events

A school survey found that 9 out of 10 students
Ike pizza. It three students are chosen at random
with replacement, what is the probabillity that all
three students like pizza?



Red bin Blue bin



Dependent Events

Red bin Blue bin

[f | randomly pick a fruit from the red bin,
what is the probability that | get an apple?



Dependent Events

Red bin Blue bin

Conditional Probability
P(fruit = apple | bin=red) =2/8



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin=red) =2/ 12



Dependent Events
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Joint Probability
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Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin = blue) =3/12



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = orange , bin = blue) = 7



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = orange , bin = blue) =1/12



Two rules of Probabillity
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1. Sum Rule (Marginal Probabilities)
P(fruit = apple) = P(fruit = apple , bin = blue)
+ P(fruit = apple , bin = red)
= 7
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Two rules of Probabillity
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1. Sum Rule (Marginal Probabilities)
P(fruit = apple) = P(fruit = apple , bin = blue)
+ P(fruit = apple , bin = red)
= 3/12+2/12=5/12




Two rules of Probabillity
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2. Product Rule
P(fruit = apple , bin =red) = ?



Two rules of Probabillity
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2. Product Rule
P(fruit = apple , bin =red) =

P(':rui’[ — apple bin = red) p(bm = red)
=7
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Two rules of Probabillity
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2. Product Rule (reversed)

P(fruit = apple , bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
=7



Two rules of Probabillity
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2. Product Rule (reversed)

P(fruit = apple , bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
=2/5*5/12=2/12



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

Sum Rule: p(y)= Y p(y,x) p(x)=) p(y,x)
X y

Product Rule: p(y,x)=p(y|x)p(x)=p(x|y)p(y)



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

Probability of rare disease: 0.005

Probability of detection: 0.98
Probability of false positive: 0.05

Probability of disease when test positive?



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

p(y,x)=p(y |x)p(x)
p(y) =D p(y,x)

p(x|y)



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

p(y,x)=p(y|x)p(x) 0.98 * 0.005 = 0.0049
p(y) =D p(y,x)

p(x|y)



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

p(y,x)=p(y|x)p(x) 0.98 * 0.005 = 0.0049

p(y) = p(y,x) 0.98*0.005 + 0.05*0.995 = 0.0547

p(x|y)



Bayes Rule

p(x1y) = p(y |:)p(x)/p(y)

Likelihood

Posterior Prior

p(y,x)=p(y |x)p(x) 0.98 * 0.005 = 0.0049
p(y) = p(y,x) 0.98*0.005 + 0.05*0.995 = 0.0547

p(x|y) 0.0049/0.0547 = 0.089



Random Variables

e Random Variable: A variable with a stochastic outcome

X=x Xx€{1,2, 3, 4,5, 6}
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e Random Variable: A variable with a stochastic outcome
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e Event: A set of outcomes

X>=3 {3, 4,5,6)



Random Variables

e Random Variable: A variable with a stochastic outcome

X=x Xx€{1,2, 3, 4,5, 6}

e Event: A set of outcomes

X>=3 {3, 4,5,6)

e Probability: The chance that a randomly selected
outcome is part of an event

PX>=3)=4/6



Distribution

e A distribution maps outcomes to probabilities

AX=x) =1/6

 Commonly used (or abused) shorthand:

P(x) Is equivalentto P(X = Xx)



Probabillity Spaces

Definition: A probabillity space (Q, F, P) consists of
- A sample space Q (i.e. the set of outcomes)
- A set of events F (i.e. the set possible sets)

- A probability measure P (maps events to probabilities)



Probabillity Spaces

Definition: A probabillity space (Q, F, P) consists of
- A sample space Q (i.e. the set of outcomes)
- A set of events F (i.e. the set possible sets)

- A probability measure P (maps events to probabilities)

Axioms of Probability

Pp:F—»R PE)=0VEeF PQ)=1
P(El,Ez):P(El)‘l‘P(Ez) When E1 ﬂEz :w




Conditional Probabilities

e Definition: Joint Probability
/ Outcomes in both A and B

P(A,B) = P(AN B)
X Events (i.e. sets of outcomes)

e Definition: Conditional Probabillity

P(A, B)

P(A|B) = P(B)




Conditional Probability




Conditional Probability

What is the probability P(B3)? 0.1/0.34



Conditional Probability

What is the probability P(Bz | A)? 0.12 /0.3



Conditional Probability

What is the probability P(B1 | Bs)? 0.0 /0.1



Examples: Conditional Probability

1. A math teacher gave her class two tests.
e 25% of the class passed both tests
e 42% of the class passed the first test.

What percent of those who passed the first test
also passed the second test?



Examples: Conditional Probability

2. Suppose that for houses in New England
e 84% of the houses have a garage
e 65% of the houses have a garage and a back
yara.

What is the probability that a house has a
backyard given that it has a garage?



lo Jupyter...



