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Foreword

Machine learning is the latest in a long line of attempts to distill human
knowledge and reasoning into a form that is suitable for constructing ma-
chines and engineering automated systems. As machine learning becomes
more ubiquitous and its software packages become easier to use, it is nat-
ural and desirable that the low-level technical details are abstracted away
and hidden from the practitioner. However, this brings with it the danger
that a practitioner becomes unaware of the design decisions and, hence,
the limits of machine learning algorithms.

The enthusiastic practitioner who is interested to learn more about the
magic behind successful machine learning algorithms currently faces a
daunting set of pre-requisite knowledge:

= Programming languages and data analysis tools
» Large-scale computation and the associated frameworks
» Mathematics and statistics and how machine learning builds on it

At universities, introductory courses on machine learning tend to spend
early parts of the course covering some of these pre-requisites. For histori-
cal reasons, courses in machine learning tend to be taught in the computer
science department, where students are often trained in the first two areas
of knowledge, but not so much in mathematics and statistics.

Current machine learning textbooks primarily focus on machine learn-
ing algorithms and methodologies and assume that the reader is com-
petent in mathematics and statistics. Therefore, these books only spend
one or two chapters of background mathematics, either at the beginning
of the book or as appendices. We have found many people who want to
delve into the foundations of basic machine learning methods who strug-
gle with the mathematical knowledge required to read a machine learning
textbook. Having taught undergraduate and graduate courses at universi-
ties, we find that the gap between high school mathematics and the math-
ematics level required to read a standard machine learning textbook is too
big for many people.

This book brings the mathematical foundations of basic machine learn-
ing concepts to the fore and collects the information in a single place so
that this skills gap is narrowed or even closed.
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“Math is linked in
the popular mind
with phobia and
anxiety. You'd think
we're discussing
spiders.” (Strogatz,
2014, page 281)

2 Foreword

Why Another Book on Machine Learning?

Machine learning builds upon the language of mathematics to express
concepts that seem intuitively obvious but that are surprisingly difficult
to formalize. Once formalized properly, we can gain insights into the task
we want to solve. One common complaint of students of mathematics
around the globe is that the topics covered seem to have little relevance
to practical problems. We believe that machine learning is an obvious and
direct motivation for people to learn mathematics.

This book is intended to be a guidebook to the vast mathematical lit-
erature that forms the foundations of modern machine learning. We mo-
tivate the need for mathematical concepts by directly pointing out their
usefulness in the context of fundamental machine learning problems. In
the interest of keeping the book short, many details and more advanced
concepts have been left out. Equipped with the basic concepts presented
here, and how they fit into the larger context of machine learning, the
reader can find numerous resources for further study, which we provide at
the end of the respective chapters. For readers with a mathematical back-
ground, this book provides a brief but precisely stated glimpse of machine
learning. In contrast to other books that focus on methods and models
of machine learning (MacKay, 2003; Bishop, 2006; Alpaydin, 2010; Bar-
ber, 2012; Murphy, 2012; Shalev-Shwartz and Ben-David, 2014; Rogers
and Girolami, 2016) or programmatic aspects of machine learning (Miiller
and Guido, 2016; Raschka and Mirjalili, 2017; Chollet and Allaire, 2018),
we provide only four representative examples of machine learning algo-
rithms. Instead, we focus on the mathematical concepts behind the models
themselves. We hope that readers will be able to gain a deeper understand-
ing of the basic questions in machine learning and connect practical ques-
tions arising from the use of machine learning with fundamental choices
in the mathematical model.

We do not aim to write a classical machine learning book. Instead, our
intention is to provide the mathematical background, applied to four cen-
tral machine learning problems, to make it easier to read other machine
learning textbooks.

Who Is the Target Audience?

As applications of machine learning become widespread in society, we
believe that everybody should have some understanding of its underlying
principles. This book is written in an academic mathematical style, which
enables us to be precise about the concepts behind machine learning. We
encourage readers unfamiliar with this seemingly terse style to persevere
and to keep the goals of each topic in mind. We sprinkle comments and
remarks throughout the text, in the hope that it provides useful guidance
with respect to the big picture.

The book assumes the reader to have mathematical knowledge commonly
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covered in high school mathematics and physics. For example, the reader
should have seen derivatives and integrals before, and geometric vectors
in two or three dimensions. Starting from there, we generalize these con-
cepts. Therefore, the target audience of the book includes undergraduate
university students, evening learners and learners participating in online
machine learning courses.

In analogy to music, there are three types of interaction that people
have with machine learning:

Astute Listener The democratization of machine learning by the pro-
vision of open-source software, online tutorials and cloud-based tools al-
lows users to not worry about the specifics of pipelines. Users can focus on
extracting insights from data using off-the-shelf tools. This enables non-
tech-savvy domain experts to benefit from machine learning. This is sim-
ilar to listening to music; the user is able to choose and discern between
different types of machine learning, and benefits from it. More experi-
enced users are like music critics, asking important questions about the
application of machine learning in society such as ethics, fairness, and pri-
vacy of the individual. We hope that this book provides a foundation for
thinking about the certification and risk management of machine learning
systems, and allows them to use their domain expertise to build better
machine learning systems.

Experienced Artist  Skilled practitioners of machine learning can plug
and play different tools and libraries into an analysis pipeline. The stereo-
typical practitioner would be a data scientist or engineer who understands
machine learning interfaces and their use cases, and is able to perform
wonderful feats of prediction from data. This is similar to a virtuoso play-
ing music, where highly skilled practitioners can bring existing instru-
ments to life and bring enjoyment to their audience. Using the mathe-
matics presented here as a primer, practitioners would be able to under-
stand the benefits and limits of their favorite method, and to extend and
generalize existing machine learning algorithms. We hope that this book
provides the impetus for more rigorous and principled development of
machine learning methods.

Fledgling Composer As machine learning is applied to new domains,
developers of machine learning need to develop new methods and extend
existing algorithms. They are often researchers who need to understand
the mathematical basis of machine learning and uncover relationships be-
tween different tasks. This is similar to composers of music who, within
the rules and structure of musical theory, create new and amazing pieces.
We hope this book provides a high-level overview of other technical books
for people who want to become composers of machine learning. There is
a great need in society for new researchers who are able to propose and
explore novel approaches for attacking the many challenges of learning
from data.
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Table of Symbols

Symbol Typical meaning

a,b,c,a, B,y Scalars are lowercase

T,Y,z Vectors are bold lowercase

A, B,C Matrices are bold uppercase
xzT, A" Transpose of a vector or matrix
A Inverse of a matrix

(x,y) Inner product of « and y

x'y Dot product of  and y

B = (b1, by,b3) (Ordered) tuple
B = [b;, by, b3] Matrix of column vectors stacked horizontally
B ={by,by,bs} Set of vectors (unordered)

7, N Integers and natural numbers, respectively

R,C Real and complex numbers, respectively

R n-dimensional vector space of real numbers

YV Universal quantifier: for all x

Jx Existential quantifier: there exists x

a:=bd a is defined as b

a=:b b is defined as a

axb a is proportional to b, i.e., a = constant - b

gof Function composition: “g after f”

= If and only if

== Implies

A,C Sets

ae A a is an element of the set A

0 Empty set

D Number of dimensions; indexed by d =1,...,D
N Number of data points; indexed by n =1,..., N
I, Identity matrix of size m x m

0., Matrix of zeros of size m X n

1., Matrix of ones of size m X n

e; Standard/canonical vector (where 7 is the component that is 1)
dim Dimensionality of vector space

rk(A) Rank of matrix A

Im(®) Image of linear mapping ®

ker(®) Kernel (null space) of a linear mapping ®
span|[b;| Span (generating set) of b,

tr(A) Trace of A

det(A) Determinant of A

|| Absolute value or determinant (depending on context)
|1l Norm; Euclidean unless specified

A Eigenvalue or Lagrange multiplier

B, Eigenspace corresponding to eigenvalue A
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Symbol Typical meaning

0 Parameter vector

91 Partial derivative of f with respect to x

é—f Total derivative of f with respect to x

\Y% Gradient

£ Lagrangian

L Negative log-likelihood

() Binomial coefficient, n choose k

Vx|[x] Variance of « with respect to the random variable X
Ex|[x] Expectation of  with respect to the random variable X

Covx y[x,y] Covariance between x and y.

XUY|Z X is conditionally independent of Y given Z

X~p Random variable X is distributed according to p
N(p, 2) Gaussian distribution with mean p and covariance X
Ber(u) Bernoulli distribution with parameter p

Bin(N, u) Binomial distribution with parameters NV, u

Beta(a, f3) Beta distribution with parameters «, 8

Table of Abbreviations and Acronyms

Acronym Meaning

e.g. Exempli gratia (Latin: for example)

GMM Gaussian mixture model

i.e. Id est (Latin: this means)

iid. Independent, identically distributed

MAP Maximum a posteriori

MLE Maximum likelihood estimation/estimator
ONB Orthonormal basis

PCA Principal component analysis

PPCA Probabilistic principal component analysis
REF Row-echelon form

SPD Symmetric, positive definite

SVM Support vector machine
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1

Introduction and Motivation

Machine learning is about designing algorithms that automatically extract
valuable information from data. The emphasis here is on “automatic”, i.e.,
machine learning is concerned about general-purpose methodologies that
can be applied to many datasets, while producing something that is mean-
ingful. There are three concepts that are at the core of machine learning:
data, a model, and learning.

Since machine learning is inherently data driven, data is at the core
of machine learning. The goal of machine learning is to design general-
purpose methodologies to extract valuable patterns from data, ideally
without much domain-specific expertise. For example, given a large corpus
of documents (e.g., books in many libraries), machine learning methods
can be used to automatically find relevant topics that are shared across
documents (Hoffman et al., 2010). To achieve this goal, we design mod-
els that are typically related to the process that generates data, similar to
the dataset we are given. For example, in a regression setting, the model
would describe a function that maps inputs to real-valued outputs. To
paraphrase Mitchell (1997): A model is said to learn from data if its per-
formance on a given task improves after the data is taken into account.
The goal is to find good models that generalize well to yet unseen data,
which we may care about in the future. Learning can be understood as a
way to automatically find patterns and structure in data by optimizing the
parameters of the model.

While machine learning has seen many success stories, and software is
readily available to design and train rich and flexible machine learning
systems, we believe that the mathematical foundations of machine learn-
ing are important in order to understand fundamental principles upon
which more complicated machine learning systems are built. Understand-
ing these principles can facilitate creating new machine learning solutions,
understanding and debugging existing approaches, and learning about the
inherent assumptions and limitations of the methodologies we are work-
ing with.
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12 Introduction and Motivation

1.1 Finding Words for Intuitions

A challenge we face regularly in machine learning is that concepts and
words are slippery, and a particular component of the machine learning
system can be abstracted to different mathematical concepts. For example,
the word “algorithm” is used in at least two different senses in the con-
text of machine learning. In the first sense, we use the phrase “machine
learning algorithm” to mean a system that makes predictions based on in-
put data. We refer to these algorithms as predictors. In the second sense,
we use the exact same phrase “machine learning algorithm” to mean a
system that adapts some internal parameters of the predictor so that it
performs well on future unseen input data. Here we refer to this adapta-
tion as training a system.

This book will not resolve the issue of ambiguity, but we want to high-
light upfront that, depending on the context, the same expressions can
mean different things. However, we attempt to make the context suffi-
ciently clear to reduce the level of ambiguity.

The first part of this book introduces the mathematical concepts and
foundations needed to talk about the three main components of a machine
learning system: data, models, and learning. We will briefly outline these
components here, and we will revisit them again in Chapter 8 once we
have discussed the necessary mathematical concepts.

While not all data is numerical, it is often useful to consider data in
a number format. In this book, we assume that data has already been
appropriately converted into a numerical representation suitable for read-
ing into a computer program. Therefore, we think of data as vectors. As
another illustration of how subtle words are, there are (at least) three
different ways to think about vectors: a vector as an array of numbers (a
computer science view), a vector as an arrow with a direction and magni-
tude (a physics view), and a vector as an object that obeys addition and
scaling (a mathematical view).

A model is typically used to describe a process for generating data, sim-
ilar to the dataset at hand. Therefore, good models can also be thought
of as simplified versions of the real (unknown) data-generating process,
capturing aspects that are relevant for modeling the data and extracting
hidden patterns from it. A good model can then be used to predict what
would happen in the real world without performing real-world experi-
ments.

We now come to the crux of the matter, the learning component of
machine learning. Assume we are given a dataset and a suitable model.
Training the model means to use the data available to optimize some pa-
rameters of the model with respect to a utility function that evaluates how
well the model predicts the training data. Most training methods can be
thought of as an approach analogous to climbing a hill to reach its peak.
In this analogy, the peak of the hill corresponds to a maximum of some
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desired performance measure. However, in practice, we are interested in
the model to perform well on unseen data. Performing well on data that
we have already seen (training data) may only mean that we found a
good way to memorize the data. However, this may not generalize well to
unseen data, and, in practical applications, we often need to expose our
machine learning system to situations that it has not encountered before.

Let us summarize the main concepts of machine learning that we cover
in this book:

» We represent data as vectors.

= We choose an appropriate model, either using the probabilistic or opti-
mization view.

= We learn from available data by using numerical optimization methods
with the aim that the model performs well on data not used for training.

1.2 Two Ways to Read This Book

We can consider two strategies for understanding the mathematics for
machine learning:

» Bottom-up: Building up the concepts from foundational to more ad-
vanced. This is often the preferred approach in more technical fields,
such as mathematics. This strategy has the advantage that the reader
at all times is able to rely on their previously learned concepts. Unfor-
tunately, for a practitioner many of the foundational concepts are not
particularly interesting by themselves, and the lack of motivation means
that most foundational definitions are quickly forgotten.

= Top-down: Drilling down from practical needs to more basic require-
ments. This goal-driven approach has the advantage that the readers
know at all times why they need to work on a particular concept, and
there is a clear path of required knowledge. The downside of this strat-
egy is that the knowledge is built on potentially shaky foundations, and
the readers have to remember a set of words that they do not have any
way of understanding.

We decided to write this book in a modular way to separate foundational
(mathematical) concepts from applications so that this book can be read
in both ways. The book is split into two parts, where Part I lays the math-
ematical foundations and Part II applies the concepts from Part I to a set
of fundamental machine learning problems, which form four pillars of
machine learning as illustrated in Figure 1.1: regression, dimensionality
reduction, density estimation, and classification. Chapters in Part I mostly
build upon the previous ones, but it is possible to skip a chapter and work
backward if necessary. Chapters in Part II are only loosely coupled and
can be read in any order. There are many pointers forward and backward
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between the two parts of the book to link mathematical concepts with
machine learning algorithms.

Of course there are more than two ways to read this book. Most readers
learn using a combination of top-down and bottom-up approaches, some-
times building up basic mathematical skills before attempting more com-
plex concepts, but also choosing topics based on applications of machine
learning.

Part I Is about Mathematics

The four pillars of machine learning we cover in this book (see Figure 1.1)
require a solid mathematical foundation, which is laid out in Part I.

We represent numerical data as vectors and represent a table of such
data as a matrix. The study of vectors and matrices is called linear algebra,
which we introduce in Chapter 2. The collection of vectors as a matrix is
also described there.

Given two vectors representing two objects in the real world, we want
to make statements about their similarity. The idea is that vectors that
are similar should be predicted to have similar outputs by our machine
learning algorithm (our predictor). To formalize the idea of similarity be-
tween vectors, we need to introduce operations that take two vectors as
input and return a numerical value representing their similarity. The con-
struction of similarity and distances is central to analytic geometry and is
discussed in Chapter 3.

In Chapter 4, we introduce some fundamental concepts about matri-
ces and matrix decomposition. Some operations on matrices are extremely
useful in machine learning, and they allow for an intuitive interpretation
of the data and more efficient learning.

We often consider data to be noisy observations of some true underly-
ing signal. We hope that by applying machine learning we can identify the
signal from the noise. This requires us to have a language for quantify-
ing what “noise” means. We often would also like to have predictors that
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allow us to express some sort of uncertainty, e.g., to quantify the confi-
dence we have about the value of the prediction at a particular test data
point. Quantification of uncertainty is the realm of probability theory and
is covered in Chapter 6.

To train machine learning models, we typically find parameters that
maximize some performance measure. Many optimization techniques re-
quire the concept of a gradient, which tells us the direction in which to
search for a solution. Chapter 5 is about vector calculus and details the
concept of gradients, which we subsequently use in Chapter 7, where we
talk about optimization to find maxima/minima of functions.

Part II Is about Machine Learning

The second part of the book introduces four pillars of machine learning
as shown in Figure 1.1. We illustrate how the mathematical concepts in-
troduced in the first part of the book are the foundation for each pillar.
Broadly speaking, chapters are ordered by difficulty (in ascending order).

In Chapter 8, we restate the three components of machine learning
(data, models, and parameter estimation) in a mathematical fashion. In
addition, we provide some guidelines for building experimental set-ups
that guard against overly optimistic evaluations of machine learning sys-
tems. Recall that the goal is to build a predictor that performs well on
unseen data.

In Chapter 9, we will have a close look at linear regression, where our
objective is to find functions that map inputs « € R” to corresponding ob-
served function values y € R, which we can interpret as the labels of their
respective inputs. We will discuss classical model fitting (parameter esti-
mation) via maximum likelihood and maximum a posteriori estimation,
as well as Bayesian linear regression, where we integrate the parameters
out instead of optimizing them.

Chapter 10 focuses on dimensionality reduction, the second pillar in Fig-
ure 1.1, using principal component analysis. The key objective of dimen-
sionality reduction is to find a compact, lower-dimensional representation
of high-dimensional data x € R, which is often easier to analyze than
the original data. Unlike regression, dimensionality reduction is only con-
cerned about modeling the data — there are no labels associated with a
data point «.

In Chapter 11, we will move to our third pillar: density estimation. The
objective of density estimation is to find a probability distribution that de-
scribes a given dataset. We will focus on Gaussian mixture models for this
purpose, and we will discuss an iterative scheme to find the parameters of
this model. As in dimensionality reduction, there are no labels associated
with the data points € RP. However, we do not seek a low-dimensional
representation of the data. Instead, we are interested in a density model
that describes the data.

Chapter 12 concludes the book with an in-depth discussion of the fourth
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pillar: classification. We will discuss classification in the context of support
vector machines. Similar to regression (Chapter 9), we have inputs « and
corresponding labels y. However, unlike regression, where the labels were
real-valued, the labels in classification are integers, which requires special
care.

1.3 Exercises and Feedback

We provide some exercises in Part I, which can be done mostly by pen and
paper. For Part II, we provide programming tutorials (jupyter notebooks)
to explore some properties of the machine learning algorithms we discuss
in this book.

We appreciate that Cambridge University Press strongly supports our
aim to democratize education and learning by making this book freely
available for download at

https://mml-book.com

where tutorials, errata, and additional materials can be found. Mistakes
can be reported and feedback provided using the preceding URL.
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2

Linear Algebra

When formalizing intuitive concepts, a common approach is to construct a
set of objects (symbols) and a set of rules to manipulate these objects. This
is known as an algebra. Linear algebra is the study of vectors and certain
rules to manipulate vectors. The vectors many of us know from school are
called “geometric vectors”, which are usually denoted by a small arrow
above the letter, e.g., 2 and . In this book, we discuss more general
concepts of vectors and use a bold letter to represent them, e.g.,  and y.

In general, vectors are special objects that can be added together and
multiplied by scalars to produce another object of the same kind. From
an abstract mathematical viewpoint, any object that satisfies these two
properties can be considered a vector. Here are some examples of such
vector objects:

1. Geometric vectors. This example of a vector may be familiar from high
school mathematics and physics. Geometric vectors — see Figure 2.1(a)
— are directed segments, which can be drawn (at least in two dimen-
sions). Two geometric vectors 5, ﬂ can be added, such that  + 5 =z
is another geometric vector. Furthermore, multiplication by a scalar
A 3, A € R, is also a geometric vector. In fact, it is the original vector
scaled by A. Therefore, geometric vectors are instances of the vector
concepts introduced previously. Interpreting vectors as geometric vec-
tors enables us to use our intuitions about direction and magnitude to
reason about mathematical operations.

2. Polynomials are also vectors; see Figure 2.1(b): Two polynomials can

— —
T+ Y

8l
<
|

(a) Geometric vectors. (b) Polynomials.
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be added together, which results in another polynomial; and they can
be multiplied by a scalar A € R, and the result is a polynomial as
well. Therefore, polynomials are (rather unusual) instances of vectors.
Note that polynomials are very different from geometric vectors. While
geometric vectors are concrete “drawings”, polynomials are abstract
concepts. However, they are both vectors in the sense previously de-
scribed.

3. Audio signals are vectors. Audio signals are represented as a series of
numbers. We can add audio signals together, and their sum is a new
audio signal. If we scale an audio signal, we also obtain an audio signal.
Therefore, audio signals are a type of vector, too.

4. Elements of R™ (tuples of n real numbers) are vectors. R” is more
abstract than polynomials, and it is the concept we focus on in this
book. For instance,

1
2] e R?
3

a= 2.1

is an example of a triplet of numbers. Adding two vectors a,b € R"
component-wise results in another vector: a + b = ¢ € R™. Moreover,
multiplying @ € R” by A € R results in a scaled vector Aa € R".
Considering vectors as elements of R™ has an additional benefit that
it loosely corresponds to arrays of real numbers on a computer. Many
programming languages support array operations, which allow for con-
venient implementation of algorithms that involve vector operations.

Linear algebra focuses on the similarities between these vector concepts.
We can add them together and multiply them by scalars. We will largely
focus on vectors in R" since most algorithms in linear algebra are for-
mulated in R"™. We will see in Chapter 8 that we often consider data to
be represented as vectors in R”. In this book, we will focus on finite-
dimensional vector spaces, in which case there is a 1:1 correspondence
between any kind of vector and R”. When it is convenient, we will use
intuitions about geometric vectors and consider array-based algorithms.

One major idea in mathematics is the idea of “closure”. This is the ques-
tion: What is the set of all things that can result from my proposed oper-
ations? In the case of vectors: What is the set of vectors that can result by
starting with a small set of vectors, and adding them to each other and
scaling them? This results in a vector space (Section 2.4). The concept of
a vector space and its properties underlie much of machine learning. The
concepts introduced in this chapter are summarized in Figure 2.2.

This chapter is mostly based on the lecture notes and books by Drumm
and Weil (2001), Strang (2003), Hogben (2013), Liesen and Mehrmann
(2015), as well as Pavel Grinfeld’s Linear Algebra series. Other excellent
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Linear algebra plays an important role in machine learning and gen-
eral mathematics. The concepts introduced in this chapter are further ex-
panded to include the idea of geometry in Chapter 3. In Chapter 5, we
will discuss vector calculus, where a principled knowledge of matrix op-
erations is essential. In Chapter 10, we will use projections (to be intro-
duced in Section 3.8) for dimensionality reduction with principal compo-
nent analysis (PCA). In Chapter 9, we will discuss linear regression, where
linear algebra plays a central role for solving least-squares problems.

2.1 Systems of Linear Equations

Systems of linear equations play a central part of linear algebra. Many
problems can be formulated as systems of linear equations, and linear
algebra gives us the tools for solving them.

Example 2.1

A company produces products Ni,...,IN, for which resources
Ry,...,R,, are required. To produce a unit of product N;, a;; units of
resource R; are needed, wherei=1,...,mand j=1,...,n.

The objective is to find an optimal production plan, i.e., a plan of how
many units x; of product N, should be produced if a total of b; units of
resource R; are available and (ideally) no resources are left over.

If we produce z, ..., z, units of the corresponding products, we need
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a total of
;1T + te + Ain Ly (2-2)

many units of resource R;. An optimal production plan (z1,...,z,) € R",
therefore, has to satisfy the following system of equations:

a11%1 + -+ + Q1T = by
: : 2.3)
Am1T1 + - + ATy = bm

where a,;; € R and b, € R.

Equation (2.3) is the general form of a system of linear equations, and
Zi,...,x, are the unknowns of this system. Every n-tuple (z1,...,2,) €
R™ that satisfies (2.3) is a solution of the linear equation system.

Example 2.2

The system of linear equations
I + To + T3 = 3 ( 1)
21’1 + 3%’3 = 1 (3)

has no solution: Adding the first two equations yields 2z +3x3 = 5, which
contradicts the third equation (3).
Let us have a look at the system of linear equations

I + X9 —+ T3 = 3 (1)
T —+ T3 = 2 (3)

From the first and third equation, it follows that z; = 1. From (1)+(2),
we get 2z, + 3x3 = 5, i.e., z3 = 1. From (3), we then get that z, = 1.
Therefore, (1,1,1) is the only possible and unique solution (verify that
(1,1,1) is a solution by plugging in).

As a third example, we consider

T + xo + I3 = 3 (1)
T, — Ty + 223 = 2 (2) . (2.6)

Since (1)+(2)=(3), we can omit the third equation (redundancy). From
(1) and (2), we get 2z, = 5—3x3 and 2xy = 1+ 3. We definez3 = a € R
as a free variable, such that any triplet

5 3 1 1
(2 _ 2@,2+2a,a>, acR @.7)
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A
x2

dxy +4x9 =5

2.’1‘1 — 4L2 =1

\}

Ty

is a solution of the system of linear equations, i.e., we obtain a solution
set that contains infinitely many solutions.

In general, for a real-valued system of linear equations we obtain either
no, exactly one, or infinitely many solutions. Linear regression (Chapter 9)
solves a version of Example 2.1 when we cannot solve the system of linear
equations.

Remark (Geometric Interpretation of Systems of Linear Equations). In a
system of linear equations with two variables z 1, x,, each linear equation
defines a line on the z;x,-plane. Since a solution to a system of linear
equations must satisfy all equations simultaneously, the solution set is the
intersection of these lines. This intersection set can be a line (if the linear
equations describe the same line), a point, or empty (when the lines are
parallel). An illustration is given in Figure 2.3 for the system

dry +4x9 =5 2.8)
2]71 — 4172 =1
where the solution space is the point (21, z2) = (1, ;). Similarly, for three
variables, each linear equation determines a plane in three-dimensional
space. When we intersect these planes, i.e., satisfy all linear equations at
the same time, we can obtain a solution set that is a plane, a line, a point
or empty (when the planes have no common intersection). &

For a systematic approach to solving systems of linear equations, we
will introduce a useful compact notation. We collect the coefficients a;;
into vectors and collect the vectors into matrices. In other words, we write
the system from (2.3) in the following form:

aiq 19 A1n bl
" IR RS I R R e 2.9)

Gm1 Am2 Amn bm
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ay; - Qip I by
Ami  *° Gmn T b,

In the following, we will have a close look at these matrices and de-
fine computation rules. We will return to solving linear equations in Sec-
tion 2.3.

2.2 Matrices

Matrices play a central role in linear algebra. They can be used to com-
pactly represent systems of linear equations, but they also represent linear
functions (linear mappings) as we will see later in Section 2.7. Before we
discuss some of these interesting topics, let us first define what a matrix
is and what kind of operations we can do with matrices. We will see more
properties of matrices in Chapter 4.

Definition 2.1 (Matrix). With m,n € N a real-valued (m,n) matrix A is
an m-n-tuple of elements a,;,% = 1,...,m, 7 = 1,...,n, which is ordered
according to a rectangular scheme consisting of m rows and n columns:

apxy Qa2 o Aip
az1 Qg2 -+ Aap

A= s Qjj €R. (211)
Am1 Am2 e Amn

By convention (1, n)-matrices are called rows and (m, 1)-matrices are called
columns. These special matrices are also called row/column vectors.

R™*"™ is the set of all real-valued (m, n)-matrices. A € R™*" can be
equivalently represented as a € R™" by stacking all n columns of the
matrix into a long vector; see Figure 2.4.

2.2.1 Matrix Addition and Multiplication

The sum of two matrices A € R™*", B € R™*" is defined as the element-
wise sum, i.e.,

a1 +bin - a, + by,
A+ B .= : : e R™". (2.12)

Am1 + bml o Amn + bmn

For matrices A € R™*", B € R"**, the elements c;; of the product
C = AB € R™** are computed as

cy =3 agby, i=1....m, j=1..k (2.13)
=1
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This means, to compute element c;; we multiply the elements of the ith
row of A with the jth column of B and sum them up. Later in Section 3.2,
we will call this the dot product of the corresponding row and column. In
cases, where we need to be explicit that we are performing multiplication,
we use the notation A - B to denote multiplication (explicitly showing
“.7,).

Remark. Matrices can only be multiplied if their “neighboring” dimensions
match. For instance, an n X k-matrix A can be multiplied with a & x m-
matrix B, but only from the left side:

A B = C (2.14)
S
nxk kxm nxm

The product B A is not defined if m # n since the neighboring dimensions
do not match. &

Remark. Matrix multiplication is not defined as an element-wise operation
on matrix elements, i.e., ¢;; # a;;b;; (even if the size of A, B was cho-
sen appropriately). This kind of element-wise multiplication often appears
in programming languages when we multiply (multi-dimensional) arrays
with each other, and is called a Hadamard product. &

Example 2.3

1 2 3 e
ForA:{3 5 J eR¥>3 B=|1 —1| € R**?, we obtain
0 1
_ 0 27 _
AB = ?1) 3 ﬂ 1 —-1| = ; g € R**?, (2.15)
L O 1_ L
0 2 oo (6 4 2
BA=|1 -1 {3 5 1| = -2 0 2| e R**3. (2.16)
0 1 13 21

From this example, we can already see that matrix multiplication is not
commutative, i.e., AB # B A; see also Figure 2.5 for an illustration.

Definition 2.2 (Identity Matrix). In R"*", we define the identity matrix

1T 0 --- 0 --- 0
01 --- 0 --- 0
pp— ; nxn
I, := 0 0 1 0 eR (2.17)
10 0 0 1]
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as the n x m-matrix containing 1 on the diagonal and 0 everywhere else.

Now that we defined matrix multiplication, matrix addition and the
identity matrix, let us have a look at some properties of matrices:

» Associativity:
VA e R™" BeR" CecRV:(AB)C = A(BC) (2.18)

= Distributivity:
VA, B R™" C,DeR":(A+B)C =AC+ BC (2.19a)
A(C+D)=AC+ AD (2.19b)

s Multiplication with the identity matrix:
VAe R™":1,A=AI,=A (2.20)
Note that I,, # I,, for m # n.

2.2.2 Inverse and Transpose

Definition 2.3 (Inverse). Consider a square matrix A € R"*". Let matrix
B ¢ R™™ have the property that AB = I,, = BA. B is called the
inverse of A and denoted by A™".

Unfortunately, not every matrix A possesses an inverse A~ '. If this
inverse does exist, A is called regular/invertible/nonsingular, otherwise
singular/noninvertible. When the matrix inverse exists, it is unique. In Sec-
tion 2.3, we will discuss a general way to compute the inverse of a matrix
by solving a system of linear equations.

Remark (Existence of the Inverse of a 2 x 2-matrix). Consider a matrix

A= ai1 G2 c IR2><2 ) (221)
Q21 Q22
If we multiply A with
B.=| 2 A (2.22)
—Q21 Q11
we obtain
_ | @11Q22 — Q12021 0 B B

AB = 0 110Gy — a12a21:| = (a11a22 — ar2a21)1 . (2.23)

Therefore,
Al = ; [ 22 —au] (2.24)

11022 — G12091 | —G21  Gn :

if and only if a11a20 — a12a21 # 0. In Section 4.1, we will see that a;;a90 —
a120a21 is the determinant of a 2 x 2-matrix. Furthermore, we can generally
use the determinant to check whether a matrix is invertible. &
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Example 2.4 (Inverse Matrix)
The matrices

1 —7 -7 6
50, B=|2 1 -1
7 4 5 -4

are inverse to each other since AB = I = BA.

1 2
A=14 4 (2.25)
6 7

Definition 2.4 (Transpose). For A € R™*" the matrix B € R™*™ with
b;; = a;; is called the transpose of A. We write B = AT,

In general, A’ can be obtained by writing the columns of A as the rows
of A". The following are important properties of inverses and transposes:

AAT'=T=A""A (2.26)
(AB)'=B'A™! (2.27)
(A+B)'#£A '+ B (2.28)
AHT=A (2.29)
(A+B)'=A"+B' (2.30)
(AB)" =BTA" (2.31)

Definition 2.5 (Symmetric Matrix). A matrix A € R"*" is symmetric if
A=A".

Note that only (n,n)-matrices can be symmetric. Generally, we call
(n,n)-matrices also square matrices because they possess the same num-
ber of rows and columns. Moreover, if A is invertible, then so is A", and
(AHT=AN)1="A"",

Remark (Sum and Product of Symmetric Matrices). The sum of symmet-
ric matrices A, B € R™*" is always symmetric. However, although their
product is always defined, it is generally not symmetric:

ool =l o]

(2.32)

¢

2.2.3 Multiplication by a Scalar

Let us look at what happens to matrices when they are multiplied by a
scalar A € R. Let A € R™*" and A € R. Then A = K, K;; = \a,;.
Practically, A scales each element of A. For A, ¢ € R, the following holds:

= Associativity:

(A)C = AyC), CeR™"
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* \(BC) = (AB)C = B(\C) = (BC)\, BeR™" C e R
Note that this allows us to move scalar values around.

s (MC)T=C'A\T=C"A\=\C"since \ = \" forall \ € R.

= Distributivity:
A+9)C =XC +yC, CeR™"
AMB+C)=AB+XC, B,CcR™"

Example 2.5 (Distributivity)
If we define

C = [1 2] , (2.33)

then for any A, 1) € R we obtain

IO+ O+9)2] [ A+e 22+29
(A”’)C_[(Ajtw)?) (A+¢)4]‘[3A+3w A 44| 234

LA 2] e 20 _
_[M 4A]+{3w 4w]_AC+@/)C. (2.34b)

2.2.4 Compact Representations of Systems of Linear Equations

If we consider the system of linear equations

201 +3x9 + 523 =1
41'1 - 21'2 - 7.%'3 =8 (235)
91’1 + 5172 — 3(E3 =2

and use the rules for matrix multiplication, we can write this equation
system in a more compact form as

2 3 5! T 1
4 =2 7| |z2| = |8]. (2.36)
9 5 =3 |73 2

Note that z; scales the first column, =, the second one, and z the third
one.

Generally, a system of linear equations can be compactly represented in
their matrix form as Ax = b; see (2.3), and the product Az is a (linear)
combination of the columns of A. We will discuss linear combinations in
more detail in Section 2.5.

Draft (2019-12-11) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.


https://mml-book.com

2.3 Solving Systems of Linear Equations 27

2.3 Solving Systems of Linear Equations
In (2.3), we introduced the general form of an equation system, i.e.,
41121 + -+ A1 xn = by
(2.37)
11+ + QG Tr = by

where a,; € R and b; € R are known constants and z; are unknowns,
i=1,...,m,j=1,...,n. Thus far, we saw that matrices can be used as
a compact way of formulating systems of linear equations so that we can
write Ax = b, see (2.10). Moreover, we defined basic matrix operations,
such as addition and multiplication of matrices. In the following, we will
focus on solving systems of linear equations and provide an algorithm for
finding the inverse of a matrix.

2.3.1 Particular and General Solution

Before discussing how to generally solve systems of linear equations, let
us have a look at an example. Consider the system of equations

i

1 0 8 —4] |ao|  [42

{0 1 2 12] T3 _[8]’ (2.38)
Ly

The system has two equations and four unknowns. Therefore, in general
we would expect infinitely many solutions. This system of equations is
in a particularly easy form, where the first two columns consist of a 1
and a 0. Remember that we want to find scalars x., ..., x4, such that
Zle x;¢; = b, where we define ¢; to be the ith column of the matrix and
b the right-hand-side of (2.38). A solution to the problem in (2.38) can
be found immediately by taking 42 times the first column and 8 times the
second column so that

o[ -uf o) e

Therefore, a solution is [42,8,0,0]". This solution is called a particular
solution or special solution. However, this is not the only solution of this
system of linear equations. To capture all the other solutions, we need
to be creative in generating 0 in a non-trivial way using the columns of
the matrix: Adding 0 to our special solution does not change the special
solution. To do so, we express the third column using the first two columns
(which are of this very simple form)

ol ew
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so that 0 = 8¢; + 2¢, — 1lesz + Ocy and (21, 2, 23, 24) = (8,2,—1,0). In
fact, any scaling of this solution by A; € R produces the 0 vector, i.e.,

8

1 0 8 —4 2

{() 1 92 12] A1 1 =\(8¢; +2¢, —¢c3) =0. (2.41)
0

Following the same line of reasoning, we express the fourth column of the
matrix in (2.38) using the first two columns and generate another set of
non-trivial versions of 0 as

—4

1 0 8 —4 12

{0 1 2 12] Ao 0 = Xo(—4c; +12¢, —¢4) =0 (2.42)
—1

for any A, € R. Putting everything together, we obtain all solutions of the
equation system in (2.38), which is called the general solution, as the set

42 8 —4
2 12

xcR:x= g A A | AR ERY . (2.43)
0 0 -1

Remark. The general approach we followed consisted of the following
three steps:

1. Find a particular solution to Ax = b.
2. Find all solutions to Ax = 0.
3. Combine the solutions from steps 1. and 2. to the general solution.

Neither the general nor the particular solution is unique. &

The system of linear equations in the preceding example was easy to
solve because the matrix in (2.38) has this particularly convenient form,
which allowed us to find the particular and the general solution by in-
spection. However, general equation systems are not of this simple form.
Fortunately, there exists a constructive algorithmic way of transforming
any system of linear equations into this particularly simple form: Gaussian
elimination. Key to Gaussian elimination are elementary transformations
of systems of linear equations, which transform the equation system into
a simple form. Then, we can apply the three steps to the simple form that
we just discussed in the context of the example in (2.38).

2.3.2 Elementary Transformations

Key to solving a system of linear equations are elementary transformations
that keep the solution set the same, but that transform the equation system
into a simpler form:
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= Exchange of two equations (rows in the matrix representing the system

of equations)

* Multiplication of an equation (row) with a constant A € R\{0}
= Addition of two equations (rows)

Example 2.6

For a € R, we seek all solutions of the following system of equations:

+

*2.’1,'1

4(1,'1
o]
€y

41E2
8x9
2IE2
2.’E2

— 2ZE3
+ 3ZII3
+ 3

Ly
3Ty
Ly
324

+ 4uxs
Ty
+ x5
+ 4uxs

+

-3
2
0

a

(2.44)

We start by converting this system of equations into the compact matrix
notation Ax = b. We no longer mention the variables x explicitly and
build the augmented matrix (in the form [A|b])

=%
4
1
1

4

-8
=2
=2

=2

-1
3 =3
1 -1
0 -3

4
1
1
4

-3
2

Swap with R3

0 | Swap with R;

a

where we used the vertical line to separate the left-hand side from the
right-hand side in (2.44). We use ~ to indicate a transformation of the
augmented matrix using elementary transformations.

Swapping Rows 1 and 3 leads to

1
4

=2

1

=2
-8

4

=2

1
3
=%
0

-1
-3
-1
-3

1 0
1 2
4 -3
4 a

—4R,
+2R,
“R,

When we now apply the indicated transformations (e.g., subtract Row 1
four times from Row 2), we obtain

—_

QOO OO OOOo

—2
0
0

[an)

|
COoOOoON OO O

1

1 0
-3 2
6 -3
3 a
1 0
-3 2
6 -3
0|a+1
1 0
3 —2
-2 1
Ola+1
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This (augmented) matrix is in a convenient form, the row-echelon form
(REF). Reverting this compact notation back into the explicit notation with
the variables we seek, we obtain

Ty, — 229 + T3 — x4 + T = 0
T3 — x4 + 35 = —2
T4 — 2x5 = 1 (245)
0 = a+1
Only for a = —1 this system can be solved. A particular solution is
I 2
To 0
3| = |—1 (2.46)
Ty 1
Iy 0

The general solution, which captures the set of all possible solutions, is

2 2 2
0 1 0

xR :x= -1+ [0 +X |-1], A, XM ER (2.47)
1 0 2
0 0 1

In the following, we will detail a constructive way to obtain a particular
and general solution of a system of linear equations.

Remark (Pivots and Staircase Structure). The leading coefficient of a row
(first nonzero number from the left) is called the pivot and is always
strictly to the right of the pivot of the row above it. Therefore, any equa-
tion system in row-echelon form always has a “staircase” structure. &

Definition 2.6 (Row-Echelon Form). A matrix is in row-echelon form if

= All rows that contain only zeros are at the bottom of the matrix; corre-
spondingly, all rows that contain at least one nonzero element are on
top of rows that contain only zeros.

= Looking at nonzero rows only, the first nonzero number from the left
(also called the pivot or the leading coefficient) is always strictly to the
right of the pivot of the row above it.

Remark (Basic and Free Variables). The variables corresponding to the
pivots in the row-echelon form are called basic variables and the other
variables are free variables. For example, in (2.45), xy, x3, x4 are basic
variables, whereas x4, x5 are free variables. &

Remark (Obtaining a Particular Solution). The row-echelon form makes

Draft (2019-12-11) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.


https://mml-book.com

2.3 Solving Systems of Linear Equations 31

our lives easier when we need to determine a particular solution. To do
this, we express the right-hand side of the equation system using the pivot
columns, such that b = Zi L \ip;, where p,, i = 1,..., P, are the pivot
columns. The \; are determined easiest if we start with the rightmost pivot
column and work our way to the left.

In the previous example, we would try to find A;, A2, A3 so that

1 1 -1 0
0 1 -1 —2

A 0 + Ao 0 + A3 11=111- (2.48)
0 0 0 0

From here, we find relatively directly that \; = 1, A\, = —1, A\; = 2. When
we put everything together, we must not forget the non-pivot columns
for which we set the coefficients implicitly to 0. Therefore, we get the
particular solution « = [2,0,—1,1,0] . &
Remark (Reduced Row Echelon Form). An equation system is in reduced
row-echelon form (also: row-reduced echelon form or row canonical form) if

= [t is in row-echelon form.
= Every pivot is 1.
= The pivot is the only nonzero entry in its column.

o

The reduced row-echelon form will play an important role later in Sec-
tion 2.3.3 because it allows us to determine the general solution of a sys-
tem of linear equations in a straightforward way.

Remark (Gaussian Elimination). Gaussian elimination is an algorithm that
performs elementary transformations to bring a system of linear equations
into reduced row-echelon form. &

Example 2.7 (Reduced Row Echelon Form)
Verify that the following matrix is in reduced row-echelon form (the pivots
are in bold):

91 . (2.49)

The key idea for finding the solutions of Ax = 0 is to look at the non-
pivot columns, which we will need to express as a (linear) combination of
the pivot columns. The reduced row echelon form makes this relatively
straightforward, and we express the non-pivot columns in terms of sums
and multiples of the pivot columns that are on their left: The second col-
umn is 3 times the first column (we can ignore the pivot columns on the
right of the second column). Therefore, to obtain 0, we need to subtract
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the second column from three times the first column. Now, we look at the
fiftth column, which is our second non-pivot column. The fifth column can
be expressed as 3 times the first pivot column, 9 times the second pivot
column, and —4 times the third pivot column. We need to keep track of
the indices of the pivot columns and translate this into 3 times the first col-
umn, 0 times the second column (which is a non-pivot column), 9 times
the third column (which is our second pivot column), and —4 times the
fourth column (which is the third pivot column). Then we need to subtract
the fifth column to obtain 0. In the end, we are still solving a homogeneous
equation system.
To summarize, all solutions of Az = 0,z € R® are given by

3 3
-1 0

xceR :x=X\ |0 | +X]| 9|, MAMER,. (2.50)
0 —4
0 —1

2.3.3 The Minus-1 Trick

In the following, we introduce a practical trick for reading out the solu-
tions x of a homogeneous system of linear equations Ax = 0, where
A € RF*" x € R™.

To start, we assume that A is in reduced row-echelon form without any
rows that just contain zeros, i.e.,

00 - 0 1 % - %
A: . . . 0 . ,
: 0
| 0 0 0 O 0 0 O 0 1 x -+ |
(2.51)

where * can be an arbitrary real number, with the constraints that the first
nonzero entry per row must be 1 and all other entries in the corresponding

column must be 0. The columns ji,...,j, with the pivots (marked in
bold) are the standard unit vectors ey, ..., e, € R*. We extend this matrix
to an n X n-matrix A by adding n — k rows of the form

o -~ 0 -1 0 - 0 (2.52)

so that the diagonal of the augmented matrix A contains either 1 or —1.
Then, the columns of A that contain the —1 as pivots are solutions of
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the homogeneous equation system Ax = 0. To be more precise, these
columns form a basis (Section 2.6.1) of the solution space of Ax = 0,
which we will later call the kernel or null space (see Section 2.7.3).

Example 2.8 (Minus-1 Trick)
Let us revisit the matrix in (2.49), which is already in REF:

13 00 3
A=|0 01 0 9. (2.53)
0001 —4

We now augment this matrix to a 5 x 5 matrix by adding rows of the
form (2.52) at the places where the pivots on the diagonal are missing
and obtain

1 3 00 3
0 -1 00 0

A=10 0 1 0 9]. (2.54)
0 0 0 1 —4
0 0 00 -1

From this form, we can immediately read out the solutions of Az = 0 by
taking the columns of A, which contain —1 on the diagonal:

3 3
—1l 0
xcR:z=X\ |0 | +X]|9], M, ER}, (2.55)
0 —4
0 —

which is identical to the solution in (2.50) that we obtained by “insight”.

Calculating the Inverse

To compute the inverse A~" of A € R™*", we need to find a matrix X
that satisfies AX = I,. Then, X = A '. We can write this down as
a set of simultaneous linear equations AX = I,, where we solve for
X = [x;|- - |z,]. We use the augmented matrix notation for a compact
representation of this set of systems of linear equations and obtain

[A|I,] ~ v [I]ATY]. (2.56)
This means that if we bring the augmented equation system into reduced
row-echelon form, we can read out the inverse on the right-hand side of
the equation system. Hence, determining the inverse of a matrix is equiv-

alent to solving systems of linear equations.
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Example 2.9 (Calculating an Inverse Matrix by Gaussian Elimination)
To determine the inverse of

1 0 2 0
1 1 0 0
A= 120 1 (2.57)
1 1 1 1
we write down the augmented matrix

1 0 2 01 0 0 O

1 1 0 0[O0 1 0 O

1 2 0 1[0 0 1 O

1 1 1 1/, 0 0 0 1

and use Gaussian elimination to bring it into reduced row-echelon form

10 0 0|-1 2 -2 2
0 1 0 0|1 -1 2 =2
o 0 1 01 -1 1 —1}|°
0o 0 0 1|{-1 0 -1 2

such that the desired inverse is given as its right-hand side:
= 2 =z 72

1 -1 2 =2

1 -1 1 -1
-1 0 -1 2

(2.58)

We can verify that (2.58) is indeed the inverse by performing the multi-
plication AA ™" and observing that we recover I ,.

2.3.4 Algorithms for Solving a System of Linear Equations

In the following, we briefly discuss approaches to solving a system of lin-
ear equations of the form Ax = b. We make the assumption that a solu-
tion exists. Should there be no solution, we need to resort to approximate
solutions, which we do not cover in this chapter. One way to solve the ap-
proximate problem is using the approach of linear regression, which we
discuss in detail in Chapter 9.