Propability Density Functions

e Problem: If X'is a continuous variable, then

P(X=x) is O for any outcome x Single Outcome

PX=m)=0
X ~ Normal(0,1)
P(3.1<X<3.2)#0
\ Event

e Solution: Define a density function as a derivative
/ Capital P for probability
. P(x—0<X<x+90)
px(x) = lim 25
\ Small p for density




Propability Density Functions

A

P(X <=x)

Cumulative
Distribution
Function (CDF)

px(x)
Probability =

Density
Function (PDF)

>
ox L

(x) = lim P(x—6<X<x+9)
Px _5—>0 20




EXpected Values

X ~p(x) «— Xisarandom variable
with density p(x)

Statistics Machine Learning

3[x]= > p(x)x el (1= D px]y) £ ()

4I[X]zfdxp(x)x 3p(x|y)[f(x)]ZJdXP(XU/)f(X)



Mean, Variance, Covariance

Mean Variance
uy = E[X] o; =Var[X] =E[(X — uy)"]
Covariance

Yxy = Cov[X,Y ]| =E[(X —ux)(Y —uy)]




Properties of
(Gaussians



Normal Distribution

one standard
deviation

—~—

= 58% of data —

—— Q5% of data —
- 99.7% of data -
gt e
3 2 1 0 1 2 3 ¢
- 1 L (x-p)?/o
Density:  p(x;u,0) = exp 2+

2m o2



Multivariate Normal

0.0012
0.001
0.0008 [
0.0006 [
0.0004

0.0002

Vectors
(X1, ..., XD)
(“11 ey HD)\
1 _
Density: p(x; u, %) = eXp—%(x—u)TZ L (x—w)

s J/@2mPl3

Covariance Matrix

Mean: E[X ;] = ug4 Covariance: Cov[X;,X,] =2,



X2

Covariance Matrices

1 _
Density:  f(x;w,X) = exp 2~ = (x—w)
Vv (2m)P[3]
= L E— 3T 3 33—
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Question: Which covariance matrix 2>

corresponds to which plot?



Marginals and Conditionals

Suppose that x and y are jointly Gaussian:

L, X NN(_;, A C>

Y _CT B
T Question: What are the marginal
L : distributions p(x) and p(y)?
I S ) h _
Y e A x ~N(a,A)
AR SR YNN(b,B)

X



Marginals and Conditionals

Suppose that x and y are jointly Gaussian:

X al [A C
“Tly NN(JD_ |C* B_>

;_ —— 1 1 Once can derive the conditional distributions
L | p(x|y)and p(y| x) in closed form as well;
] e ) V- {  they are also Normals!
-1t : .
Ll f
3 i

-3-2-10 1 2 3
X



Curse of Dimensionality

Question: Suppose that X1 and X2 are independent
Gaussian variables with diagonal covariance

X, ~ Normal(0, o) X, ~ Normal(0, c°Ip)

How does the distribution on the distance | X1 - X?]
change as we increase the dimension D 7

Histogram of |X_1 - X_2| values 40 Distance to Closest Point for 100 Samples




Central L|m|t Theore

N

1
X =X 2(X1 +X5) X = NZ
n=1

It X1, ..., Xyare
1. Independent identically distributed (i.i.d.)
2. Have finite variance 0 < ox2<

Then, as N approaches o, the mean is distributed as

.1 &

p(x) = Normal(a’c;uX,Gf(/N) X = Y: X,

n=1



Summary of Gaussians

n sum, the Normal (or Gaussian) distribution pops
Up everywhere and is easy to work with; familiarize
yourself with it!




Some Calc Review
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Univariate Functions

y= f(z), z,y € R

Difference Quotient

Sy flo+6w) - f@
ox 0T




Univariate Functions

Derivative (formally)

df _ . fla+h) - @)

dax h—0 h




Univariate Functions

Derivative (formally)

df _ . fla+h) - @)

dax h—0 h

The derivative points in the direction of steepest ascent
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Spot the derivative

AN\ AN
2+ 2+
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Example from Khan academy



Spot the derivative
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A\ 4 A 7

Example from Khan academy



Sum Rule




Product Rule




Chain Rule




Gradients

Usually in ML we care about multivariate functions

x € R" of n variables x4, ..., x,

f:R* - R



Gradients

Partial derivatives are taken w.r.t. one dimension at a time:

ﬁ — lim f(ajl_l_hax%"'axn)_f(w)
axl _h—>0 h
af f(xla'“?ajn—hajn_'_h) _f(m)

ox,, B }Lli% h




Gradients

Group the gradients into a vector (the gradient)

Ot~ Y [0F@) i) 0f@)] e

dx N 5’331 8562 axn




Example

f(xla xQ) — QU%QEQ I

8f($1, xQ)

By = 22129 + X5
1
2

ﬁ — af(fljl,ﬂfg) af(ﬁlfl,llj’z)

— [2$1$2 + x5 xf + 3$1$%] c R'*°
d 8331 85132




Rules still hola!

.9 _9df | 0Og
Sum rule: P (f(x) +g(x)) = ot
o, O P
Product rule: a—w(f(a;)g(a;)) — 8—£g($) 4 f(w)a_i
Chainule: (g0 )@) = 5 (/@) = 5o




Rules still hola!

.9 _9df | 0Og
Sum rule: P (f(x) +g(x)) = ot
o, O P
Product rule: a—w(f(a;)g(a;)) — 8—£g($) 4 f(w)a_i
Chainule: (g0 )@) = 5 (/@) = 5o

... but be mindful of dims!



For review: Problem 5.7 in MML

5.7 Compute the derivatives d f /d« of the following functions by using the chain
rule. Provide the dimensions of every single partial derivative. Describe your
steps in detail.

d.

f(z) =log(1l+ 2), =z x, xecR”

f(z)=sin(z), z=Az+b, AcRF*P zecR” beRF

where sin(-) is applied to every element of z.
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iIntermezzo: the joys of auto-diff...

... or, first steps in pytorch