In special cases, we may be able to determine the inverse A™', such
that the solution of Ax = b is given as * = A~ 'b. However, this is
only possible if A is a square matrix and invertible, which is often not the
case. Otherwise, under mild assumptions (i.e., A needs to have linearly
independent columns) we can use the transformation

Ar=b < A"Az=A"b «— z=(ATA) A’  (2.59)
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and use the Moore-Penrose pseudo-inverse (A" A)~* A" to determine the
solution (2.59) that solves Ax = b, which also corresponds to the mini-
mum norm least-squares solution. A disadvantage of this approach is that
it requires many computations for the matrix-matrix product and comput-
ing the inverse of A" A. Moreover, for reasons of numerical precision it
is generally not recommended to compute the inverse or pseudo-inverse.
In the following, we therefore briefly discuss alternative approaches to
solving systems of linear equations.

Gaussian elimination plays an important role when computing deter-
minants (Section 4.1), checking whether a set of vectors is linearly inde-
pendent (Section 2.5), computing the inverse of a matrix (Section 2.2.2),
computing the rank of a matrix (Section 2.6.2), and determining a basis
of a vector space (Section 2.6.1). Gaussian elimination is an intuitive and
constructive way to solve a system of linear equations with thousands of
variables. However, for systems with millions of variables, it is impracti-
cal as the required number of arithmetic operations scales cubically in the
number of simultaneous equations.

In practice, systems of many linear equations are solved indirectly, by ei-
ther stationary iterative methods, such as the Richardson method, the Ja-
cobi method, the Gaul3-Seidel method, and the successive over-relaxation
method, or Krylov subspace methods, such as conjugate gradients, gener-
alized minimal residual, or biconjugate gradients. We refer to the books
by Stoer and Burlirsch (2002), Strang (2003), and Liesen and Mehrmann
(2015) for further details.

Let «, be a solution of Ax = b. The key idea of these iterative methods
is to set up an iteration of the form

2 Y = Ccz™ +d (2.60)

for suitable C and d that reduces the residual error ||z**1) —x. || in every
iteration and converges to ... We will introduce norms || - ||, which allow
us to compute similarities between vectors, in Section 3.1.

2.4 Vector Spaces

Thus far, we have looked at systems of linear equations and how to solve
them (Section 2.3). We saw that systems of linear equations can be com-
pactly represented using matrix-vector notation (2.10). In the following,
we will have a closer look at vector spaces, i.e., a structured space in which
vectors live.

In the beginning of this chapter, we informally characterized vectors as
objects that can be added together and multiplied by a scalar, and they
remain objects of the same type. Now, we are ready to formalize this,
and we will start by introducing the concept of a group, which is a set
of elements and an operation defined on these elements that keeps some
structure of the set intact.
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36 Linear Algebra
2.4.1 Groups

Groups play an important role in computer science. Besides providing a
fundamental framework for operations on sets, they are heavily used in
cryptography, coding theory, and graphics.

Definition 2.7 (Group). Consider a set G and an operation ® : GxG — G
defined on G. Then G := (G, ®) is called a group if the following hold:

Closure of Gunder @: Vx,y € G:z @y € G
Associativity: Vx,y,2 € G: (zQy)Rz=2Q (y ® 2)
Neutral element: de € GVr € Gz @e=xzandeQ@ x = x

Inverse element: Ve € Gy € G : x ® y = e and y ® x = e. We often
write 2! to denote the inverse element of x.

Wb =

Remark. The inverse element is defined with respect to the operation ®
and does not necessarily mean i &

If additionally Vz,y € G : @ y = y ® z, then G = (G, ®) is an Abelian
group (commutative).

Example 2.10 (Groups)
Let us have a look at some examples of sets with associated operations
and see whether they are groups:

» (Z,+) is a group.

» (INg, +) is not a group: Although (INy, +) possesses a neutral element
(0), the inverse elements are missing.

* (Z,-) is not a group: Although (Z, -) contains a neutral element (1), the
inverse elements for any z € Z, z # £1, are missing.

* (R,-) is not a group since 0 does not possess an inverse element.

(R\{0}, -) is Abelian.

(R™,+), (Z",4),n € N are Abelian if + is defined componentwise, i.e.,

(-7517"‘ 7xn) =+ (ylv"' ayn) - (xl + Y1, >$n+yn)' (261)

Then, (%, ,x,)"' := (—xy, -+, —z,) is the inverse element and

e =(0,---,0) is the neutral element.

(R™*" +), the set of m x n-matrices is Abelian (with componentwise

addition as defined in (2.61)).

= Let us have a closer look at (R"*", -), i.e., the set of n x n-matrices with
matrix multiplication as defined in (2.13).

— Closure and associativity follow directly from the definition of matrix
multiplication.

— Neutral element: The identity matrix I, is the neutral element with
respect to matrix multiplication “” in (R™*",-).
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— Inverse element: If the inverse exists (A is regular), then A~ is the
inverse element of A € R™"*", and in exactly this case (R"*", ) is a
group, called the general linear group.

Definition 2.8 (General Linear Group). The set of regular (invertible)
matrices A € R™ ™ is a group with respect to matrix multiplication as
defined in (2.13) and is called general linear group GL(n,R). However,
since matrix multiplication is not commutative, the group is not Abelian.

2.4.2 Vector Spaces

When we discussed groups, we looked at sets G and inner operations on
g, i.e., mappings G x G — G that only operate on elements in G. In the
following, we will consider sets that in addition to an inner operation -+
also contain an outer operation -, the multiplication of a vector « € G by
a scalar A € R. We can think of the inner operation as a form of addition,
and the outer operation as a form of scaling. Note that the inner/outer
operations have nothing to do with inner/outer products.

Definition 2.9 (Vector Space). A real-valued vector space V = (V,+,-) is
a set )V with two operations

+: VXV =V (2.62)
-t RxV =V (2.63)

where

1. (V,+) is an Abelian group

2. Distributivity:
1.V AeR,z,yeV:A-(x+y)=A-xz+ Xy
2. VMY eR,zeV:(A+¢)-x=\-x+¢- -x

3. Associativity (outer operation): VA, € R,z € V : A (¢-x) = (\)-x
4. Neutral element with respect to the outer operation: Vx € V: 1-x = x

The elements « € V are called vectors. The neutral element of (V,+) is
the zero vector 0 = [0,...,0]", and the inner operation + is called vector
addition. The elements A € R are called scalars and the outer operation
- is a multiplication by scalars. Note that a scalar product is something
different, and we will get to this in Section 3.2.

Remark. A “vector multiplication” ab, a,b € R", is not defined. Theoret-
ically, we could define an element-wise multiplication, such that ¢ = ab
with ¢; = a;b;. This “array multiplication” is common to many program-
ming languages but makes mathematically limited sense using the stan-
dard rules for matrix multiplication: By treating vectors as n x 1 matrices
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(which we usually do), we can use the matrix multiplication as defined
in (2.13). However, then the dimensions of the vectors do not match. Only
the following multiplications for vectors are defined: ab’ € R"*" (outer
product), a'b € R (inner/scalar/dot product). &

Example 2.11 (Vector Spaces)
Let us have a look at some important examples:

= )V =R",n € N is a vector space with operations defined as follows:

- Addition: z+y = (21, .., Tn)+ W1y Yn) = (@1 4+Y1, -« -, T+ Yn)
forall z,y € R"

- Multiplication by scalars: A\ = A(xy,...,x,) = (Azy,...,A\x,) for
al A e R,z € R

= YV =R"™" m,n € N is a vector space with

ajp +bin o Qi+ big
- Addition: A + B = : : is defined ele-
Am1 + bm,l o Omn + bmn
mentwise for all A, B € V
)\(111 tee )\aln
- Multiplication by scalars: AA = : : as defined in
)\aml o )\amn

Section 2.2. Remember that R™*" is equivalent to R™".
» V = C, with the standard definition of addition of complex numbers.

Remark. In the following, we will denote a vector space (V,+,:) by V
when + and - are the standard vector addition and scalar multiplication.
Moreover, we will use the notation € V for vectors in V to simplify
notation. &

Remark. The vector spaces R", R"*! R'*" are only different in the way
we write vectors. In the following, we will not make a distinction between
R™ and R™*!, which allows us to write n-tuples as column vectors

Iy
T=|:1. (2.64)

‘/L‘n
This simplifies the notation regarding vector space operations. However,
we do distinguish between R™*! and R'*" (the row vectors) to avoid con-

fusion with matrix multiplication. By default, we write & to denote a col-
umn vector, and a row vector is denoted by x ", the transpose of x. &
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2.4.3 Vector Subspaces

In the following, we will introduce vector subspaces. Intuitively, they are
sets contained in the original vector space with the property that when
we perform vector space operations on elements within this subspace, we
will never leave it. In this sense, they are “closed”. Vector subspaces are a
key idea in machine learning. For example, Chapter 10 demonstrates how
to use vector subspaces for dimensionality reduction.

Definition 2.10 (Vector Subspace). Let V' = (V, +,-) be a vector space
andUd CV,U # (). Then U = (U, +, ) is called vector subspace of V' (or
linear subspace) if U is a vector space with the vector space operations +
and - restricted to U x U and R x U. We write U C V to denote a subspace
UofV.

If i CV and V is a vector space, then U naturally inherits many prop-
erties directly from V because they hold for all x € V, and in particular for
all x € U C V. This includes the Abelian group properties, the distribu-
tivity, the associativity and the neutral element. To determine whether
(U, +, ) is a subspace of V' we still do need to show

1. U # 0, in particular: 0 € U
2. Closure of U:

a. With respect to the outer operation: VA € RVx e U : Ax € U.
b. With respect to the inner operation: Ve, y € U : ¢ +y € U.

Example 2.12 (Vector Subspaces)
Let us have a look at some examples:

= For every vector space V/, the trivial subspaces are V itself and {0}.

= Only example D in Figure 2.6 is a subspace of R? (with the usual inner/
outer operations). In A and C, the closure property is violated; B does
not contain 0.

= The solution set of a homogeneous system of linear equations Az = 0
with n unknowns & = [z,,...,x,]" is a subspace of R".

= The solution of an inhomogeneous system of linear equations Ax =
b, b # 0 is not a subspace of R".

= The intersection of arbitrarily many subspaces is a subspace itself.

\
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Remark. Every subspace U C (R",+,-) is the solution space of a homo-
geneous system of homogeneous linear equations Ax = 0 for x € R".

¢

2.5 Linear Independence

In the following, we will have a close look at what we can do with vectors
(elements of the vector space). In particular, we can add vectors together
and multiply them with scalars. The closure property guarantees that we
end up with another vector in the same vector space. It is possible to find
a set of vectors with which we can represent every vector in the vector
space by adding them together and scaling them. This set of vectors is
a basis, and we will discuss them in Section 2.6.1. Before we get there,
we will need to introduce the concepts of linear combinations and linear
independence.

Definition 2.11 (Linear Combination). Consider a vector space V' and a

finite number of vectors x,,...,x; € V. Then, every v € V of the form
k
v = )\1.’]31 + -+ )\}gmk = Z )\Z'Zl}i eV (265)
=1
with A{, ..., A; € R is a linear combination of the vectors x1, ..., ;.

The 0-vector can always be written as the linear combination of k vec-
tors xy,...,x; because 0 = Zle Ox; is always true. In the following,
we are interested in non-trivial linear combinations of a set of vectors to
represent 0, i.e., linear combinations of vectors x, ..., x;, where not all
coefficients \; in (2.65) are 0.

Definition 2.12 (Linear (In)dependence). Let us consider a vector space
V with £k € N and «4,...,x; € V. If there is a non-trivial linear com-
bination, such that 0 = Zle A;x; with at least one \; # 0, the vectors
x,...,x; are linearly dependent. If only the trivial solution exists, i.e.,

A1 = ... = X\, = 0 the vectors x, ..., x; are linearly independent.

Linear independence is one of the most important concepts in linear
algebra. Intuitively, a set of linearly independent vectors consists of vectors
that have no redundancy, i.e., if we remove any of those vectors from
the set, we will lose something. Throughout the next sections, we will
formalize this intuition more.

Example 2.13 (Linearly Dependent Vectors)
A geographic example may help to clarify the concept of linear indepen-
dence. A person in Nairobi (Kenya) describing where Kigali (Rwanda) is
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might say ,“You can get to Kigali by first going 506 km Northwest to Kam-
pala (Uganda) and then 374 km Southwest.”. This is sufficient information
to describe the location of Kigali because the geographic coordinate sys-
tem may be considered a two-dimensional vector space (ignoring altitude
and the Earth’s curved surface). The person may add, “It is about 751 km
West of here.” Although this last statement is true, it is not necessary to
find Kigali given the previous information (see Figure 2.7 for an illus-
tration). In this example, the “506 km Northwest” vector (blue) and the
“374 km Southwest” vector (purple) are linearly independent. This means
the Southwest vector cannot be described in terms of the Northwest vec-
tor, and vice versa. However, the third “751 km West” vector (black) is a
linear combination of the other two vectors, and it makes the set of vec-
tors linearly dependent. Equivalently, given “751 km West” and “374 km
Southwest” can be linearly combined to obtain “506 km Northwest”.

Kampala

Kit

Remark. The following properties are useful to find out whether vectors
are linearly independent:

= k vectors are either linearly dependent or linearly independent. There
is no third option.

= If at least one of the vectors @i, ..., x; is O then they are linearly de-
pendent. The same holds if two vectors are identical.

» The vectors {x1,...,x, : ¢; # 0,1 = 1,...,k}, k > 2, are linearly
dependent if and only if (at least) one of them is a linear combination
of the others. In particular, if one vector is a multiple of another vector,
ie,x, = Ax;, A € Rthentheset {xy,...,z; :x; #0,i=1,...,k}
is linearly dependent.

» A practical way of checking whether vectors 1, ..., x) € V are linearly
independent is to use Gaussian elimination: Write all vectors as columns
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of a matrix A and perform Gaussian elimination until the matrix is in
row echelon form (the reduced row-echelon form is unnecessary here):

— The pivot columns indicate the vectors, which are linearly indepen-
dent of the vectors on the left. Note that there is an ordering of vec-
tors when the matrix is built.

— The non-pivot columns can be expressed as linear combinations of
the pivot columns on their left. For instance, the row-echelon form

1 30
[0 0 2} (2.66)

tells us that the first and third columns are pivot columns. The sec-
ond column is a non-pivot column because it is three times the first
column.

All column vectors are linearly independent if and only if all columns
are pivot columns. If there is at least one non-pivot column, the columns
(and, therefore, the corresponding vectors) are linearly dependent.

¢

Example 2.14
Consider R* with

(2.67)

W
(\V)
—_

To check whether they are linearly dependent, we follow the general ap-
proach and solve

1 1 -1
2 1 —2
ATy + Aoy + A3z = Ay _3 + A2 0 + A3 11 = 0 (2.68)
4 2 1
for Ai,..., A\3. We write the vectors x;, i = 1, 2,3, as the columns of a

matrix and apply elementary row operations until we identify the pivot
columns:

1 1 -1 11 -1
2 1 =2 01 O
30 1 N e 00 1 (2.69)
4 2 1 00 O

Here, every column of the matrix is a pivot column. Therefore, there is no
non-trivial solution, and we require A\; = 0, A, = 0, A3 = 0 to solve the
equation system. Hence, the vectors x;, ,, x3 are linearly independent.
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Remark. Consider a vector space V with k linearly independent vectors

bi,...,b; and m linear combinations
k
L1 = Z Airb;,
=1
(2.70)
k
T =Y Aimb;
i=1
Defining B = [by,...,b;] as the matrix whose columns are the linearly
independent vectors by, ..., by, we can write
ZEj:BAj, Aj: y jzl,...,m, (271)
Akj

in a more compact form.

We want to test whether x4, ..., x,, are linearly independent. For this
purpose, we follow the general approach of testing when Z;":l Yjx; = 0.
With (2.71), we obtain

m m m

Y bx; =Y U;BA;=BY ;. (2.72)
j=1 j=1 j=1

This means that {«;, ..., x,,} are linearly independent if and only if the
column vectors {Ay, ..., A, } are linearly independent.

¢

Remark. In a vector space V, m linear combinations of k vectors 1, ..., x;
are linearly dependent if m > k. &

Example 2.15
Consider a set of linearly independent vectors by, by, b3, b, € R™ and

r, = bl — 2b2 + b3 — b4
o = —4.b1 — 2b2 2 4b4
r3 = 2b1 oy 3b2 - b3 - 3b4 ’ (273)
ry = 17b1 - 10b2 + 11b3 + b4
Are the vectors xi,...,x, € R" linearly independent? To answer this
question, we investigate whether the column vectors
1 —4 2 17
—2 —2 3 —10
1 ? 0 ) _1 ) 11 (2‘74)
—1 4 -3 1
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are linearly independent. The reduced row-echelon form of the corre-
sponding linear equation system with coefficient matrix

1 -4 2 17
-2 -2 3 -10

A= 1 0 -1 11 (2.75)

-1 4 -3 1
is given as

1 00 =7

01 0 —15

001 —18 (2.76)

000 O
We see that the corresponding linear equation system is non-trivially solv-
able: The last column is not a pivot column, and x4, = —7x; — 1522, —18x5.
Therefore, x4, ..., x, are linearly dependent as x, can be expressed as a
linear combination of x4, ..., 5.

2.6 Basis and Rank

In a vector space V, we are particularly interested in sets of vectors .4 that
possess the property that any vector v € V can be obtained by a linear
combination of vectors in .A. These vectors are special vectors, and in the
following, we will characterize them.

2.6.1 Generating Set and Basis

Definition 2.13 (Generating Set and Span). Consider a vector space V' =
(V,+,+) and set of vectors A = {xy,...,xx} C V. If every vector v €
Y can be expressed as a linear combination of x4, ..., x;, A is called a
generating set of V. The set of all linear combinations of vectors in A is
called the span of A. If A spans the vector space V, we write V' = span|.A]
or V =span[zy,..., Tk

Generating sets are sets of vectors that span vector (sub)spaces, i.e.,
every vector can be represented as a linear combination of the vectors
in the generating set. Now, we will be more specific and characterize the
smallest generating set that spans a vector (sub)space.

Definition 2.14 (Basis). Consider a vector space V = (V,+,-) and A C
V. A generating set 4 of V' is called minimal if there exists no smaller set
A C A CV that spans V. Every linearly independent generating set of
is minimal and is called a basis of V.
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Let V = (V,+,-) be a vector space and B C V,B # (. Then, the
following statements are equivalent:

» Bis abasisof V.
» 3 is a minimal generating set.

» 3 is a maximal linearly independent set of vectors in V, i.e., adding any
other vector to this set will make it linearly dependent.

= Every vector x € V is a linear combination of vectors from B, and every
linear combination is unique, i.e., with

k k
=1 =1

and \;,¥; € R, b; € Bitfollows that \; =,, i =1,...,k.
Example 2.16

» In R?3, the canonical/standard basis is

1 0 0
B = O, (1], |0 . (2.78)
0 0 1
» Different bases in R? are
1 1 1 0.5 1.8 —2.2
Bi={lo|, 1] |1V, B,={ Jos], 03], |-13] . @79
0 0 1 0.4 0.3 3.5
= The set
1 2 1
2 -1 1
A= sl 1ol 1o (2.80)
4 2 —4

is linearly independent, but not a generating set (and no basis) of R*:
For instance, the vector [1,0,0,0]" cannot be obtained by a linear com-
bination of elements in A.

Remark. Every vector space V possesses a basis 3. The preceding exam-
ples show that there can be many bases of a vector space V, i.e., there is
no unique basis. However, all bases possess the same number of elements,
the basis vectors. &

We only consider finite-dimensional vector spaces V. In this case, the
dimension of V' is the number of basis vectors of V', and we write dim (V).
If U C V is a subspace of V, then dim(U) < dim(V') and dim(U) =
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dim(V') if and only if U = V. Intuitively, the dimension of a vector space
can be thought of as the number of independent directions in this vector
space.

Remark. The dimension of a vector space is not necessarily the number
. . 0l .
of elements in a vector. For instance, the vector space V' = span]| [J] is

one-dimensional, although the basis vector possesses two elements.

Remark. A basis of a subspace U = span|xy,...,x,] C R" can be found
by executing the following steps:

1. Write the spanning vectors as columns of a matrix A

2. Determine the row-echelon form of A.

3. The spanning vectors associated with the pivot columns are a basis of
U.

O
Example 2.17 (Determining a Basis)
For a vector subspace U C RS, spanned by the vectors
1 2 3 —1
2 -1 —4 8
L1 = —1 ) Lo = 1 y I3 = 3 N ry = —5| € ]R57 (281)
-1 2 5 —6
—1 —2 -3 1
we are interested in finding out which vectors x4, . . ., &, are a basis for U.
For this, we need to check whether x, ..., x, are linearly independent.
Therefore, we need to solve
4
i=1
which leads to a homogeneous system of equations with matrix
1 2 3 -1
2 -1 -4 8
[:131,:132,2133,:134] =|-1 1 3 —5]. (283)
-1 2 5 -6
-1 -2 -3 1

With the basic transformation rules for systems of linear equations, we
obtain the row-echelon form

1 2 3 -1 1 2 3 -1
2 -1 -4 8 0 1 2 -2
-1 1 3 =5 ns e 0 0 0 1
-1 2 5 -6 0O 0 0 O
-1 -2 -3 1 0 0 0 O
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Since the pivot columns indicate which set of vectors is linearly indepen-
dent, we see from the row-echelon form that «;, x,, x4 are linearly inde-
pendent (because the system of linear equations \;x; + Ayxs + Ayxy =0
can only be solved with A; = Ay = A\, = 0). Therefore, {x,, x5, x,} is a
basis of U.

2.6.2 Rank

The number of linearly independent columns of a matrix A € R™*"
equals the number of linearly independent rows and is called the rank
of A and is denoted by rk(A).

Remark. The rank of a matrix has some important properties:

» 1k(A) =1k(A"), i.e., the column rank equals the row rank.

* The columns of A € R™*" span a subspace U C R™ with dim(U) =
rk(A). Later we will call this subspace the image or range. A basis of
U can be found by applying Gaussian elimination to A to identify the
pivot columns.

» The rows of A € R™*" span a subspace W C R" with dim(W) =
rkgA). A basis of W can be found by applying Gaussian elimination to
A .

» For all A € R™*™ it holds that A is regular (invertible) if and only if
rk(A) = n.

» For all A € R™*™ and all b € R™ it holds that the linear equation
system Ax = b can be solved if and only if rk(A) = rk(A|b), where
A|b denotes the augmented system.

» For A € R™*" the subspace of solutions for Ax = 0 possesses dimen-
sion n — rk(A). Later, we will call this subspace the kernel or the null
space.

» A matrix A € R™*" has full rank if its rank equals the largest possible
rank for a matrix of the same dimensions. This means that the rank of
a full-rank matrix is the lesser of the number of rows and columns, i.e.,
rk(A) = min(m,n). A matrix is said to be rank deficient if it does not
have full rank.

¢

Example 2.18 (Rank)

].

inearly independent rows/columns so that rk(A) = 2.

1
s A= |0
0

O = =

gowo

A has

[—

(0)
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1 2 1
s A=|-2 -3 1
3 5 0
We use Gaussian elimination to determine the rank:
1 2 1 1 2 1
-2 -3 1 N 0 1 3. (2.84)
3 5 0 0 00

Here, we see that the number of linearly independent rows and columns
is 2, such that rk(A) = 2.

2.7 Linear Mappings

In the following, we will study mappings on vector spaces that preserve
their structure, which will allow us to define the concept of a coordinate.
In the beginning of the chapter, we said that vectors are objects that can be
added together and multiplied by a scalar, and the resulting object is still
a vector. We wish to preserve this property when applying the mapping:
Consider two real vector spaces V, W. A mapping ® : V — W preserves
the structure of the vector space if

O(x+y) =2(x) + P(y) (2.85)
O (A\x) = \P(x) (2.86)

for all z,y € V and A\ € R. We can summarize this in the following
definition:

Definition 2.15 (Linear Mapping). For vector spaces V, W, a mapping
® : V — W is called a linear mapping (or vector space homomorphism/
linear transformation) if

Ve, y e VYN € R: @(Ax + y) = A®(x) + P (y) . (2.87)

It turns out that we can represent linear mappings as matrices (Sec-
tion 2.7.1). Recall that we can also collect a set of vectors as columns of a
matrix. When working with matrices, we have to keep in mind what the
matrix represents: a linear mapping or a collection of vectors. We will see
more about linear mappings in Chapter 4. Before we continue, we will
briefly introduce special mappings.

Definition 2.16 (Injective, Surjective, Bijective). Consider a mapping ® :
Y — W, where V, W can be arbitrary sets. Then ® is called

» Injective if Ve,y €V :®(x)=d(y) = =z =y.
= Surjective if ®(V) = W.
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If ¢ is surjective, then every element in W can be “reached” from V
using ®. A bijective ¢ can be “undone”, i.e., there exists a mapping ¥ :
W — V so that ¥ o ®(x) = «. This mapping V is then called the inverse
of ® and normally denoted by 1.

With these definitions, we introduce the following special cases of linear
mappings between vector spaces V and W:

» [somorphism: ® : V. — W linear and bijective

» Endomorphism: ® : V — V linear

» Automorphism: ® : V' — V linear and bijective

= We define idy : V — V, @ — « as the identity mapping or identity
automorphism in V..

Example 2.19 (Homomorphism)
The mapping ® : R? — C, ®(x) = 1 + iz, is a homomorphism:

? (Bj + B;D = (z1+y1) + (22 + y2) = 21 + iz2 + Y1 + iy2
()
o (A [ij) = Az1 + Aiwy = M@y + izy) = AD ([ij) ,

(2.88)
This also justifies why complex numbers can be represented as tuples in
IR%: There is a bijective linear mapping that converts the elementwise addi-
tion of tuples in R? into the set of complex numbers with the correspond-
ing addition. Note that we only showed linearity, but not the bijection.

Theorem 2.17 (Theorem 3.59 in Axler (2015)). Finite-dimensional vector
spaces V and W are isomorphic if and only if dim(V') = dim(W).

Theorem 2.17 states that there exists a linear, bijective mapping be-
tween two vector spaces of the same dimension. Intuitively, this means
that vector spaces of the same dimension are kind of the same thing, as
they can be transformed into each other without incurring any loss.

Theorem 2.17 also gives us the justification to treat R™*™ (the vector
space of m x n-matrices) and R™" (the vector space of vectors of length
mn) the same, as their dimensions are mn, and there exists a linear, bi-
jective mapping that transforms one into the other.

Remark. Consider vector spaces V, W, X. Then:

= For linear mappings ® : V — W and ¥ : W — X, the mapping
Vod:V — X isalso linear.

» If ® : V — W is an isomorphism, then ®~! : W — V is an isomor-
phism, too.
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€3

€

s IfP:V > W, U:V — W are linear, then ® + ¥ and AP, A € R, are
linear, too.

¢

2.7.1 Matrix Representation of Linear Mappings

Any n-dimensional vector space is isomorphic to R (Theorem 2.17). We
consider a basis {by, ..., b,} of an n-dimensional vector space V. In the
following, the order of the basis vectors will be important. Therefore, we
write

B=(bi,...,b,) (2.89)

and call this n-tuple an ordered basis of V.

Remark (Notation). We are at the point where notation gets a bit tricky.

Therefore, we summarize some parts here. B = (by,...,b,) is an ordered
basis, B = {by,...,b,} is an (unordered) basis, and B = [b;,...,b,]isa
matrix whose columns are the vectors by, ..., b,,. &

Definition 2.18 (Coordinates). Consider a vector space V' and an ordered
basis B = (by,...,b,) of V. For any € V we obtain a unique represen-
tation (linear combination)

of « with respect to B. Then «4,...,«, are the coordinates of x with
respect to B, and the vector

631
a=|:|cR" (2.91)

A

is the coordinate vector/coordinate representation of x with respect to the
ordered basis B.
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A basis effectively defines a coordinate system. We are familiar with the
Cartesian coordinate system in two dimensions, which is spanned by the
canonical basis vectors ey, e,. In this coordinate system, a vector x € R?
has a representation that tells us how to linearly combine e; and e, to
obtain x. However, any basis of R? defines a valid coordinate system,
and the same vector « from before may have a different coordinate rep-
resentation in the (by, by) basis. In Figure 2.8, the coordinates of x with
respect to the standard basis (e;, e;) is [2,2]". However, with respect to
the basis (b, b,) the same vector x is represented as [1.09,0.72]7, i.e.,
x = 1.09b; + 0.72b,. In the following sections, we will discover how to
obtain this representation.

Example 2.20

Let us have a look at a geometric vector € R? with coordinates [2,3]"
with respect to the standard basis (e;, ;) of R?. This means, we can write
x = 2e; + 3e,. However, we do not have to choose the standard basis to
represent this vector. If we use the basis vectors b, = [1,—1]",b, = [1,1]7
we will obtain the coordinates £[—1,5] " to represent the same vector with
respect to (b1, by) (see Figure 2.9).

Remark. For an n-dimensional vector space V and an ordered basis B
of V, the mapping ® : R" — V, ®(e;) = b;, i = 1,...,n, is linear
(and because of Theorem 2.17 an isomorphism), where (ey,...,e,) is
the standard basis of R".

%

Now we are ready to make an explicit connection between matrices and
linear mappings between finite-dimensional vector spaces.

Definition 2.19 (Transformation Matrix). Consider vector spaces V, W

with corresponding (ordered) bases B = (by,...,b,) and C = (¢, ..., ¢,).

Moreover, we consider a linear mapping ® : V' — W.For j € {1,...,n},
Qb)) = aqjer + -+ agyiC = Zaijci (2.92)
=1

is the unique representation of ®(b;) with respect to C'. Then, we call the
m X n-matrix Ag, whose elements are given by

Aq> (’L,]) = 4y , (293)

the transformation matrix of & (with respect to the ordered bases B of V'
and C of W).

The coordinates of ®(b;) with respect to the ordered basis C' of W
are the j-th column of Ag. Consider (finite-dimensional) vector spaces
V, W with ordered bases B,C and a linear mapping ® : V. — W with
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Figure 2.10 Three
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transformation matrix Ag. If & is the coordinate vector of x € V with
respect to B and y the coordinate vector of y = ®(x) € W with respect
to C, then

Y=AsT. (2.94)

This means that the transformation matrix can be used to map coordinates
with respect to an ordered basis in V' to coordinates with respect to an
ordered basis in V.

Example 2.21 (Transformation Matrix)

Consider a homomorphism & : V — W and ordered bases B =

(by,...,b3)of Vand C = (¢4, ...,c4) of W. With
®(b) =c1 —c2+3c3 — ¢y
O(by) =2¢; + ¢+ Tes + 2¢y
®(b;3) =3¢ + c3 +4ey

(2.95)

the transformation matrix A4 with respect to B and C satisfies ®(b;) =
Z?Zl a;pe; for k=1,...,3 and is given as

1
-1
3
-1

) (2.96)

= w O

Ay = [04130427043] =

[NCIEN S N
W

where the a;, j = 1,2, 3, are the coordinate vectors of ®(b;) with respect
to C.

Example 2.22 (Linear Transformations of Vectors)

(a) Original data. linear

(b) Rotation by 45°.

(c) Stretch along the (d) General
horizontal axis. mapping.

We consider three linear transformations of a set of vectors in R? with
the transformation matrices

—sin(%) 12 0 ~ ERE =l
5] a0 a2l e

cos(%)
sin(%)
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Figure 2.10 gives three examples of linear transformations of a set of vec-
tors. Figure 2.10(a) shows 400 vectors in R?, each of which is represented
by a dot at the corresponding (z;,x)-coordinates. The vectors are ar-
ranged in a square. When we use matrix A; in (2.97) to linearly transform
each of these vectors, we obtain the rotated square in Figure 2.10(b). If we
apply the linear mapping represented by A,, we obtain the rectangle in
Figure 2.10(c) where each z;-coordinate is stretched by 2. Figure 2.10(d)
shows the original square from Figure 2.10(a) when linearly transformed
using Az, which is a combination of a reflection, a rotation, and a stretch.

2.7.2 Basis Change

In the following, we will have a closer look at how transformation matrices
of a linear mapping ® : V' — W change if we change the bases in V' and
W. Consider two ordered bases

B=(b,...,b,), B=(by,....b,) (2.98)
of V and two ordered bases
C=(ci,...,cn), C=(¢,...,En) (2.99)

of W. Moreover, Ay € R™*" is the transformation matrix of the linear
mapping ® : V — W with respect to the bases B and C, and As € R™*"
is the corresponding transformation mapping with respect to B and C.
In the following, we will investigate how A and A are related, i.e., how/
whether we can transform As into A4 if we choose to perform a basis
change from B, C to B, C.

Remark. We effectively get different coordinate representations of the
identity mapping idy . In the context of Figure 2.9, this would mean to
map coordinates with respect to (e;, e;) onto coordinates with respect to
(by, by) without changing the vector x. By changing the basis and corre-
spondingly the representation of vectors, the transformation matrix with
respect to this new basis can have a particularly simple form that allows
for straightforward computation. &

Example 2.23 (Basis Change)

Consider a transformation matrix

2 1
A= L 2} (2.100)

with respect to the canonical basis in R?. If we define a new basis

B= (H , [ 11]) (2.101)
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we obtain a diagonal transformation matrix

i 3 0
A= {0 1] (2.102)

with respect to B, which is easier to work with than A.

In the following, we will look at mappings that transform coordinate
vectors with respect to one basis into coordinate vectors with respect to
a different basis. We will state our main result first and then provide an
explanation.

Theorem 2.20 (Basis Change). For a linear mapping ® : V' — W, ordered
bases

B=(by,...,b,), B=(by,....b,) (2.103)
of V and
C=(c,....cn), C=(E1,...,¢n) (2.104)

of W, and a transformation matrix Ag of ® with respect to B and C, the
corresponding transformation matrix Ag with respect to the bases B and C
is given as

Ay =T 'A,S. (2.105)

Here, S € R™*" is the transformation matrix of idy, that maps coordinates
with respect to B onto coordinates with respect to B, and T € R™*™ is the
transformation matrix of idy, that maps coordinates with respect to C' onto
coordinates with respect to C.

Proof Followiqg Drumm and Weil (2001), we can write the vectors of
the new basis B of V' as a linear combination of the basis vectors of B,
such that

i)j :Sljbl ++Sn7bn :Zsi]‘bi, j = 1,...,7’L. (2106)
i=1

Similarly, we write the new basis vectors C of W as a linear combination
of the basis vectors of C, which yields

&k:tlkcl+"'+tmkcmzztlkcl) k‘zl,...,m. (2107)
=1

We define § = ((s;;)) € R™*" as the transformation matrix that maps
coordinates with respect to B onto coordinates with respect to B and
T = ((t;x)) € R™ ™ as the transformation matrix that maps coordinates
with respect to C' onto coordinates with respect to C.. In particular, the jth
column of S is the coordinate representation of Bj with respect to B and
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the kth column of T is the coordinate representation of ¢; with respect to
C. Note that both S and T are regular.

We are going to look at ®(b;) from two perspectives. First, applying the

mapping ®, we get thatforall j =1,...,n
o(b) =Y aer AN 0y e = (Z tlk%) ¢, (2.108)
k:l?m’/_/ k=1  I=1 =1 \k=1

where we first expressed the new basis vectors ¢, € W as linear com-
binations of the basis vectors ¢, € W and then swapped the order of
summation.

Alternatively, when we express the Bj € V as linear combinations of
b, € V, we arrive at

m

@(BJ) (2.26) ) (Z S1Jb7> = Z Sijq)(b,;) = Z Sijz a;;Cy (21093)
i=1 =1

=1 i=1
=y (Z a”si]) ¢, j=1,...,n, (2.109b)
=1 =1

where we exploited the linearity of ®. Comparing (2.108) and (2.109b),
it follows forall j =1,...,nand [ = 1,...,m that

m

D twdng = Y ausi (2.110)
k=1 =1

and, therefore,

TAy = ApS € R™" (2.111)

such that
Ap =T A4S, (2.112)
which proves Theorem 2.20. O

_ Theorem 2.20 tells us that with a basis change in V' (B is replaced with
B) and W (C is replaced with (), the transformation matrix ~Acp of a
linear mapping ® : V' — W is replaced by an equivalent matrix Ag with

Ay =T 'A,S. (2.113)

Figure 2.11 illustrates this relation: Consider a homomorphism ¢ : V' —
W and ordered bases B, B of V and C, C of W. The mapping ®¢ is an
instantiation of ® and maps basis vectors of B onto linear combinations
of basis vectors of C'. Assume that we know the transformation matrix A4
of ®-p with respect to the ordered bases B, C'. When we perform a basis
change from B to B in V and from C to C' in W, we can determine the
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$:V — W and
ordered bases B, B
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with respect to the
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corresponding
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corresponding transformation matrix A4 as follows: First, we find the ma-
trix representation of the linear mapping ¥ 55 : V' — V that maps coordi-
nates with respect to the new basis B onto the (unique) coordinates with
respect to the “old” basis B (in V). Then, we use the transformation ma-
trix Ag of ®cp : V — W to map these coordinates onto the coordinates
with respect to C' in W. Finally, we use a linear mapping =z : W — W
to map the coordinates with respect to C' onto coordinates with respect to
C. Therefore, we can express the linear mapping ® ;5 as a composition of
linear mappings that involve the “old” basis:

—=-1

"'CC,OQCBO\I/BB. (2.114)

Concretely, we use ¥ ;5 = idy and 2,5 = idy, i.e., the identity mappings
that map vectors onto themselves, but with respect to a different basis.

Definition 2.21 (Equivalence). Two matrices A, A € R™*™ are equivalent
if there exist regular matrices S € R"*" and T' € R™*™, such that
A=T'AS.

Definition 2.22 (Similarity). Two matrices A, A € R™" are similar if
there exists a regular matrix S € R"*" with A = S~ 'AS

Remark. Similar matrices are always equivalent. However, equivalent ma-
trices are not necessarily similar. &

Remark. Consider vector spaces V, W, X. From the remark that follows
Theorem 2.17, we already know that for linear mappings ¢ : V. — W
and ¥ : W — X the mapping Y o ¢ : V — X is also linear. With
transformation matrices Ag and Ay of the corresponding mappings, the
overall transformation matrix is Ag.e = Ay Ag.

In light of this remark, we can look at basis changes from the perspec-
tive of composing linear mappings:

» Aj is the transformation matrix of a linear mapping $cp : V — W
with respect to the bases B, C.

» A, is the transformation matrix of the linear mapping e VoW
with respect to the bases B, C.

» S is the transformation matrix of a linear mapping V55 : V — V
(automorphism) that represents B in terms of B. Normally, ¥ = idy, is
the identity mapping in V.
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= T is the transformation matrix of a linear mapping =, : W — W
(automorphism) that represents C' in terms of C. Normally, = = idyy is
the identity mapping in W.

If we (informally) write down~ the trgnsform%tions just in terms of bases,

then Ay : B - C,As : B—>C,S:B— B T:C — (Cand
T ':C— C,and

B—>C=B—-B->(C-=C (2.115)

Ay =T 'A,S. (2.116)

Note that the execution order in (2.116) is from right to left because vec-

tors are multiplied at the right-hand side so that x = Sx — A4(Sx) —
T_l(Aé(Sa:)) = Aq>£U.

Example 2.24 (Basis Change)
Consider a linear mapping ® : R?* — R* whose transformation matrix is

1 20
-1 1 3
Ap= |7 o 7 (2.117)
-1 2 4
with respect to the standard bases
o) o o (1] fof o
B:(O 5 1 s 0)7 C:( ) ) ) ) (2.118)
0 0 1 0 0 1 0
0 0 0 1

We seek the transformation matrix A4 of ® with respect to the new bases

B=(|1],]|1]|,|0])eR? C=(|., , o). 2119
al [T o’ (1] (1]’ |0
0] [0o] [o] |1
Then,
S=1[11 o], T = , (2.120)
01 1 0110
000 1

where the ith column of S is the coordinate representation of b; in
terms of the basis vectors of B. Since B is the standard basis, the co-
ordinate representation is straightforward to find. For a general basis B,
we would need to solve a linear equation system to find the \; such that
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S Aibi=b;, 5 =1,...,3. Similarly, the jth column of T is the coordi-
nate representation of ¢; in terms of the basis vectors of C'.
Therefore, we obtain

[ 1 1 -1 -1](3 2 1
s o L1 -1 1 —1]|0 4 2
0 0 0 2 1 6 3
—4 —4 -=2]
6 0 O
=14 8 4 (2.121b)
1 6 3

In Chapter 4, we will be able to exploit the concept of a basis change
to find a basis with respect to which the transformation matrix of an en-
domorphism has a particularly simple (diagonal) form. In Chapter 10, we
will look at a data compression problem and find a convenient basis onto
which we can project the data while minimizing the compression loss.

2.7.3 Image and Kernel

The image and kernel of a linear mapping are vector subspaces with cer-
tain important properties. In the following, we will characterize them
more carefully.

Definition 2.23 (Image and Kernel).
For ® : V — W, we define the kernel/null space

ker(®) := & '(Oy) ={v €V : ®(v) = Oy} (2.122)
and the image/range
Im(®) :=0(V)={weW|FveV:o(v)=w}. (2.123)
We also call V and W also the domain and codomain of ®, respectively.

Intuitively, the kernel is the set of vectors in v € V that ® maps onto
the neutral element Oy, € W. The image is the set of vectors w € W that
can be “reached” by ® from any vector in V. An illustration is given in
Figure 2.12.

Remark. Consider a linear mapping ¢ : V' — W, where V, W are vector
spaces.

» It always holds that ®(0y/) = Oy and, therefore, 0y € ker(®). In
particular, the null space is never empty.
» Im(®) C W is a subspace of W, and ker(®) C V is a subspace of V.
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Figure 2.12 Kernel
and image of a
linear mapping
o:V->W.

» ® is injective (one-to-one) if and only if ker(®) = {0}.

¢

Remark (Null Space and Column Space). Let us consider A € R™*™ and
a linear mapping ¢ : R* — R™, « — Awx.

» For A = [a,...,a,], where a; are the columns of A, we obtain

Im(®) ={Ax:x cR"} = {Zmiai ST < ]R} (2.124a)
=1

= span[ay,...,a,] CR™, (2.124b)

i.e., the image is the span of the columns of A, also called the column column space
space. Therefore, the column space (image) is a subspace of R™, where
m is the “height” of the matrix.

* 1k(A) = dim(Im(P)).

* The kernel/null space ker(®) is the general solution to the homoge-
neous system of linear equations Ax = 0 and captures all possible
linear combinations of the elements in R™ that produce 0 € R™.

» The kernel is a subspace of R", where n is the “width” of the matrix.

= The kernel focuses on the relationship among the columns, and we can
use it to determine whether/how we can express a column as a linear
combination of other columns.

¢
Example 2.25 (Image and Kernel of a Linear Mapping)
The mapping
T Ea
.4 2 T 1 2 -1 0 Ta| ZL‘1+2ZL‘2—IE3
WL = I T3 H[l 0 0 1| |=zs| T+ x4
Ly Ly
(2.125a)
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=T [ﬂ + T2 B] + x3 [_01] + x4 [ﬂ (2.125b)

is linear. To determine Im(®), we can take the span of the columns of the
transformation matrix and obtain

Im(®) = span[m : B] , [_01] : m] : (2.126)

To compute the kernel (null space) of ¢, we need to solve Ax = 0, i.e.,
we need to solve a homogeneous equation system. To do this, we use
Gaussian elimination to transform A into reduced row-echelon form:

12 -1 0} [1 0 0 1]
e , (2.127)
[1 0 0 1 01 -+ -1

2

This matrix is in reduced row-echelon form, and we can use the Minus-
1 Trick to compute a basis of the kernel (see Section 2.3.3). Alternatively,
we can express the non-pivot columns (columns 3 and 4) as linear com-
binations of the pivot columns (columns 1 and 2). The third column a; is
equivalent to —% times the second column a,. Therefore, 0 = a5+ %ag. In
the same way, we see that a, = a; —3a, and, therefore, 0 = a; —1a,—a.,.
Overall, this gives us the kernel (null space) as

|
—

ker(®) = span]| (2.128)

O == O
= Ol

Theorem 2.24 (Rank-Nullity Theorem). For vector spaces V, W and a lin-
ear mapping ® : V. — W it holds that

dim(ker(®)) + dim(Im(®)) = dim(V). (2.129)

The rank-nullity theorem is also referred to as the fundamental theorem
of linear mappings (Axler, 2015, theorem 3.22). The following are direct
consequences of Theorem 2.24:

» If dim(Im(®)) < dim(V'), then ker(®) is non-trivial, i.e., the kernel
contains more than Oy and dim(ker(®)) > 1.

= If A is the transformation matrix of ¢ with respect to an ordered basis
and dim(Im(®)) < dim(V'), then the system of linear equations Aqx =
0 has infinitely many solutions.

» If dim (V) = dim(W), then the following three-way equivalence holds:
— & is injective
- & is surjective
— & is bijective
since Im(®) C W.
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2.8 Affine Spaces

In the following, we will have a closer look at spaces that are offset from
the origin, i.e., spaces that are no longer vector subspaces. Moreover, we
will briefly discuss properties of mappings between these affine spaces,
which resemble linear mappings.

Remark. In the machine learning literature, the distinction between linear
and affine is sometimes not clear so that we can find references to affine
spaces/mappings as linear spaces/mappings. &

2.8.1 Affine Subspaces

Definition 2.25 (Affine Subspace). Let V be a vector space, x, € V and
U C V a subspace. Then the subset

L=zy+U:={xg+u:uclU} (2.130a)
={veV|duelU:v=x+u} CV (2.130Db)

is called affine subspace or linear manifold of V. U is called direction or
direction space, and x is called support point. In Chapter 12, we refer to
such a subspace as a hyperplane.

Note that the definition of an affine subspace excludes 0 if x, ¢ U.
Therefore, an affine subspace is not a (linear) subspace (vector subspace)
of Vforxzy ¢ U.

Examples of affine subspaces are points, lines, and planes in R?, which
do not (necessarily) go through the origin.

Remark. Consider two affine subspaces L = xy 4+ U and L= Ty + Uofa
vector space V. Then, L C L if and only if U C U and Ty — Ty € U.

Affine subspaces are often described by parameters: Consider a k-dimen-
sional affine space L = o+ U of V. If (by, ..., b;) is an ordered basis of
U, then every element « € L can be uniquely described as

where A1, ..., ¢ € R. This representation is called parametric equation
of L with directional vectors by, ..., b, and parameters A, ..., A. &

Example 2.26 (Affine Subspaces)

» One-dimensional affine subspaces are called lines and can be written
as y = xy + A\xy, where A € R, where U = span[z;] C R" is a
one-dimensional subspace of R". This means that a line is defined by
a support point &, and a vector x; that defines the direction. See Fig-
ure 2.13 for an illustration.
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» Two-dimensional affine subspaces of R™ are called planes. The para-
metric equation for planes is y = xo + A\;x; + \oxy, where A, Ay € R
and U = span|x;,z;] C R"™. This means that a plane is defined by a
support point &, and two linearly independent vectors x;, ¢, that span
the direction space.

» In R", the (n — 1)-dimensional affine subspaces are called hyperplanes,

and the corresponding parametric equation is y = xq + Z?;ll iy,

where x4, ..., 2, ; form a basis of an (n — 1)-dimensional subspace
U of R". This means that a hyperplane is defined by a support point
@ and (n — 1) linearly independent vectors 1, ..., x,_; that span the

direction space. In R?, a line is also a hyperplane. In R, a plane is also
a hyperplane.

/

Remark (Inhomogeneous systems of linear equations and affine subspaces).
For A € R™™ and b € R™, the solution of the linear equation sys-
tem Ax = b is either the empty set or an affine subspace of R" of
dimension n — rk(A). In particular, the solution of the linear equation
Az + ...+ A\x, = b, where (A\,...,\,) # (0,...,0), is a hyperplane
in R™.

In R”, every k-dimensional affine subspace is the solution of a linear
inhomogeneous equation system Ax = b, where A € R™*", b € R™ and
rk(A) = n — k. Recall that for homogeneous equation systems Az = 0
the solution was a vector subspace, which we can also think of as a special
affine space with support point , = 0. &

2.8.2 Affine Mappings

Similar to linear mappings between vector spaces, which we discussed
in Section 2.7, we can define affine mappings between two affine spaces.
Linear and affine mappings are closely related. Therefore, many properties
that we already know from linear mappings, e.g., that the composition of
linear mappings is a linear mapping, also hold for affine mappings.

Definition 2.26 (Affine Mapping). For two vector spaces V, W, a linear
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mapping ® : V — W, and a € W, the mapping

6V W (2.132)
xz—a+ d(x) (2.133)

is an affine mapping from V to W. The vector a is called the translation
vector of ¢.

» Every affine mapping ¢ : V' — W is also the composition of a linear
mapping ¢ : V — W and a translation 7 : W — W in W, such that
¢ = 7 o ®. The mappings ¢ and 7 are uniquely determined.

» The composition ¢’ o ¢ of affine mappings ¢ : V — W, ¢’ : W — X is
affine.

= Affine mappings keep the geometric structure invariant. They also pre-
serve the dimension and parallelism.

2.9 Further Reading

There are many resources for learning linear algebra, including the text-
books by Strang (2003), Golan (2007), Axler (2015), and Liesen and
Mehrmann (2015). There are also several online resources that we men-
tioned in the introduction to this chapter. We only covered Gaussian elim-
ination here, but there are many other approaches for solving systems of
linear equations, and we refer to numerical linear algebra textbooks by
Stoer and Burlirsch (2002), Golub and Van Loan (2012), and Horn and
Johnson (2013) for an in-depth discussion.

In this book, we distinguish between the topics of linear algebra (e.g.,
vectors, matrices, linear independence, basis) and topics related to the
geometry of a vector space. In Chapter 3, we will introduce the inner
product, which induces a norm. These concepts allow us to define angles,
lengths and distances, which we will use for orthogonal projections. Pro-
jections turn out to be key in many machine learning algorithms, such as
linear regression and principal component analysis, both of which we will
cover in Chapters 9 and 10, respectively.
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Exercises
2.1 We consider (R\{—1}, x), where

axb:=ab+a+b, a,b e R\{-1} (2.134)

a. Show that (R\{—1}, %) is an Abelian group.
b. Solve

3xxxx =15

in the Abelian group (R\{—1}, *), where x is defined in (2.134).
2.2 Let n be in IN\{0}. Let k, z be in Z. We define the congruence class k of the
integer k as the set
k={z€Z|xz—k=0 (modn)}
={z€Z|(Fa€Z): (z—k=n-a)}.
We now define Z/nZ (sometimes written Z,) as the set of all congruence

classes modulo n. Euclidean division implies that this set is a finite set con-
taining n elements:

Zn ={0,1,...,n—1}
For all a,b € Z,,, we define
aob:=a+b

a. Show that (Zn,,®) is a group. Is it Abelian?
b. We now define another operation ® for all @ and b in Z,, as

a®b=axb, (2.135)

where a x b represents the usual multiplication in Z.
Let n = 5. Draw the times table of the elements of Z5\{0} under ®, i.e.,
calculate the products @ ® b for all @ and b in Z5\{0}.
Hence, show that Z5\{0} is closed under ® and possesses a neutral
element for @. Display the inverse of all elements in Z5\{0} under ®.
Conclude that (Z5\{0}, ®) is an Abelian group.

c. Show that (Zg\{0}, ®) is not a group.

d. We recall that the Bézout theorem states that two integers a and b are
relatively prime (i.e., gcd(a, b) = 1) if and only if there exist two integers
u and v such that au + bv = 1. Show that (Z,\{0}, ®) is a group if and
only if n € IN\{0} is prime.

2.3 Consider the set G of 3 x 3 matrices defined as follows:

1 =z =z
g=<1l0 1 y| eR>*?|2,9,2€R (2.136)
0 0 1
We define - as the standard matrix multiplication.
Is (G,-) a group? If yes, is it Abelian? Justify your answer.
2.4 Compute the following matrix products, if possible:
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a.
1 2]t 1 0
4 5|10 1 1
7 8| |1 0 1
b.
1 2 3] [1 1 O]
4 5 6 1
17 8 9] [1 1]
C.
1 1 0] [1 2 3]
1 1| |4 5 6
|1 1] |7 8 9]
d.
0 3
12 1 271 =1
4 1 -1 —4| ]2 1
5
e.
0 3
1 =1t 2 1 2
2 1]14 1 -1 -4
5 2

2.5 Find the set S of all solutions in x of the following inhomogeneous linear
systems Az = b, where A and b are defined as follows:

a.
1 1 -1 -1 1
2 5 -7 =5 -2
A= 2 -1 1 3|’ b= 4
5 2 —4 2 6
b.
1 -1 0 0 1 3
1 1 0 -3 6
A= 2 -1 0 1 -1’ b= 5
-1 2 0 -2 -1 -1

2.6 Using Gaussian elimination, find all solutions of the inhomogeneous equa-
tion system Ax = b with

01 0 0 1 0 2
A=10 0 0 1 1 0of, b=|-1
01 0 0 0 1 1
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x1
2.7 Find all solutions in « = |z2| € R? of the equation system Az = 12,
x3
where
6 4 3
A=1|6 0 9
0 8 0

and Zle x; = 1.
2.8 Determine the inverses of the following matrices if possible:

a.

Ot W
(SR, RN

=
_ == O
— O R
o = O O

2.9  Which of the following sets are subspaces of R®?
a. A={MA+3 =) |\ peR}
b. B={()\2,-)%,0)| A e R}
c. Let v bein R.
C={(t,&.6) e R’ [ &~ 20 +36 =17}
d. D={(&,6.&) eR? | & € Z}

2.10 Are the following sets of vectors linearly independent?

a.
2 3
1= |-1|, x2=|1], x3=|-3
3 —2 8
b.
1 1 1
2 1 0
x1=|1], @x2= |0, ax3= 10
0 1 1
0 1 1
2.11 Write
1
y=|-2
5
as linear combination of
1 1 2
1= (1|, x>= |2, x3=|-1
1 3 1
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2.12 Consider two subspaces of R*:

1 2 -1 -1 2 -3
-1 1 -2 -2 6

Ul - Span[ -3 ) 0 5 1 ]7 U2 - Spa'n[ 2 ) 0 P _9 ]
1 -1 1 1 0 —1

Determine a basis of Uy N Us.

2.13 Consider two subspaces U; and Us, where U; is the solution space of the
homogeneous equation system A;x = 0 and Us is the solution space of the
homogeneous equation system Asx = 0 with

1 0 1 3 -3 0
1 -2 -1 1 2 3

A = Ao —
=l 1 3| 2707 =5 2
1 0 1 3 -1 2

a. Determine the dimension of Uy, Us.
b. Determine bases of U; and Us.
c. Determine a basis of Uy N Us.

2.14 Consider two subspaces U; and U, where Uy is spanned by the columns of
A; and U, is spanned by the columns of A with

1 0 1 3 -3 0
1 -2 -1 1 2 3

A = Ay —
Y=o 1 3| 2707 -5 2
1 0 1 3 —1 2

a. Determine the dimension of Uy, Uy
b. Determine bases of U; and Us
c. Determine a basis of Uy N Uy

2.15 Let F = {(z,y,2) € R® | 24y—z =0} and G = {(a—b, a+b,a—3b) | a,b € R}.
a. Show that F and G are subspaces of R3.
b. Calculate F N G without resorting to any basis vector.
c. Find one basis for F and one for G, calculate FNG using the basis vectors
previously found and check your result with the previous question.

2.16 Are the following mappings linear?
a. Leta,be R.

®: L' (Ja,b]) - R
b
£t = [ reys,
where L!([a,b]) denotes the set of integrable functions on |[a, b].
$:0"' = °

fee) =1,

where for k& > 1, C* denotes the set of k times continuously differen-
tiable functions, and C° denotes the set of continuous functions.

(©2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.



68 Linear Algebra

:R—-R
x — ®(x) = cos(x)

d:R> = R?
NN 1 2 3:'3
1 4 3

®:R?> - R?

cos(f)  sin(6) -
= [—sin(@) cos(@)}

e. Let 6 be in [0, 27[.

2.17 Consider the linear mapping

d:R> > R*
31 + 272 + x3
x
o xl _ | szt
2 xr1 — 3T2
3

2x1 + 3x2 + 3

= Find the transformation matrix Ag.
= Determine rk(Ag).
= Compute the kernel and image of ®. What are dim(ker(®)) and dim(Im(®))?
2.18 Let E be a vector space. Let f and g be two automorphisms on E such that
fog =idg (.e., f og is the identity mapping idg). Show that ker(f) =
ker(g o f), Im(g) = Im(g o f) and that ker(f) NIm(g) = {0g}.
2.19 Consider an endomorphism & : R?® — R?® whose transformation matrix
(with respect to the standard basis in R3) is

1 1 0
Az =1|1 -1 0
1 1 1

1. Determine ker(®) and Im(®).
2. Determine the transformation matrix Ag with respect to the basis
1 1 1
B = ( 1 ) ? 0 ) )
1 1 0

i.e., perform a basis change toward the new basis B.
2.20 Let us consider by, by, b}, b, 4 vectors of R? expressed in the standard basis

of R? as
2 —1 2 1
w=li] =0 w=[y] w=]

and let us define two ordered bases B = (b1, by) and B’ = (b}, b}) of R?.
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Show that B and B’ are two bases of R? and draw those basis vectors.
Compute the matrix P; that performs a basis change from B’ to B.

3. We consider ¢y, c2, c3, three vectors of R® defined in the standard basis
of R as

N o=

cr=12], ec=|-1|, ec3=
-1 2 -1

and we define C = (c1, c2, ¢3).

a. Show that C is a basis of R?, e.g., by using determinants (see Sec-
tion 4.1).

b. Let us call ¢' = (¢}, ch, c4) the standard basis of R®. Determine the
matrix Py that performs the basis change from C to C".

4. We consider a homomorphism & : R? — R3, such that

CI’(bl —+ b2) = c2+c3
(b —b2) = 2¢1—c2+3c3

where B = (by, by) and C = (e, ¢z, ¢3) are ordered bases of R? and R?,
respectively.
Determine the transformation matrix Ag of ® with respect to the ordered
bases B and C.

5. Determine A’, the transformation matrix of ® with respect to the bases
B’ and C'.

6. Let us consider the vector € R? whose coordinates in B’ are [2,3]". In
other words, = = 2b} + 3b},.

a. Calculate the coordinates of = in B.

b. Based on that, compute the coordinates of ®(x) expressed in C.

c. Then, write ®(x) in terms of ¢}, ch, c5.

d. Use the representation of  in B’ and the matrix A’ to find this result
directly.
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In Chapter 2, we studied vectors, vector spaces, and linear mappings at
a general but abstract level. In this chapter, we will add some geomet-
ric interpretation and intuition to all of these concepts. In particular, we
will look at geometric vectors and compute their lengths and distances
or angles between two vectors. To be able to do this, we equip the vec-
tor space with an inner product that induces the geometry of the vector
space. Inner products and their corresponding norms and metrics capture
the intuitive notions of similarity and distances, which we use to develop
the support vector machine in Chapter 12. We will then use the concepts
of lengths and angles between vectors to discuss orthogonal projections,
which will play a central role when we discuss principal component anal-
ysis in Chapter 10 and regression via maximum likelihood estimation in
Chapter 9. Figure 3.1 gives an overview of how concepts in this chapter
are related and how they are connected to other chapters of the book.
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3.1 Norms

When we think of geometric vectors, i.e., directed line segments that start
at the origin, then intuitively the length of a vector is the distance of the
“end” of this directed line segment from the origin. In the following, we
will discuss the notion of the length of vectors using the concept of a norm.

Definition 3.1 (Norm). A norm on a vector space V is a function

-V =R,
z— |z,

3.1
(3.2)

which assigns each vector @ its length ||| € R, such that for all A € R
and x,y € V the following hold:

» Absolutely homogeneous: || x| = |\|||z||
+ Triangle inequality: | + y| < [lz/| + |ly]
= Positive definite: ||z|| > 0 and ||z|| =0 <= =0

In geometric terms, the triangle inequality states that for any triangle,
the sum of the lengths of any two sides must be greater than or equal
to the length of the remaining side; see Figure 3.2 for an illustration.
Definition 3.1 is in terms of a general vector space V' (Section 2.4), but
in this book we will only consider a finite-dimensional vector space R™.
Recall that for a vector € R™ we denote the elements of the vector using

a subscript, that is, x; is the i*® element of the vector x.

Example 3.1 (Manhattan Norm)
The Manhattan norm on R" is defined for x € R" as

n
Izl =) |l
i=1

where | - | is the absolute value. The left panel of Figure 3.3 shows all
vectors « € R? with ||z||; = 1. The Manhattan norm is also called ¢,

norm.

3.3)
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Example 3.2 (Euclidean Norm)
The Euclidean norm of x € R" is defined as

(3.4)

]2 :=

and computes the Euclidean distance of x from the origin. The right panel
of Figure 3.3 shows all vectors € R? with ||z|; = 1. The Euclidean
norm is also called ¢y norm.

Remark. Throughout this book, we will use the Euclidean norm (3.4) by
default if not stated otherwise. &

3.2 Inner Products

Inner products allow for the introduction of intuitive geometrical con-
cepts, such as the length of a vector and the angle or distance between
two vectors. A major purpose of inner products is to determine whether
vectors are orthogonal to each other.

3.2.1 Dot Product

We may already be familiar with a particular type of inner product, the
scalar product/dot product in R", which is given by

a:Ty = quyi. (3.5)
i=1

We will refer to this particular inner product as the dot product in this
book. However, inner products are more general concepts with specific
properties, which we will now introduce.

3.2.2 General Inner Products

Recall the linear mapping from Section 2.7, where we can rearrange the
mapping with respect to addition and multiplication with a scalar. A bi-
linear mapping () is a mapping with two arguments, and it is linear in
each argument, i.e., when we look at a vector space V then it holds that
forallz,y,z € V, A\,¢ € R that

QA + Yy, z) = Nz, z) + VQ(y, z) (3.6)
Qxz, \y +vz) = \Q(z,y) + VQ(x, 2) . 3.7

Here, (3.6) asserts that (2 is linear in the first argument, and (3.7) asserts
that (2 is linear in the second argument (see also (2.87)).
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Definition 3.2. Let V be a vector space and €2 : V' x V' — R be a bilinear
mapping that takes two vectors and maps them onto a real number. Then

» Q) is called symmetric if Q(x,y) = Q(y, x) for all z,y € V, i.e., the
order of the arguments does not matter.
= ) is called positive definite if

Ve € V\{0}: Q(x,z) >0, Q(0,0)=0. (3.8)

Definition 3.3. Let V be a vector space and €2 : V' x V' — R be a bilinear
mapping that takes two vectors and maps them onto a real number. Then

= A positive definite, symmetric bilinear mapping 2 : V' xV — R is called
an inner product on V. We typically write (x, y) instead of Q(x, y).

= The pair (V, (-, -)) is called an inner product space or (real) vector space
with inner product. If we use the dot product defined in (3.5), we call
(V,{-,-)) a Euclidean vector space.

We will refer to these spaces as inner product spaces in this book.

Example 3.3 (Inner Product That Is Not the Dot Product)
Consider V = R2. If we define

(x,y) := 191 — (T1y2 + T2y1) + 222y 3.9

then (-, -) is an inner product but different from the dot product. The proof
will be an exercise.

3.2.3 Symmetric, Positive Definite Matrices

Symmetric, positive definite matrices play an important role in machine
learning, and they are defined via the inner product. In Section 4.3, we
will return to symmetric, positive definite matrices in the context of matrix
decompositions. The idea of symmetric positive semidefinite matrices is
key in the definition of kernels (Section 12.4).

Consider an n-dimensional vector space V' with an inner product (-, ) :
V x V — R (see Definition 3.3) and an ordered basis B = (b, ..., b,) of
V. Recall from Section 2.6.1 that any vectors x,y € V can be written as
linear combinations of the basis vectors so that ¢ = >, ¢;b;, € V and
y = >, A\jb; € V for suitable 1, \; € R. Due to the bilinearity of the
inner product, it holds for all &,y € V that

(x,y) = <Z @Z)z‘biaz)\jbj> = ZZ% (bi,bj) \; = &' Ay, (3.10)
i=1 =1 i=1 j=1

where A;; := (b;, b;) and &, y are the coordinates of « and y with respect
to the basis B. This implies that the inner product (-, -) is uniquely deter-
mined through A. The symmetry of the inner product also means that A
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is symmetric. Furthermore, the positive definiteness of the inner product
implies that

Ve c V\{0}: 2" Az > 0. (3.11)

Definition 3.4 (Symmetric, Positive Definite Matrix). A symmetric matrix
A € R™™ that satisfies (3.11) is called symmetric, positive definite, or
just positive definite. If only > holds in (3.11), then A is called symmetric,
positive semidefinite.

Example 3.4 (Symmetric, Positive Definite Matrices)
Consider the matrices

9 6 9 6
a=[ 9. =l 9. @12
A, is positive definite because it is symmetric and
9 6| |z

= 937? + 122125 + 51’% = (3z; + 2:c2)2 + :173 >0 (3.13b)

for all x € V\{0}. In contrast, A, is symmetric but not positive definite
because ' Ayx = 922 + 127,15 + 322 = (31, + 225)? — 22 can be less
than 0, e.g., forz = [2, —3]".

If A € R"*" is symmetric, positive definite, then
(x,y) =2 Ay (3.14)

defines an inner product with respect to an ordered basis B, where & and
y are the coordinate representations of x,y € V with respect to B.

Theorem 3.5. For a real-valued, finite-dimensional vector space V and an
ordered basis B of V, it holds that (-,-) : V x V — R is an inner product if
and only if there exists a symmetric, positive definite matrix A € R™*" with

(x,y) =2 Aj. (3.15)

The following properties hold if A € R"*" is symmetric and positive
definite:

= The null space (kernel) of A consists only of 0 because ' Ax > 0 for
all x # 0. This implies that Ax # 0 if  # 0.

= The diagonal elements a;; of A are positive because a;; = eiTAei > 0,
where e; is the ith vector of the standard basis in R".
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3.3 Lengths and Distances

In Section 3.1, we already discussed norms that we can use to compute
the length of a vector. Inner products and norms are closely related in the
sense that any inner product induces a norm

] := 1/ (@, z) (3.16)

in a natural way, such that we can compute lengths of vectors using the in-
ner product. However, not every norm is induced by an inner product. The
Manhattan norm (3.3) is an example of a norm without a corresponding
inner product. In the following, we will focus on norms that are induced
by inner products and introduce geometric concepts, such as lengths, dis-
tances, and angles.

Remark (Cauchy-Schwarz Inequality). For an inner product vector space
(V, (-, -)) the induced norm || - || satisfies the Cauchy-Schwarz inequality

| (@, y) | < [lz[l[ly]l- 3.17)
¢

Example 3.5 (Lengths of Vectors Using Inner Products)

In geometry, we are often interested in lengths of vectors. We can now use
an inner product to compute them using (3.16). Let us take z = [1,1]T €
R2. If we use the dot product as the inner product, with (3.16) we obtain

lz)| = VaTa = V12 +12 =2 (3.18)

as the length of . Let us now choose a different inner product:

=

1 -1 1
(x,y) :=a" {_ 12} Y =21y — 5(%92 + 2oy1) + Toy2 . (3.19)

2
If we compute the norm of a vector, then this inner product returns smaller
values than the dot product if z; and z, have the same sign (and x;z, >
0); otherwise, it returns greater values than the dot product. With this
inner product, we obtain

() =2 — sz +a2=1-14+1=1 = |z|=vV1=1, (3.20)
such that « is “shorter” with this inner product than with the dot product.

Definition 3.6 (Distance and Metric). Consider an inner product space
(V,(-,-)). Then

d(@,y) = |z -yl =\ {z -y, —y) (3.21)

is called the distance between x and y for ,y € V. If we use the dot
product as the inner product, then the distance is called Euclidean distance.
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The mapping

d:VxV SR (3.22)
(x,y) = d(z,y) (3.23)

is called a metric.

Remark. Similar to the length of a vector, the distance between vectors
does not require an inner product: a norm is sufficient. If we have a norm
induced by an inner product, the distance may vary depending on the
choice of the inner product. &

A metric d satisfies the following:

1. d is positive definite, i.e., d(z,y) > 0 for all z,y € V and d(z,y) =
0 <= z=1y.

2. d is symmetric, i.e., d(x,y) = d(y,x) for all x,y € V.

3. Triangle inequality: d(x,z) < d(xz,y) + d(y,z) forallz,y,z € V.

Remark. At first glance, the lists of properties of inner products and met-
rics look very similar. However, by comparing Definition 3.3 with Defini-
tion 3.6 we observe that (x, y) and d(x, y) behave in opposite directions.
Very similar « and y will result in a large value for the inner product and
a small value for the metric. &

3.4 Angles and Orthogonality

In addition to enabling the definition of lengths of vectors, as well as the
distance between two vectors, inner products also capture the geometry
of a vector space by defining the angle w between two vectors. We use
the Cauchy-Schwarz inequality (3.17) to define angles w in inner prod-
uct spaces between two vectors x,y, and this notion coincides with our
intuition in R? and R?3. Assume that x # 0,4y # 0. Then

—1<lﬁgl<1. (3.24)

]yl

Therefore, there exists a unique w € [0, 7|, illustrated in Figure 3.4, with

cosw = M (3.25)

]l [yl
The number w is the angle between the vectors x and y. Intuitively, the
angle between two vectors tells us how similar their orientations are. For
example, using the dot product, the angle between « and y = 4x, i.e., y
is a scaled version of x, is 0: Their orientation is the same.
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Example 3.6 (Angle between Vectors)

Let us compute the angle between z = [1,1]" € R?and y = [1,2]" € R?;
see Figure 3.5, where we use the dot product as the inner product. Then
we get

(y __ x'y
Vie.z) (yy)  VaTzyTy

and the angle between the two vectors is arccos(
corresponds to about 18°.

3
V10

—5) ~ 0.32rad, which

(3.26)

COSW =

@)

A key feature of the inner product is that it also allows us to characterize
vectors that are orthogonal.

Definition 3.7 (Orthogonality). Two vectors « and y are orthogonal if and
only if (x,y) = 0, and we write L y. If additionally ||z|| = 1 = ||y||,
i.e., the vectors are unit vectors, then & and y are orthonormal.

An implication of this definition is that the 0-vector is orthogonal to
every vector in the vector space.

Remark. Orthogonality is the generalization of the concept of perpendic-
ularity to bilinear forms that do not have to be the dot product. In our
context, geometrically, we can think of orthogonal vectors as having a
right angle with respect to a specific inner product. &

Example 3.7 (Orthogonal Vectors)

-1 0 1

Consider two vectors x = [1,1]T,y = [-1,1]" € R?; see Figure 3.6.
We are interested in determining the angle w between them using two
different inner products. Using the dot product as the inner product yields
an angle w between x and y of 90°, such that 1 y. However, if we
choose the inner product

2
(xy)=a' {O (1)] Y, (3.27)

(©2019 M. P. Deisenroth, A. A. Faisal, C. S. Ong. To be published by Cambridge University Press.

Figure 3.5 The
angle w between
two vectors x, y is
computed using the
inner product.

A
Yy

orthogonal

orthonormal

Figure 3.6 The
angle w between
two vectors x, y can
change depending
on the inner
product.



orthogonal matrix

It is convention to
call these matrices
“orthogonal” but a
more precise
description would
be “orthonormal”.
Transformations
with orthogonal
matrices preserve
distances and
angles.

78 Analytic Geometry

we get that the angle w between x and y is given by

1
cosw=ZY _ 1 1 01rad ~ 10050 (3.28)

lzllllyl 3
and « and y are not orthogonal. Therefore, vectors that are orthogonal
with respect to one inner product do not have to be orthogonal with re-
spect to a different inner product.

Definition 3.8 (Orthogonal Matrix). A square matrix A € R™*" is an
orthogonal matrix if and only if its columns are orthonormal so that

AAT=T=A"A, (3.29)

which implies that
A'=AT, (3.30)

i.e., the inverse is obtained by simply transposing the matrix.

Transformations by orthogonal matrices are special because the length
of a vector x is not changed when transforming it using an orthogonal
matrix A. For the dot product, we obtain

|Az|® = (Az) (Az) =2 "ATAz =z JTe = 'z = ||z||> . (3.31)

Moreover, the angle between any two vectors x, y, as measured by their
inner product, is also unchanged when transforming both of them using
an orthogonal matrix A. Assuming the dot product as the inner product,
the angle of the images Ax and Ay is given as
T TAT T
Cosw = (Az) (Ay) = z A Ay -9y ,  (3.32)
[Az] || Ay] \/mTATAmyTATAy ]| [yl

which gives exactly the angle between x and y. This means that orthog-
onal matrices A with A" = A™' preserve both angles and distances. It
turns out that orthogonal matrices define transformations that are rota-
tions (with the possibility of flips). In Section 3.9, we will discuss more
details about rotations.

3.5 Orthonormal Basis

In Section 2.6.1, we characterized properties of basis vectors and found
that in an n-dimensional vector space, we need n basis vectors, i.e., n
vectors that are linearly independent. In Sections 3.3 and 3.4, we used
inner products to compute the length of vectors and the angle between
vectors. In the following, we will discuss the special case where the basis
vectors are orthogonal to each other and where the length of each basis
vector is 1. We will call this basis then an orthonormal basis.
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Let us introduce this more formally.

Definition 3.9 (Orthonormal Basis). Consider an n-dimensional vector
space V and a basis {by,...,b,} of V. If

(bj,bj) =0 fori#j (3.33)
(bi,b;) =1 (3.34)
forall ¢,j = 1,...,n then the basis is called an orthonormal basis (ONB).

If only (3.33) is satisfied, then the basis is called an orthogonal basis. Note
that (3.34) implies that every basis vector has length/norm 1.

Recall from Section 2.6.1 that we can use Gaussian elimination to find a
basis for a vector space spanned by a set of vectors. Assume we are given
aset {by,...,b,} of non-orthogonal and unnormalized basis vectors. We

concatenate them into a matrix B = [51, ..., b,] and apply Gaussian elim-

-~ T ~
ination to the augmented matrix (Section 2.3.2) [BB |B] to obtain an
orthonormal basis. This constructive way to iteratively build an orthonor-
mal basis {by, ..., b, } is called the Gram-Schmidt process (Strang, 2003).

Example 3.8 (Orthonormal Basis)

The canonical/standard basis for a Euclidean vector space R" is an or-

thonormal basis, where the inner product is the dot product of vectors.
In R?, the vectors

1 (1 1 ]1
n=gli) -l 23

form an orthonormal basis since b, b, = 0 and ||b, || = 1 = ||bs].

We will exploit the concept of an orthonormal basis in Chapter 12 and
Chapter 10 when we discuss support vector machines and principal com-
ponent analysis.

3.6 Orthogonal Complement

Having defined orthogonality, we will now look at vector spaces that are
orthogonal to each other. This will play an important role in Chapter 10,
when we discuss linear dimensionality reduction from a geometric per-
spective.

Consider a D-dimensional vector space V' and an M -dimensional sub-

orthonormal basis
ONB
orthogonal basis

space U C V. Then its orthogonal complement U~ is a (D— M )-dimensional orthogonal

subspace of V' and contains all vectors in V' that are orthogonal to every
vector in U. Furthermore, U N U+ = {0} so that any vector € V can be
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A
€3
w
€9
/]
>
€
U
uniquely decomposed into
M D—M
T= Aubn+ > Uby, A, ¥ €ER, (3.36)
m=1 j=1
where (by, ..., by,) is a basis of U and (b, ..., by_,,) is a basis of UL.

Therefore, the orthogonal complement can also be used to describe a
plane U (two-dimensional subspace) in a three-dimensional vector space.
More specifically, the vector w with ||w|| = 1, which is orthogonal to the
plane U, is the basis vector of U~. Figure 3.7 illustrates this setting. All
vectors that are orthogonal to w must (by construction) lie in the plane
U. The vector w is called the normal vector of U.

Generally, orthogonal complements can be used to describe hyperplanes
in n-dimensional vector and affine spaces.

3.7 Inner Product of Functions

Thus far, we looked at properties of inner products to compute lengths,
angles and distances. We focused on inner products of finite-dimensional
vectors. In the following, we will look at an example of inner products of
a different type of vectors: inner products of functions.

The inner products we discussed so far were defined for vectors with a
finite number of entries. We can think of a vector € R"™ as function with
n function values. The concept of an inner product can be generalized to
vectors with an infinite number of entries (countably infinite) and also
continuous-valued functions (uncountably infinite). Then the sum over
individual components of vectors (see Equation (3.5) for example) turns
into an integral.

An inner product of two functions » : R — R and v : R — R can be
defined as the definite integral

(u,v) ::/a u(x)v(x)dz (3.37)
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for lower and upper limits a, b < oo, respectively. As with our usual inner
product, we can define norms and orthogonality by looking at the inner
product. If (3.37) evaluates to 0, the functions « and v are orthogonal. To
make the preceding inner product mathematically precise, we need to take
care of measures and the definition of integrals, leading to the definition of
a Hilbert space. Furthermore, unlike inner products on finite-dimensional
vectors, inner products on functions may diverge (have infinite value). All
this requires diving into some more intricate details of real and functional
analysis, which we do not cover in this book.

Example 3.9 (Inner Product of Functions)

If we choose u = sin(x) and v = cos(z), the integrand f(z) = u(z)v(x)
of (3.37), is shown in Figure 3.8. We see that this function is odd, i.e.,
f(—=z) = —f(z). Therefore, the integral with limits a = —m, b = 7 of this
product evaluates to 0. Therefore, sin and cos are orthogonal functions.

Remark. It also holds that the collection of functions
{1, cos(x), cos(2x), cos(3x), ...} (3.38)

is orthogonal if we integrate from — to m, i.e., any pair of functions are
orthogonal to each other. The collection of functions in (3.38) spans a
large subspace of the functions that are even and periodic on [—m, 7), and
projecting functions onto this subspace is the fundamental idea behind
Fourier series. &

In Section 6.4.6, we will have a look at a second type of unconventional
inner products: the inner product of random variables.

3.8 Orthogonal Projections

Projections are an important class of linear transformations (besides rota-
tions and reflections) and play an important role in graphics, coding the-
ory, statistics and machine learning. In machine learning, we often deal
with data that is high-dimensional. High-dimensional data is often hard
to analyze or visualize. However, high-dimensional data quite often pos-
sesses the property that only a few dimensions contain most information,
and most other dimensions are not essential to describe key properties
of the data. When we compress or visualize high-dimensional data, we
will lose information. To minimize this compression loss, we ideally find
the most informative dimensions in the data. As discussed in Chapter 1,
data can be represented as vectors, and in this chapter, we will discuss
some of the fundamental tools for data compression. More specifically, we
can project the original high-dimensional data onto a lower-dimensional
feature space and work in this lower-dimensional space to learn more
about the dataset and extract relevant patterns. For example, machine
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learning algorithms, such as principal component analysis (PCA) by Pear-
son (1901) and Hotelling (1933) and deep neural networks (e.g., deep
auto-encoders (Deng et al., 2010)), heavily exploit the idea of dimension-
ality reduction. In the following, we will focus on orthogonal projections,
which we will use in Chapter 10 for linear dimensionality reduction and
in Chapter 12 for classification. Even linear regression, which we discuss
in Chapter 9, can be interpreted using orthogonal projections. For a given
lower-dimensional subspace, orthogonal projections of high-dimensional
data retain as much information as possible and minimize the difference/
error between the original data and the corresponding projection. An il-
lustration of such an orthogonal projection is given in Figure 3.9. Before
we detail how to obtain these projections, let us define what a projection
actually is.

Definition 3.10 (Projection). Let V be a vector space and U C V a
subspace of V. A linear mapping w : V — U is called a projection if
m=mom=m.

Since linear mappings can be expressed by transformation matrices (see
Section 2.7), the preceding definition applies equally to a special kind
of transformation matrices, the projection matrices P, which exhibit the
property that P2 = P,.

In the following, we will derive orthogonal projections of vectors in the
inner product space (R",(-,-)) onto subspaces. We will start with one-
dimensional subspaces, which are also called lines. If not mentioned oth-
erwise, we assume the dot product (x,y) = x 'y as the inner product.

3.8.1 Projection onto One-Dimensional Subspaces (Lines)

Assume we are given a line (one-dimensional subspace) through the ori-
gin with basis vector b € R". The line is a one-dimensional subspace
U C R" spanned by b. When we project x € R”™ onto U, we seek the
vector 7y (x) € U that is closest to x. Using geometric arguments, let
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Zr
\
\
AY
AY
\
\
AY
‘ x
mu ()
w sinw
w Ccos w
>
(a) Projection of € RR? onto a subspace U (b) Projection of a two-dimensional vector
with basis vector b. z with ||| = 1 onto a one-dimensional

subspace spanned by b.

us characterize some properties of the projection 7y (x) (Figure 3.10(a)
serves as an illustration):

» The projection 7y () is closest to @, where “closest” implies that the
distance ||@ — 7y ()| is minimal. It follows that the segment 7y () — @
from 7 () to @ is orthogonal to U, and therefore the basis vector b of
U. The orthogonality condition yields (7 () — «, b) = 0 since angles
between vectors are defined via the inner product.

= The projection 7y () of  onto U must be an element of U and, there-
fore, a multiple of the basis vector b that spans U. Hence, 7, () = \b,
for some A € R.

In the following three steps, we determine the coordinate A, the projection
my(x) € U, and the projection matrix P, that maps any € R" onto U:

1. Finding the coordinate A. The orthogonality condition yields

(z — o (z),b) = 0 "EE" (2 — \b,b) = 0. (3.39)
We can now exploit the bilinearity of the inner product and arrive at

(@,b) — A (b,b) =0 <> \= ii’;’; - <|l|’l’)i”2> . (3.40)

In the last step, we exploited the fact that inner products are symmet-
ric. If we choose (-, -) to be the dot product, we obtain

b'x b'x
= PP = 7\\b||2 . (3.41)

If |b|| = 1, then the coordinate ) of the projection is given by b' ..
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Figure 3.10
Examples of
projections onto
one-dimensional
subspaces.

A is then the
coordinate of 7wy ()
with respect to b.

With a general inner
product, we get

A = (x,b) if

ol = 1.



The horizontal axis
is a one-dimensional
subspace.

Projection matrices
are always
symmetric.
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2. Finding the projection point 7y (x) € U. Since 7y (x) = Ab, we imme-
diately obtain with (3.40) that

(x, b>b b'x

(@) el > = o

(3.42)

where the last equality holds for the dot product only. We can also
compute the length of 7 (x) by means of Definition 3.1 as

lmo (@)]| = [[Ab]| = [A[ ][] - (3.43)

Hence, our projection is of length || times the length of b. This also
adds the intuition that ) is the coordinate of 7, () with respect to the
basis vector b that spans our one-dimensional subspace U.

If we use the dot product as an inner product, we get

IRl
B[]

@42) b x|

B[]

(3.25)
16l =" [cosw ||| [[b] = [coswl ||z

(3.44)

7o ()]

Here, w is the angle between x and b. This equation should be familiar
from trigonometry: If ||| = 1, then « lies on the unit circle. It follows
that the projection onto the horizontal axis spanned by b is exactly
cosw, and the length of the corresponding vector 7 () = |cosw|. An
illustration is given in Figure 3.10(b).

3. Finding the projection matrix P,. We know that a projection is a lin-
ear mapping (see Definition 3.10). Therefore, there exists a projection
matrix P, such that 7y (xz) = P,x. With the dot product as inner
product and

b'x bb'
(@) =Ab=bA\=b— = —, (3.45)
6] [|b]]?
we immediately see that
bb'
r = : (3.46)
1B]?

Note that bb' (and, consequently, P.) is a symmetric matrix (of rank
1), and ||b||* = (b, b) is a scalar.

The projection matrix P, projects any vector & € R"™ onto the line through
the origin with direction b (equivalently, the subspace U spanned by b).

Remark. The projection 7y (x) € R™ is still an n-dimensional vector and
not a scalar. However, we no longer require n coordinates to represent the
projection, but only a single one if we want to express it with respect to
the basis vector b that spans the subspace U: . &
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x — my(x)

by

WU(IE)

>
0 b,

Example 3.10 (Projection onto a Line)
Find the projection matrix P, onto the line through the origin spanned
byb=1[1 2 2]T. b is a direction and a basis of the one-dimensional
subspace (line through origin).

With (3.46), we obtain

1 1 2 2
bb' 1 1

Py= =12 [1 2 2]==1{2 4 4 (3.47)
b'b 9 9 4 4

Let us now choose a particular & and see whether it lies in the subspace
spanned by b. Forz = [1 1 1] " the projection is

1 1 2 2|1 1 ) 1
my(x)=P,x=— |2 4 4| |1| == [10| €span[|2]|]. (3.48)
D2 4 4| 1] 2|10 2

Note that the application of P, to 7 (x) does not change anything, i.e.,
P,y (x) = my(x). This is expected because according to Definition 3.10,
we know that a projection matrix P, satisfies P>x = P for all x.

Remark. With the results from Chapter 4, we can show that 7 (x) is an
eigenvector of P, and the corresponding eigenvalue is 1. &

3.8.2 Projection onto General Subspaces

In the following, we look at orthogonal projections of vectors € R”
onto lower-dimensional subspaces U C R"™ with dim(U) = m > 1. An
illustration is given in Figure 3.11.

Assume that (by, ..., b,,) is an ordered basis of U. Any projection 7 ()
onto U is necessarily an element of U. Therefore, they can be represented
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Figure 3.11
Projection onto a
two-dimensional
subspace U with
basis by, bs. The
projection 7y () of
x € R3 onto U can
be expressed as a
linear combination
of b1, be and the
displacement vector
x — 7wy (x)is
orthogonal to both
b1 and b2.

If U is given by a set
of spanning vectors,
which are not a
basis, make sure
you determine a
basis by, ..., bm
before proceeding.



The basis vectors
form the columns of
B € R*"X™ where
B = [bi,...,bm].

normal equation

pseudo-inverse
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as linear combinations of the basis vectors b,,...,b,, of U, such that
m
7TU($) = Zi:l Azbz
As in the 1D case, we follow a three-step procedure to find the projec-
tion 7y () and the projection matrix P, :

1. Find the coordinates Ay, ..., A, of the projection (with respect to the
basis of U), such that the linear combination

mu(x) =Y Aib; = BA, (3.49)
=1

B=1b,....b,] €R™™, X=[\,...,\n] €R™, (3.50)

is closest to & € R™. As in the 1D case, “closest” means “minimum
distance”, which implies that the vector connecting n () € U and
x € R" must be orthogonal to all basis vectors of U. Therefore, we
obtain m simultaneous conditions (assuming the dot product as the
inner product)

(b, —my(x)) = b, (& —my(x)) =0 (3.51)
(b @ — 70 () = b, (@ — (@) = 0 (3.52)
which, with 7, () = BA, can be written as
b/ (x — BX) =0 (3.53)
b, (x — BA) =0 (3.54)
such that we obtain a homogeneous linear equation system
by
| |lz—BA| =0 < B'(zx—B\) =0 (3.55)
b,,
< B'BA=B'z. (3.56)
The last expression is called normal equation. Since by, ...,b,, are a

basis of U and, therefore, linearly independent, B' B € R™*™ is reg-
ular and can be inverted. This allows us to solve for the coefficients/
coordinates

A=(B'B)"'B'z. (3.57)

The matrix (B' B)"'B" is also called the pseudo-inverse of B, which
can be computed for non-square matrices B. It only requires that B' B
is positive definite, which is the case if B is full rank. In practical ap-
plications (e.g., linear regression), we often add a “jitter term” €I to
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B B to guarantee increased numerical stability and positive definite-
ness. This “ridge” can be rigorously derived using Bayesian inference.
See Chapter 9 for details.

2. Find the projection 7y (x) € U. We already established that 7y (x) =
B\. Therefore, with (3.57)

my(x) =B(B'B)"'B'z. (3.58)

3. Find the projection matrix P,. From (3.58), we can immediately see
that the projection matrix that solves P, = 7y (x) must be

P.=B(B'B)'B'. (3.59)

Remark. The solution for projecting onto general subspaces includes the
1D case as a special case: If dim(U) = 1, then B' B € R is a scalar and
we can rewrite the projection matrix in (3.59) P, = B(B'B)"'B’ as

P, = %, which is exactly the projection matrix in (3.46). &

Example 3.11 (Projection onto a Two-dimensional Subspace)

1 0 6
For a subspace U = span[|1|, |[1|] C R®and ¢ = |0| € R? find the
1 2 0

coordinates A of « in terms of the subspace U, the projection point 7 ()
and the projection matrix P.
First, we see that the generating set of U is a basis (linear indepen-

10
dence) and write the basis vectors of U into a matrix B = |1 1{.
1 2
Second, we compute the matrix B' B and the vector B x as
10 6
T, 1011 I3 3 11 6
BB{O 1 2} bl [3 5}’ Bw[o 1 2] 0 [O}'
1 2 0
(3.60)

Third, we solve the normal equation B' BA = B 'z to find A:

3 31 [\ [6 _[5
O
Fourth, the projection 7y () of @ onto U, i.e., into the column space of

B, can be directly computed via

5
o) =Bx=|2|. (3.62)
~1
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projection error The corresponding projection error is the norm of the difference vector

The projection error ~ between the original vector and its projection onto U, i.e.,
is also called the

reconstruction error. Hw _ WU(ZU)H _ H [1 9 1]TH = \/6 (3.63)

Fifth, the projection matrix (for any & € R?) is given by

5 2 -1
1
P.=B(B'B)'B'=-|2 2 2]|. (3.64)
-1 2 5

To verify the results, we can (a) check whether the displacement vector
7y (x) — @ is orthogonal to all basis vectors of U, and (b) verify that
P, = P (see Definition 3.10).

Remark. The projections 77 () are still vectors in R™ although they lie in
an m-dimensional subspace U C R"™. However, to represent a projected
vector we only need the m coordinates A,,...,\,, with respect to the
basis vectors by, ..., b, of U. &

Remark. In vector spaces with general inner products, we have to pay
attention when computing angles and distances, which are defined by

means of the inner product.

We can find P <>
approximate Projections allow us to look at situations where we have a linear system
solutions to Ax = b without a solution. Recall that this means that b does not lie in

unsolvable linear
equation systems
using projections.

the span of A, i.e., the vector b does not lie in the subspace spanned by
the columns of A. Given that the linear equation cannot be solved exactly,
we can find an approximate solution. The idea is to find the vector in the
subspace spanned by the columns of A that is closest to b, i.e., we compute
the orthogonal projection of b onto the subspace spanned by the columns
of A. This problem arises often in practice, and the solution is called the
least-squares least-squares solution (assuming the dot product as the inner product) of
solution an overdetermined system. This is discussed further in Section 9.4. Using
reconstruction errors (3.63) is one possible approach to derive principal
component analysis (Section 10.3).

Remark. We just looked at projections of vectors & onto a subspace U with
basis vectors {b,...,bs}. If this basis is an ONB, i.e., (3.33) and (3.34)
are satisfied, the projection equation (3.58) simplifies greatly to

ny(z) = BB'x (3.65)
since B' B = I with coordinates
A=B'z. (3.66)

This means that we no longer have to compute the inverse from (3.58),
which saves computation time. &
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3.8.3 Gram-Schmidt Orthogonalization

Projections are at the core of the Gram-Schmidt method that allows us to
constructively transform any basis (b1, . .., b, ) of an n-dimensional vector
space V' into an orthogonal/orthonormal basis (u4,...,u,) of V. This
basis always exists (Liesen and Mehrmann, 2015) and span[by, ..., b,] =
span[uy, ..., w,]. The Gram-Schmidt orthogonalization method iteratively
constructs an orthogonal basis (uy,. .., u,) from any basis (bi, ..., b,) of
V as follows:

u; = by (3.67)
Uy = bk — ﬂ-span[ul,...,ukfﬂ(bk) 5 k = 2, PPN 7n . (3.68)
In (3.68), the kth basis vector by, is projected onto the subspace spanned
by the first & — 1 constructed orthogonal vectors u,,...,u,_;; see Sec-

tion 3.8.2. This projection is then subtracted from b, and yields a vector
uy, that is orthogonal to the (k — 1)-dimensional subspace spanned by

uq,...,U,_1. Repeating this procedure for all n basis vectors by,...,b,
yields an orthogonal basis (uy, ..., u,) of V. If we normalize the u;, we
obtain an ONB where ||uy|| =1fork =1,...,n.

Example 3.12 (Gram-Schmidt Orthogonalization)

/ / UQV
0 blr 0 Uy 0 Uy

(a) Original non-orthogonal (b) First new basis vector (c) Orthogonal basis vectors wuj

basis vectors b, ba. w1 = by and projection of by and ua = by — Tpan[ui] (b2).
onto the subspace spanned by
uj.
Consider a basis (b, by) of R?, where
2 1

see also Figure 3.12(a). Using the Gram-Schmidt method, we construct an
orthogonal basis (u;,u,) of R? as follows (assuming the dot product as
the inner product):

u, ‘= bl = |:§:| s (370)
T
o (3.45) wu, (1) {1 0] |1} _ |0
e = O ™ Mot () P T e = H {0 0] H B M
(3.71)
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Gram-Schmidt
orthogonalization.
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projection of by
onto span|ui];

(c) orthogonal basis
(ul, ug) of IRQ.



Figure 3.13
Projection onto an
affine space.

(a) original setting;
(b) setting shifted
by —x¢ so that

x — a can be
projected onto the
direction space U,
(c) projection is
translated back to
xo + 7y (x — x0),
which gives the final
orthogonal
projection 7, ().
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Az

b,

0 b1 0 b1 0 bl
(a) Setting. (b) Reduce problem to pro-
jection m;; onto vector sub-

space.

(c) Add support point back in
to get affine projection 7.

These steps are illustrated in Figures 3.12(b) and (c). We immediately see
that u; and u, are orthogonal, i.e., u] us = 0.

3.8.4 Projection onto Affine Subspaces

Thus far, we discussed how to project a vector onto a lower-dimensional
subspace U. In the following, we provide a solution to projecting a vector
onto an affine subspace.

Consider the setting in Figure 3.13(a). We are given an affine space L =
xo + U, where by, b, are basis vectors of U. To determine the orthogonal
projection 77 () of x onto L, we transform the problem into a problem
that we know how to solve: the projection onto a vector subspace. In
order to get there, we subtract the support point x, from x and from L,
so that L — xy = U is exactly the vector subspace U. We can now use the
orthogonal projections onto a subspace we discussed in Section 3.8.2 and
obtain the projection 7y (& — @), which is illustrated in Figure 3.13(b).
This projection can now be translated back into L by adding «,, such that
we obtain the orthogonal projection onto an affine space L as

m(x) = xo + 7y (T — T)) (3.72)

where 7y (+) is the orthogonal projection onto the subspace U, i.e., the
direction space of L; see Figure 3.13(c).

From Figure 3.13, it is also evident that the distance of « from the affine
space L is identical to the distance of @ — x, from U, i.e.,

(3.73a)
(3.73b)

d(@, L) = ||l = mp(2)|| = [ — (@0 + 70 (2 — 20))|
=d(x — xo, Ty (T — T0)) -

We will use projections onto an affine subspace to derive the concept of
a separating hyperplane in Section 12.1.
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Original

Rotated by 112.5°

3.9 Rotations

Length and angle preservation, as discussed in Section 3.4, are the two
characteristics of linear mappings with orthogonal transformation matri-
ces. In the following, we will have a closer look at specific orthogonal
transformation matrices, which describe rotations.

A rotation is a linear mapping (more specifically, an automorphism of
a Euclidean vector space) that rotates a plane by an angle # about the
origin, i.e., the origin is a fixed point. For a positive angle § > 0, by com-
mon convention, we rotate in a counterclockwise direction. An example is
shown in Figure 3.14, where the transformation matrix is

—0.38

0.92 (3.74)

R = { _0'92] .

—0.38

Important application areas of rotations include computer graphics and
robotics. For example, in robotics, it is often important to know how to
rotate the joints of a robotic arm in order to pick up or place an object,
see Figure 3.15.
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Figure 3.14 A
rotation rotates
objects in a plane
about the origin. If
the rotation angle is
positive, we rotate
counterclockwise.

Figure 3.15 The
robotic arm needs to
rotate its joints in
order to pick up
objects or to place
them correctly.
Figure taken

from (Deisenroth

et al., 2015).

rotation



Figure 3.16
Rotation of the
standard basis in R2
by an angle 6.

rotation matrix
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D (ey) = [—sinb, cos 6] A
N cosd
A}
\\ 62
\
Y ®(e;) = [cosf,sinf] "
\\r_ gi-I-l-g- ............. ’..’..’.."
\\9 ”,’
\ -
S Pt X
—sinf e, cos

3.9.1 Rotations in R?

Consider the standard basis {61 =

é] , €9 = ﬁ] } of R?, which defines

the standard coordinate system in R?. We aim to rotate this coordinate
system by an angle # as illustrated in Figure 3.16. Note that the rotated
vectors are still linearly independent and, therefore, are a basis of R%. This
means that the rotation performs a basis change.

Rotations ® are linear mappings so that we can express them by a
rotation matrix R(6). Trigonometry (see Figure 3.16) allows us to de-
termine the coordinates of the rotated axes (the image of ®) with respect
to the standard basis in R?. We obtain

Be) = gl Y=oty @

Therefore, the rotation matrix that performs the basis change into the
rotated coordinates R(6) is given as

(3.76)

RO) = [be) Ble)] = oy o]

sinf cosf

3.9.2 Rotations in R3

In contrast to the R? case, in R® we can rotate any two-dimensional plane
about a one-dimensional axis. The easiest way to specify the general rota-
tion matrix is to specify how the images of the standard basis ey, e,, e5 are
supposed to be rotated, and making sure these images Re;, Re,, Res are
orthonormal to each other. We can then obtain a general rotation matrix
R by combining the images of the standard basis.

To have a meaningful rotation angle, we have to define what “coun-
terclockwise” means when we operate in more than two dimensions. We
use the convention that a “counterclockwise” (planar) rotation about an
axis refers to a rotation about an axis when we look at the axis “head on,
from the end toward the origin”. In R, there are therefore three (planar)
rotations about the three standard basis vectors (see Figure 3.17):
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A Figure 3.17
Rotation of a vector
(gray) in R3 by an
angle 6 about the
ez-axis. The rotated
vector is shown in

I blue.

€3

~ e]

= Rotation about the e;-axis

1 0 0

R, () = [P(e;) P(e2) P(es)] = |0 cos® —sinf| . (3.77)
0 sinf cosf

Here, the e; coordinate is fixed, and the counterclockwise rotation is
performed in the e,e; plane.
» Rotation about the e,-axis

cosf 0 sinb
R,(0) = 0 1 0 ) (3.78)
—sinf 0 cos@

If we rotate the e;e; plane about the e, axis, we need to look at the e,
axis from its “tip” toward the origin.

= Rotation about the es-axis
cosf) —sinf 0

R;(0) = |sinf cosf 0Of . (3.79)
0 0 1

Figure 3.17 illustrates this.

3.9.3 Rotations in n Dimensions

The generalization of rotations from 2D and 3D to n-dimensional Eu-
clidean vector spaces can be intuitively described as fixing n — 2 dimen-
sions and restrict the rotation to a two-dimensional plane in the n-dimen-
sional space. As in the three-dimensional case, we can rotate any plane
(two-dimensional subspace of R™).

Definition 3.11 (Givens Rotation). Let V be an n-dimensional Euclidean
vector space and ® : V' — V an automorphism with transformation ma-
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trix
I, , 0 . . 0
0 cosf 0 —sind 0
Ri;0):=] 0 0o I, 0 0 e R™", (3.80)
0 sind 0 cos 0
0 - . 0 I,

for1 <i < j <mnand#f € R. Then R;;(0) is called a Givens rotation.
Essentially, R;;(6) is the identity matrix I,, with

ri =cost, 71, =—sinf, r; =sin0, r;; =cosf. (3.81)

In two dimensions (i.e., n = 2), we obtain (3.76) as a special case.

3.9.4 Properties of Rotations

Rotations exhibit a number of useful properties, which can be derived by
considering them as orthogonal matrices (Definition 3.8):

= Rotations preserve distances, i.e., ||z —y|| = ||[Ro(x) — Ry (y)||. In other
words, rotations leave the distance between any two points unchanged
after the transformation.

= Rotations preserve angles, i.e., the angle between Ryx and R,y equals
the angle between x and y.

= Rotations in three (or more) dimensions are generally not commuta-
tive. Therefore, the order in which rotations are applied is important,
even if they rotate about the same point. Only in two dimensions vector
rotations are commutative, such that R(¢)R(0) = R(0)R(¢) for all
®,0 € ]0,27). They form an Abelian group (with multiplication) only if
they rotate about the same point (e.g., the origin).

3.10 Further Reading

In this chapter, we gave a brief overview of some of the important concepts
of analytic geometry, which we will use in later chapters of the book. For a
broader and more in-depth overview of some the concepts we presented,
we refer to the following excellent books: Axler (2015) and Boyd and
Vandenberghe (2018).

Inner products allow us to determine specific bases of vector (sub)spaces,
where each vector is orthogonal to all others (orthogonal bases) using the
Gram-Schmidt method. These bases are important in optimization and
numerical algorithms for solving linear equation systems. For instance,
Krylov subspace methods, such as conjugate gradients or the generalized
minimal residual method (GMRES), minimize residual errors that are or-
thogonal to each other (Stoer and Burlirsch, 2002).

In machine learning, inner products are important in the context of
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kernel methods (Schélkopf and Smola, 2002). Kernel methods exploit the
fact that many linear algorithms can be expressed purely by inner prod-
uct computations. Then, the “kernel trick” allows us to compute these
inner products implicitly in a (potentially infinite-dimensional) feature
space, without even knowing this feature space explicitly. This allowed the
“non-linearization” of many algorithms used in machine learning, such as
kernel-PCA (Scholkopf et al., 1997) for dimensionality reduction. Gaus-
sian processes (Rasmussen and Williams, 2006) also fall into the category
of kernel methods and are the current state of the art in probabilistic re-
gression (fitting curves to data points). The idea of kernels is explored
further in Chapter 12.

Projections are often used in computer graphics, e.g., to generate shad-
ows. In optimization, orthogonal projections are often used to (iteratively)
minimize residual errors. This also has applications in machine learning,
e.g., in linear regression where we want to find a (linear) function that
minimizes the residual errors, i.e., the lengths of the orthogonal projec-
tions of the data onto the linear function (Bishop, 2006). We will investi-
gate this further in Chapter 9. PCA (Pearson, 1901; Hotelling, 1933) also
uses projections to reduce the dimensionality of high-dimensional data.
We will discuss this in more detail in Chapter 10.
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Exercises
3.1 Show that (-,-) defined for all @ = [z1,z2] T € R? and y = [y1,52] ' € R? by
(x,y) == z1y1 — (z1y2 + 22y1) + 2(z2y2)

is an inner product.
3.2 Consider R? with (-, -) defined for all = and y in R? as

wn=a ! 9y

1 2
——
=:A
Is (-, -) an inner product?
3.3 Compute the distance between
1 -1
= (2|, y=|-1
3 0
using
a (@y)—z'y
2 1 0
b. (x,y): =2 Ay, A:=|1 3 -1
0o -1 2

3.4 Compute the angle between

using
a (z,y)=z'y

b. (x,y):=2' By, B:= E ;]

3.5 Consider the Euclidean vector space R> with the dot product. A subspace
U C R® and = € RS are given by

0 1 -3 -1 —1
-1 -3 4 -3 -9
U=span[| 2 |, |[1]|,[1],[5]|], =z=|-1
0 -1 2 0 4
2 2 1 7 1

a. Determine the orthogonal projection 7y (x) of  onto U
b. Determine the distance d(x, U)

3.6 Consider R? with the inner product

2 1 0
(z,y) =z |1 2 -1 y
0o -1 2

Furthermore, we define e, es, e3 as the standard/canonical basis in R>.
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a. Determine the orthogonal projection 77 (e2) of e2 onto
U = span|ey, e3] .

Hint: Orthogonality is defined through the inner product.
b. Compute the distance d(ez,U).
c. Draw the scenario: standard basis vectors and 7/ (e2)

3.7 Let V be avector space and 7 an endomorphism of V.
a. Prove that 7 is a projection if and only if idy, — = is a projection, where
idy, is the identity endomorphism on V.

b. Assume now that « is a projection. Calculate Im(idy, —=) and ker(idy —)
as a function of Im() and ker(r).

3.8 Using the Gram-Schmidt method, turn the basis B = (b1,b2) of a two-
dimensional subspace U C R3 into an ONB C = (e1,e2) of U, where

1 —1
bi:=|1|, by:=1]2
1 0
3.9 Letn € IN* and let x1,...,z, > 0 be n positive real numbers so that z; +

-+ 4z, = 1. Use the Cauchy-Schwarz inequality and show that

noo2o 1

a. iy i > n
n

b. Y1z =n

Hint: Think about the dot product on IR". Then, choose specific vectors
x,y € R™ and apply the Cauchy-Schwarz inequality.

3.10 Rotate the vectors
] = o =
1- 3| 2 - 1

by 30°.
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4

Matrix Decompositions

In Chapters 2 and 3, we studied ways to manipulate and measure vectors,
projections of vectors, and linear mappings. Mappings and transforma-
tions of vectors can be conveniently described as operations performed by
matrices. Moreover, data is often represented in matrix form as well, e.g.,
where the rows of the matrix represent different people and the columns
describe different features of the people, such as weight, height, and socio-
economic status. In this chapter, we present three aspects of matrices: how
to summarize matrices, how matrices can be decomposed, and how these
decompositions can be used for matrix approximations.

We first consider methods that allow us to describe matrices with just
a few numbers that characterize the overall properties of matrices. We
will do this in the sections on determinants (Section 4.1) and eigenval-
ues (Section 4.2) for the important special case of square matrices. These
characteristic numbers have important mathematical consequences and
allow us to quickly grasp what useful properties a matrix has. From here
we will proceed to matrix decomposition methods: An analogy for ma-
trix decomposition is the factoring of numbers, such as the factoring of
21 into prime numbers 7 - 3. For this reason matrix decomposition is also
often referred to as matrix factorization. Matrix decompositions are used
to describe a matrix by means of a different representation using factors
of interpretable matrices.

We will first cover a square-root-like operation for symmetric, positive
definite matrices, the Cholesky decomposition (Section 4.3). From here
we will look at two related methods for factorizing matrices into canoni-
cal forms. The first one is known as matrix diagonalization (Section 4.4),
which allows us to represent the linear mapping using a diagonal trans-
formation matrix if we choose an appropriate basis. The second method,
singular value decomposition (Section 4.5), extends this factorization to
non-square matrices, and it is considered one of the fundamental concepts
in linear algebra. These decompositions are helpful, as matrices represent-
ing numerical data are often very large and hard to analyze. We conclude
the chapter with a systematic overview of the types of matrices and the
characteristic properties that distinguish them in the form of a matrix tax-
onomy (Section 4.7).

The methods that we cover in this chapter will become important in
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. tests s used in
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ur pasn
ur pasn
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Chapter 6
Probability
& distributions

Eigenvalues

SQUIULIDIDP

constructs

Diagonalization

Eigenvectors

Chapter 10
Dimensionality
reduction

both subsequent mathematical chapters, such as Chapter 6, but also in
applied chapters, such as dimensionality reduction in Chapters 10 or den-
sity estimation in Chapter 11. This chapter’s overall structure is depicted
in the mind map of Figure 4.1.

4.1 Determinant and Trace

Determinants are important concepts in linear algebra. A determinant is
a mathematical object in the analysis and solution of systems of linear
equations. Determinants are only defined for square matrices A € R"*",
i.e., matrices with the same number of rows and columns. In this book,
we write the determinant as det(A) or sometimes as |A| so that

aix Q2 A1n
a1 Q22 Qap,

det(A) = 4.1
an1 An2 Apn

The determinant of a square matrix A € R"*” is a function that maps A
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with the absolute
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onto a real number. Before providing a definition of the determinant for
general n X n matrices, let us have a look at some motivating examples,
and define determinants for some special matrices.

Example 4.1 (Testing for Matrix Invertibility)
Let us begin with exploring if a square matrix A is invertible (see Sec-
tion 2.2.2). For the smallest cases, we already know when a matrix
is invertible. If A is a 1 x 1 matrix, i.e., it is a scalar number, then
A=a = A" =1 Thusa ! =1holds, if and only if a # 0.

For 2 x 2 matrices, by the definition of the inverse (Definition 2.3), we
know that AA ™! = I. Then, with (2.24), the inverse of A is

Al = ; [ Q22 —6112] ' (4.2)

11099 — Q12097 | —A21 11

Hence, A is invertible if and only if
11022 — Q12021 7# 0. (4.3)

This quantity is the determinant of A € R?*?, i.e.,

a a
det(A) = H 2= 11022 — A12Q2] . 4.4)

Q21 Q22

Example 4.1 points already at the relationship between determinants
and the existence of inverse matrices. The next theorem states the same
result for n x n matrices.

Theorem 4.1. For any square matrix A € R™*™ it holds that A is invertible
if and only if det(A) # 0.

We have explicit (closed-form) expressions for determinants of small
matrices in terms of the elements of the matrix. For n = 1,

det(A) = det(au) = a1 - (45)
Forn = 2,
det(A) = S 11022 — G12021 , (4.6)
Q21 Q22

which we have observed in the preceding example.
For n = 3 (known as Sarrus’ rule),

a;; Q2 Q13
Q21 Q22 (23| = Q11022033 + A21A32013 + A31A12023 4.7)
a31 Q32 A33

— 31022013 — (11432023 — A21A12033 -
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For a memory aid of the product terms in Sarrus’ rule, try tracing the
elements of the triple products in the matrix.

We call a square matrix T" an upper-triangular matrix if T;; = 0 for
i > j, i.e., the matrix is zero below its diagonal. Analogously, we define a
lower-triangular matrix as a matrix with zeros above its diagonal. For a tri-
angular matrix T' € R"*", the determinant is the product of the diagonal
elements, i.e.,

n

det(T) = [[ T -

i=1

(4.8)

Example 4.2 (Determinants as Measures of Volume)

The notion of a determinant is natural when we consider it as a mapping
from a set of n vectors spanning an object in R™. It turns out that the de-
terminant det(A) is the signed volume of an n-dimensional parallelepiped
formed by columns of the matrix A.

For n = 2, the columns of the matrix form a parallelogram; see Fig-
ure 4.2. As the angle between vectors gets smaller, the area of a parallel-
ogram shrinks, too. Consider two vectors b, g that form the columns of a
matrix A = [b, g]. Then, the absolute value of the determinant of A is the
area of the parallelogram with vertices 0, b, g, b + g. In particular, if b, g
are linearly dependent so that b = Ag for some A € R, they no longer
form a two-dimensional parallelogram. Therefore, the corresponding area
is 0. On the contrary, if b, g are linearly independent and are multiples of

b] and

the canonical basis vectors e, e; then they can be written as b = {0

g= B] , and the determinant is

0
=bg — 0 = bg.
g g g

0

The sign of the determinant indicates the orientation of the spanning
vectors b, g with respect to the standard basis (e, e2). In our figure, flip-
ping the order to g, b swaps the columns of A and reverses the orientation
of the shaded area. This becomes the familiar formula: area = height x
length. This intuition extends to higher dimensions. In R?, we consider
three vectors 7, b, g € R?® spanning the edges of a parallelepiped, i.e., a
solid with faces that are parallel parallelograms (see Figure 4.3). The ab-
solute value of the determinant of the 3 x 3 matrix [r, b, g] is the volume
of the solid. Thus, the determinant acts as a function that measures the
signed volume formed by column vectors composed in a matrix.

Consider the three linearly independent vectors 7, g, b € R? given as

2 6 1
r=10|, g=1|1|, b=]|4 (4.9)
-8 0 -1
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vectors b and g is

|det([b, g])I-

——

Figure 4.3 The
volume of the
parallelepiped
(shaded volume)
spanned by vectors
r,b,gis

|det([r, b, g])]-

ey

The sign of the
determinant
indicates the
orientation of the
spanning vectors.
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Writing these vectors as the columns of a matrix

2 6 1
A=[r,g,b]=|10 1 4 (4.10)
-8 0 -1

allows us to compute the desired volume as

V = |det(A)| = 186. (4.11)

Computing the determinant of an n X n matrix requires a general algo-
rithm to solve the cases for n > 3, which we are going to explore in the fol-
lowing. Theorem 4.2 below reduces the problem of computing the deter-
minant of an n x n matrix to computing the determinant of (n—1) x (n—1)
matrices. By recursively applying the Laplace expansion (Theorem 4.2),
we can therefore compute determinants of n x n matrices by ultimately
computing determinants of 2 x 2 matrices.

Theorem 4.2 (Laplace Expansion). Consider a matrix A € R"*". Then,
forallj=1,...,n:

1. Expansion along column j
det(A) = (=1)*ay; det(Ay,) - (4.12)
k=1
2. Expansion along row j
det(A) =) (—=1)""a . det(A,,). (4.13)
k=1
Here Ay, ; € R=Y*(=1) js the submatrix of A that we obtain when delet-
ing row k and column j.

Example 4.3 (Laplace Expansion)
Let us compute the determinant of

1 2 3
A=1|3 1 2 (4.14)
0 0 1
using the Laplace expansion along the first row. Applying (4.13) yields
1 2 3
31 2[=(-D'"1 )1 2‘
0 1
001 (4.15)
3 2 3 1
_1\1+2 _1\1+3 .
+(-1) 2‘0 1'+( 1) 3’0 0‘.
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We use (4.6) to compute the determinants of all 2 x 2 matrices and obtain
det(A)=1(1-0)—2(3—-0)+3(0—-0) =—5. (4.16)

For completeness we can compare this result to computing the determi-
nant using Sarrus’ rule (4.7):

det(A) =1-1-143-0-340-2.2—0-1-3—1-0-2—3-2.1 = 1-6 = =5. (4.17)

For A € R™*" the determinant exhibits the following properties:

= The determinant of a matrix product is the product of the corresponding
determinants, det(AB) = det(A)det(B).

» Determinants are invariant to transposition, i.e., det(A) = det(A").

= If A is regular (invertible), then det(A™") = ﬁ(m.

= Similar matrices (Definition 2.22) possess the same determinant. There-
fore, for a linear mapping ® : V' — V all transformation matrices Ag
of ® have the same determinant. Thus, the determinant is invariant to
the choice of basis of a linear mapping.

» Adding a multiple of a column/row to another one does not change
det(A).

» Multiplication of a column/row with A € R scales det(A) by A. In
particular, det(AA) = A" det(A).

» Swapping two rows/columns changes the sign of det(A).

Because of the last three properties, we can use Gaussian elimination (see
Section 2.1) to compute det(A) by bringing A into row-echelon form.
We can stop Gaussian elimination when we have A in a triangular form
where the elements below the diagonal are all 0. Recall from (4.8) that the
determinant of a triangular matrix is the product of the diagonal elements.

Theorem 4.3. A square matrix A € R"*™ has det(A) # 0 if and only if
rk(A) = n. In other words, A is invertible if and only if it is full rank.

When mathematics was mainly performed by hand, the determinant
calculation was considered an essential way to analyze matrix invertibil-
ity. However, contemporary approaches in machine learning use direct
numerical methods that superseded the explicit calculation of the deter-
minant. For example, in Chapter 2, we learned that inverse matrices can
be computed by Gaussian elimination. Gaussian elimination can thus be
used to compute the determinant of a matrix.

Determinants will play an important theoretical role for the following
sections, especially when we learn about eigenvalues and eigenvectors
(Section 4.2) through the characteristic polynomial.

Definition 4.4. The trace of a square matrix A € R™*" is defined as
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tw(A) = ai, (4.18)
=1

i.e., the trace is the sum of the diagonal elements of A.
The trace satisfies the following properties:

» tr(A+ B) = tr(A) + tr(B) for A, B € R"*"
» tr(aA) = atr(A),a € R for A € R

s tr(l,) =n

» tr(AB) = tr(BA) for A € R"**, B € RF*"

It can be shown that only one function satisfies these four properties to-
gether — the trace (Gohberg et al., 2012).

The properties of the trace of matrix products are more general. Specif-
ically, the trace is invariant under cyclic permutations, i.e.,

tr(AKL) = t(KLA) (4.19)

for matrices A € R*** K € R**!| L € R!*“. This property generalizes to
products of an arbitrary number of matrices. As a special case of (4.19), it
follows that for two vectors «,y € R"

tr(zy' ) =tr(y ) =y x € R. (4.20)

Given a linear mapping ® : V — V, where V is a vector space, we
define the trace of this map by using the trace of matrix representation
of ®. For a given basis of V, we can describe ¢ by means of the transfor-
mation matrix A. Then the trace of ® is the trace of A. For a different
basis of V, it holds that the corresponding transformation matrix B of ¢
can be obtained by a basis change of the form S~ ' AS for suitable S (see
Section 2.7.2). For the corresponding trace of ®, this means

tr(B) = tr(S'AS) “ r(ASS ) = r(A). (4.21)

Hence, while matrix representations of linear mappings are basis depen-
dent the trace of a linear mapping @ is independent of the basis.

In this section, we covered determinants and traces as functions char-
acterizing a square matrix. Taking together our understanding of determi-
nants and traces we can now define an important equation describing a
matrix A in terms of a polynomial, which we will use extensively in the
following sections.

Definition 4.5 (Characteristic Polynomial). For A € R and a square ma-
trix A € R™"*"

pa(N) :=det(A — \I) (4.22a)
=cCot+ A+ N+ e, AT 4 (1), (4.22b)
Cos - - -, Cn_1 € R, is the characteristic polynomial of A. In particular,

Draft (2019-12-11) of “Mathematics for Machine Learning”. Feedback: https://mml-book. com.


https://mml-book.com

4.2 Eigenvalues and Eigenvectors 105

co = det(A), (4.23)
Co1 = (=1)" tr(A). (4.24)

The characteristic polynomial (4.22a) will allow us to compute eigen-
values and eigenvectors, covered in the next section.

4.2 Eigenvalues and Eigenvectors

We will now get to know a new way to characterize a matrix and its associ-
ated linear mapping. Recall from Section 2.7.1 that every linear mapping
has a unique transformation matrix given an ordered basis. We can in-
terpret linear mappings and their associated transformation matrices by
performing an “eigen” analysis. As we will see, the eigenvalues of a lin-
ear mapping will tell us how a special set of vectors, the eigenvectors, is
transformed by the linear mapping.

Definition 4.6. Let A € R™*" be a square matrix. Then A € R is an
eigenvalue of A and « € R"\{0} is the corresponding eigenvector of A if

Az = \x. (4.25)
We call (4.25) the eigenvalue equation.

Remark. In the linear algebra literature and software, it is often a conven-
tion that eigenvalues are sorted in descending order, so that the largest
eigenvalue and associated eigenvector are called the first eigenvalue and
its associated eigenvector, and the second largest called the second eigen-
value and its associated eigenvector, and so on. However, textbooks and
publications may have different or no notion of orderings. We do not want
to presume an ordering in this book if not stated explicitly. &

The following statements are equivalent:

= ) is an eigenvalue of A € R"*".

» There exists an x € R"\{0} with Ax = Az, or equivalently, (A —
A,,)x = 0 can be solved non-trivially, i.e., x # 0.

» tk(A — MI,,) <n.

» det(A — \I,,) =0.

Definition 4.7 (Collinearity and Codirection). Two vectors that point in
the same direction are called codirected. Two vectors are collinear if they
point in the same or the opposite direction.

Remark (Non-uniqueness of eigenvectors). If x is an eigenvector of A
associated with eigenvalue ), then for any ¢ € R\{0} it holds that cx is
an eigenvector of A with the same eigenvalue since

Acx) = cAx = chx = \(cx) . (4.26)
Thus, all vectors that are collinear to « are also eigenvectors of A.

o
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Theorem 4.8. \ € R is eigenvalue of A € R™*™ if and only if X is a root of
the characteristic polynomial pa(\) of A.

Definition 4.9. Let a square matrix A have an eigenvalue \;. The algebraic
multiplicity of )\; is the number of times the root appears in the character-
istic polynomial.

Definition 4.10 (Eigenspace and Eigenspectrum). For A € R"*", the set
of all eigenvectors of A associated with an eigenvalue A spans a subspace
of R", which is called the eigenspace of A with respect to A and is denoted
by E,. The set of all eigenvalues of A is called the eigenspectrum, or just
spectrum, of A.

If A is an eigenvalue of A € R™*", then the corresponding eigenspace
E, is the solution space of the homogeneous system of linear equations
(A—M\I)x = 0. Geometrically, the eigenvector corresponding to a nonzero
eigenvalue points in a direction that is stretched by the linear mapping.
The eigenvalue is the factor by which it is stretched. If the eigenvalue is
negative, the direction of the stretching is flipped.

Example 4.4 (The Case of the Identity Matrix)

The identity matrix I € R™*" has characteristic polynomial p;(\) =
det(I —AI) = (1—\)" = 0, which has only one eigenvalue A = 1 that oc-
curs n times. Moreover, Ix = Az = 1z holds for all vectors € R™\{0}.
Because of this, the sole eigenspace E, of the identity matrix spans n di-
mensions, and all n standard basis vectors of R™ are eigenvectors of I.

Useful properties regarding eigenvalues and eigenvectors include the
following:

= A matrix A and its transpose A ' possess the same eigenvalues, but not
necessarily the same eigenvectors.

» The eigenspace F, is the null space of A — AI since

Ar =) x < Ax -z =0 (4.27a)
<— (A-XM)x =0 < x cker(A— ). (4.27b)

» Similar matrices (see Definition 2.22) possess the same eigenvalues.
Therefore, a linear mapping ® has eigenvalues that are independent of
the choice of basis of its transformation matrix. This makes eigenvalues,
together with the determinant and the trace, key characteristic param-
eters of a linear mapping as they are all invariant under basis change.

= Symmetric, positive definite matrices always have positive, real eigen-
values.
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Example 4.5 (Computing Eigenvalues, Eigenvectors, and
Eigenspaces)
Let us find the eigenvalues and eigenvectors of the 2 x 2 matrix

4 2
A=) 20

Step 1: Characteristic Polynomial. From our definition of the eigen-
vector x # 0 and eigenvalue A\ of A, there will be a vector such that
Ax = \z,ie., (A— M)z = 0. Since x # 0, this requires that the kernel
(null space) of A — AI contains more elements than just 0. This means
that A — AT is not invertible and therefore det(A — AI) = 0. Hence, we
need to compute the roots of the characteristic polynomial (4.22a) to find
the eigenvalues.

Step 2: Eigenvalues. The characteristic polynomial is

pa(\) = det(A — \I) (4.29a)
4 2 A0 4— )\ 2

et B AT e

=(4-XNB-X—-2-1. (4.290)

We factorize the characteristic polynomial and obtain
PN =@A—-XNB=-XN)=-2-1=10-TA+X2=(2-X)(5-)) (4.30)

giving the roots A\; = 2 and \; = 5.
Step 3: Eigenvectors and Eigenspaces. We find the eigenvectors that
correspond to these eigenvalues by looking at vectors « such that

[4—)\ 2

) 3_/\]:13:0. (4.31)

For A = 5 we obtain
4—5 2 | |=1 2| |z:| _
R [ R R R
We solve this homogeneous system and obtain a solution space
2
E5 = span]| 1 ]. (4.33)
This eigenspace is one-dimensional as it possesses a single basis vector.

Analogously, we find the eigenvector for A = 2 by solving the homoge-
neous system of equations

{412 332}1':[? ﬂw:O. (4.34)
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I
To —1
eigenvector with eigenvalue 2. The corresponding eigenspace is given as

This means any vector x = [ }, where z5 = —x, such as [ ], is an

E, = span]| [11}} . (4.35)

The two eigenspaces E; and F, in Example 4.5 are one-dimensional
as they are each spanned by a single vector. However, in other cases
we may have multiple identical eigenvalues (see Definition 4.9) and the
eigenspace may have more than one dimension.

Definition 4.11. Let \; be an eigenvalue of a square matrix A. Then the
geometric multiplicity of )\; is the number of linearly independent eigen-
vectors associated with \;. In other words, it is the dimensionality of the
eigenspace spanned by the eigenvectors associated with A;.

Remark. A specific eigenvalue’s geometric multiplicity must be at least
one because every eigenvalue has at least one associated eigenvector. An
eigenvalue’s geometric multiplicity cannot exceed its algebraic multiplic-

ity, but it may be lower. &
Example 4.6
The matrix A = g ; has two repeated eigenvalues A\; = A, = 2 and an

algebraic multiplicity of 2. The eigenvalue has, however, only one distinct

unit eigenvector x; = and, thus, geometric multiplicity 1.

1
0
Graphical Intuition in Two Dimensions

Let us gain some intuition for determinants, eigenvectors, and eigenval-
ues using different linear mappings. Figure 4.4 depicts five transformation

matrices A4, ..., A5 and their impact on a square grid of points, centered
at the origin:

10
= A= {(2) 2] . The direction of the two eigenvectors correspond to the

canonical basis vectors in R?, i.e., to two cardinal axes. The vertical axis
is extended by a factor of 2 (eigenvalue \; = 2), and the horizontal axis
is compressed by factor % (eigenvalue A\, = %). The mapping is area

preserving (det(A;) =1=2-1).
1

" A = B i] corresponds to a shearing mapping , i.e., it shears the

points along the horizontal axis to the right if they are on the positive
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Figure 4.4
Determinants and
eigenspaces.
Overview of five

A =2.0 linear mappings and
Ay =05 their associated
det(A) = 1.0 transformation
matrices

Ai c R2><2
projecting 400
color-coded points
x € R? (left
column) onto target
points A;x (right
column). The
central column
depicts the first
eigenvector,
stretched by its
associated
eigenvalue A1, and
the second
eigenvector
stretched by its
eigenvalue \y. Each
row depicts the

N effect of one of five
= transformation
A =20

det(A) = 0.0 matrices A; with

respect to the
standard basis .
A =05 \\‘:\\\

Ao =15 \\\\\
det(A) =0.75

—_—

A= 1.0
A= 1.0
det(A) = 1.0

A1 = (0.87-0.5))
Ay = (0.87+0.5))
det(A) = 1.0

half of the vertical axis, and to the left vice versa. This mapping is area
preserving (det(A,) = 1). The eigenvalue \; = 1 = ), is repeated
and the eigenvectors are collinear (drawn here for emphasis in two
opposite directions). This indicates that the mapping acts only along
one direction (the horizontal axis).
s 3 s
. A, = [Z?j((gi _C(SJISIEEFG))} =1 [\{3 \_/a The matrix A rotates the
6 6
points by ¢ rad = 30° counter-clockwise and has only complex eigen-
values, reflecting that the mapping is a rotation (hence, no eigenvectors
are drawn). A rotation has to be volume preserving, and so the deter-
minant is 1. For more details on rotations, we refer to Section 3.9.
1 -1
" A= {—1 1
lapses a two-dimensional domain onto one dimension. Since one eigen-

] represents a mapping in the standard basis that col-
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Figure 4.5
Caenorhabditis
elegans neural
network (Kaiser and
Hilgetag, 2006).

(a) Symmetrized
connectivity matrix;
(b) Eigenspectrum.
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value is 0, the space in direction of the (blue) eigenvector corresponding
to A; = 0 collapses, while the orthogonal (red) eigenvector stretches

space by a factor A, = 2. Therefore, the area of the image is 0.
1
" Ay = F ﬂ is a shear-and-stretch mapping that scales space by 75%
2
since | det(As)| = 2. It stretches space along the (blue) eigenvector

of A\, by a factor 1.5 and compresses it along the orthogonal (blue)
eigenvector by a factor 0.5.

Example 4.7 (Eigenspectrum of a Biological Neural Network)

cigenvalue

) 50 100 150 200 g 0 11]1.| 200
neuron index index of sorted eigenvalue

(a) Connectivity matrix. (b) Eigenspectrum.

Methods to analyze and learn from network data are an essential com-
ponent of machine learning methods. The key to understanding networks
is the connectivity between network nodes, especially if two nodes are
connected to each other or not. In data science applications, it is often
useful to study the matrix that captures this connectivity data.

We build a connectivity/adjacency matrix A € R?""*?77 of the complete
neural network of the worm C.Elegans. Each row/column represents one
of the 277 neurons of this worm’s brain. The connectivity matrix A has
a value of a;; = 1 if neuron ¢ talks to neuron j through a synapse, and
a;; = 0 otherwise. The connectivity matrix is not symmetric, which im-
plies that eigenvalues may not be real valued. Therefore, we compute a
symmetrized version of the connectivity matrix as A,,,, := A + A '. This
new matrix A, is shown in Figure 4.5(a) and has a nonzero value a,; if
and only if two neurons are connected (white pixels), irrespective of the
direction of the connection. In Figure 4.5(b), we show the correspond-
ing eigenspectrum of Aj,,,. The horizontal axis shows the index of the
eigenvalues, sorted in descending order. The vertical axis shows the corre-
sponding eigenvalue. The S-like shape of this eigenspectrum is typical for
many biological neural networks. The underlying mechanism responsible
for this is an area of active neuroscience research.
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Theorem 4.12. The eigenvectors x1,...,x, of a matrix A € R"*"™ with n
distinct eigenvalues Ay, ..., \, are linearly independent.

This theorem states that eigenvectors of a matrix with n distinct eigen-
values form a basis of R".

Definition 4.13. A square matrix A € R"™*" is defective if it possesses
fewer than n linearly independent eigenvectors.

A non-defective matrix A € R"*™ does not necessarily require n dis-
tinct eigenvalues, but it does require that the eigenvectors form a basis of
R™. Looking at the eigenspaces of a defective matrix, it follows that the
sum of the dimensions of the eigenspaces is less than n. Specifically, a de-
fective matrix has at least one eigenvalue \; with an algebraic multiplicity
m > 1 and a geometric multiplicity of less than m.

Remark. A defective matrix cannot have n distinct eigenvalues, as distinct
eigenvalues have linearly independent eigenvectors (Theorem 4.12). <

Theorem 4.14. Given a matrix A € R™*", we can always obtain a sym-
metric, positive semidefinite matrix S € R™*" by defining

S=A"A. (4.36)

Remark. If tk(A) = n, then S := A' A is symmetric, positive definite.
¢

Understanding why Theorem 4.14 holds is insightful for how we can
use symmetrized matrices: Symmetry requires S = S, and by insert-
ing (4.36) we obtain S = A'A = A"(A")T = (ATA)T = S'. More-
over, positive semidefiniteness (Section 3.2.3) requires that ' Sz > 0
and inserting (4.36) we obtain 'Sz = ' A" Ax = (T A")(Ax) =
(Az)"(Az) > 0, because the dot product computes a sum of squares
(which are themselves non-negative).

Theorem 4.15 (Spectral Theorem). If A € R™*" is symmetric, there ex-
ists an orthonormal basis of the corresponding vector space V consisting of
eigenvectors of A, and each eigenvalue is real.

A direct implication of the spectral theorem is that the eigendecompo-
sition of a symmetric matrix A exists (with real eigenvalues), and that
we can find an ONB of eigenvectors so that A = PDP', where D is
diagonal and the columns of P contain the eigenvectors.

Example 4.8
Consider the matrix
3 2 2
A=1(2 3 2 (4.37)
2 2 3
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The characteristic polynomial of A is
pa(N)=—-(A-1>A-7), (4.38)

so that we obtain the eigenvalues \; = 1 and A\, = 7, where \; is a
repeated eigenvalue. Following our standard procedure for computing
eigenvectors, we obtain the eigenspaces

=1l -1 1
E,=span[| 1 |,| 0[], E;=span[|l|]. (4.39)
0 1 1
=1 =2 =3

We see that x3 is orthogonal to both x; and x,. However, since x| x, =
1 # 0, they are not orthogonal. The spectral theorem (Theorem 4.15)
states that there exists an orthogonal basis, but the one we have is not
orthogonal. However, we can construct one.

To construct such a basis, we exploit the fact that ;, x, are eigenvec-
tors associated with the same eigenvalue A. Therefore, for any o, 5 € R it
holds that

A(axy + fxy) = Azia+ Az = MNax, + fxs), (4.40)

i.e., any linear combination of &; and «x, is also an eigenvector of A as-
sociated with . The Gram-Schmidt algorithm (Section 3.8.3) is a method
for iteratively constructing an orthogonal/orthonormal basis from a set of
basis vectors using such linear combinations. Therefore, even if ; and x,
are not orthogonal, we can apply the Gram-Schmidt algorithm and find
eigenvectors associated with A\; = 1 that are orthogonal to each other
(and to x3). In our example, we will obtain

=1l =1l
=1, x,==|-1]|, (4.41)

which are orthogonal to each other, orthogonal to x5, and eigenvectors of
A associated with \; = 1.

Before we conclude our considerations of eigenvalues and eigenvectors
it is useful to tie these matrix characteristics together with the concepts of
the determinant and the trace.

Theorem 4.16. The determinant of a matrix A € R™*" is the product of
its eigenvalues, i.e.,

det(A) =[] A, (4.42)
where \; are (possibly repeated) eigenvalues of A.
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A

T2  —
U2

T U1

Theorem 4.17. The trace of a matrix A € R™*" is the sum of its eigenval-
ues, i.e.,

r(A) =3 A, (4.43)
i=1

where \; are (possibly repeated) eigenvalues of A.

Let us provide a geometric intuition of these two theorems. Consider
a matrix A € R?*? that possesses two linearly independent eigenvectors
@1, 5. For this example, we assume (1, x,) are an ONB of R? so that they
are orthogonal and the area of the square they span is 1; see Figure 4.6.
From Section 4.1, we know that the determinant computes the change of
area of unit square under the transformation A. In this example, we can
compute the change of area explicitly: Mapping the eigenvectors using
A gives us vectors v, = Ax; = A\jx; and v, = Axy = A\yx,, ie., the
new vectors v; are scaled versions of the eigenvectors x;, and the scaling
factors are the corresponding eigenvalues \;. v, v, are still orthogonal,
and the area of the rectangle they span is |\ \s|.

Given that x;,x, (in our example) are orthonormal, we can directly
compute the circumference of the unit square as 2(1 + 1). Mapping the
eigenvectors using A creates a rectangle whose circumference is 2(|A;| +
|A2|). Therefore, the sum of the absolute values of the eigenvalues tells us
how the circumference of the unit square changes under the transforma-
tion matrix A.

Example 4.9 (Google’s PageRank — Webpages as Eigenvectors)

Google uses the eigenvector corresponding to the maximal eigenvalue of
a matrix A to determine the rank of a page for search. The idea for the
PageRank algorithm, developed at Stanford University by Larry Page and
Sergey Brin in 1996, was that the importance of any web page can be ap-
proximated by the importance of pages that link to it. For this, they write
down all web sites as a huge directed graph that shows which page links
to which. PageRank computes the weight (importance) z; > 0 of a web
site a; by counting the number of pages pointing to a;. Moreover, PageR-
ank takes into account the importance of the web sites that link to a;. The
navigation behavior of a user is then modeled by a transition matrix A of
this graph that tells us with what (click) probability somebody will end up
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on a different web site. The matrix A has the property that for any ini-
tial rank/importance vector x of a web site the sequence x, Az, Az, . . .
converges to a vector x*. This vector is called the PageRank and satisfies
Ax* = x*, i.e., it is an eigenvector (with corresponding eigenvalue 1) of
A. After normalizing x*, such that ||x*|| = 1, we can interpret the entries
as probabilities. More details and different perspectives on PageRank can
be found in the original technical report (Page et al., 1999).

4.3 Cholesky Decomposition

There are many ways to factorize special types of matrices that we en-
counter often in machine learning. In the positive real numbers, we have
the square-root operation that gives us a decomposition of the number
into identical components, e.g., 9 = 3 - 3. For matrices, we need to be
careful that we compute a square-root-like operation on positive quanti-
ties. For symmetric, positive definite matrices (see Section 3.2.3), we can
choose from a number of square-root equivalent operations. The Cholesky
decomposition/Cholesky factorization provides a square-root equivalent op-
eration on symmetric, positive definite matrices that is useful in practice.

Theorem 4.18 (Cholesky Decomposition). A symmetric, positive definite
matrix A can be factorized into a product A = LL", where L is a lower-
triangular matrix with positive diagonal elements:

a1 - Aip by - 0 b o
=|: . R T I (4.44)

Gp1  **° Qpn lnl e lnn 0 e lnn
L is called the Cholesky factor of A, and L is unique.
Example 4.10 (Cholesky Factorization)

Consider a symmetric, positive definite matrix A € R**3. We are inter-
ested in finding its Cholesky factorization A = LL ", i.e.,

ajp Q21 A3 ln O 0 lin lor s
A = |[a21 Qoo A39 = I/I/—r = lgl l22 O 0 l22 l32 o (445)
a3; Q32 a33 ls1 l3o s 0 0 lIs3

Multiplying out the right-hand side yields

13, la1lyy 31011
A= |yl 3, + 13, I31l07 + l3aloo | . (4.46)
larlin lailoy +lsalas 13, + 13, + 134
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Comparing the left-hand side of (4.45) and the right-hand side of (4.46)
shows that there is a simple pattern in the diagonal elements [;;:

lh=vau, lxn= \/ Q22 — 15, ls3= \/@33 - (lgl + l§2) o (4.47)

Similarly for the elements below the diagonal (I
also a repeating pattern:

ij» where ¢ > j), there is

1
oy = —ao1, lan=1—asn, lzp=(as—Ilnl). (4.48)
b bl L2

Thus, we constructed the Cholesky decomposition for any symmetric, pos-
itive definite 3 x 3 matrix. The key realization is that we can backward
calculate what the components [;; for the L should be, given the values
a;; for A and previously computed values of [;;.

The Cholesky decomposition is an important tool for the numerical
computations underlying machine learning. Here, symmetric positive def-
inite matrices require frequent manipulation, e.g., the covariance matrix
of a multivariate Gaussian variable (see Section 6.5) is symmetric, positive
definite. The Cholesky factorization of this covariance matrix allows us to
generate samples from a Gaussian distribution. It also allows us to perform
a linear transformation of random variables, which is heavily exploited
when computing gradients in deep stochastic models, such as the varia-
tional auto-encoder (Jimenez Rezende et al., 2014; Kingma and Welling,
2014). The Cholesky decomposition also allows us to compute determi-
nants very efficiently. Given the Cholesky decomposition A = LL", we
know that det(A) = det(L)det(L") = det(L)?. Since L is a triangular
matrix, the determinant is simply the product of its diagonal entries so
that det(A) = [], (2. Thus, many numerical software packages use the
Cholesky decomposition to make computations more efficient.

4.4 Eigendecomposition and Diagonalization

A diagonal matrix is a matrix that has value zero on all off-diagonal ele-
ments, i.e., they are of the form
e, - 0
D=|: .. :]. (4.49)
0 - ¢,
They allow fast computation of determinants, powers, and inverses. The
determinant is the product of its diagonal entries, a matrix power D" is
given by each diagonal element raised to the power k, and the inverse

D" is the reciprocal of its diagonal elements if all of them are nonzero.
In this section, we will discuss how to transform matrices into diagonal
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form. This is an important application of the basis change we discussed in
Section 2.7.2 and eigenvalues from Section 4.2.

Recall that two matrices A, D are similar (Definition 2.22) if there ex-
ists an invertible matrix P, such that D = P~' AP. More specifically, we
will look at matrices A that are similar to diagonal matrices D that con-
tain the eigenvalues of A on the diagonal.

Definition 4.19 (Diagonalizable). A matrix A € R"*" is diagonalizable

if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix
P ¢ R™" such that D = P 'AP.

In the following, we will see that diagonalizing a matrix A € R"*" is
a way of expressing the same linear mapping but in another basis (see
Section 2.6.1), which will turn out to be a basis that consists of the eigen-
vectors of A.

Let A € R"*", let \y,..., \, be a set of scalars, and let p,,...,p, bea
set of vectors in R". We define P := [p,,...,p,]| and let D € R"*" be a
diagonal matrix with diagonal entries A\, ..., \,. Then we can show that

AP =PD (4.50)

if and only if Ay, ..., A\, are the eigenvalues of A and p,,...,p, are cor-
responding eigenvectors of A.
We can see that this statement holds because

AP:A[p17’pn]:[Ap1’7Ap’n]’ (4'51)
A1 0
PD=[p,,...,p,] = [Mpyy .- D, - (4.52)
0 An
Thus, (4.50) implies that

Ap, = \ip, (4.53)

Ap, = \.p,, - (4.54)

Therefore, the columns of P must be eigenvectors of A.

Our definition of diagonalization requires that P € R™*" is invertible,
i.e., P has full rank (Theorem 4.3). This requires us to have n linearly
independent eigenvectors p,, ..., p,, i.e., the p, form a basis of R".

Theorem 4.20 (Eigendecomposition). A square matrix A € R"*" can be
factored into

A=PDP, (4.55)

where P € R™ " and D is a diagonal matrix whose diagonal entries are
the eigenvalues of A, if and only if the eigenvectors of A form a basis of R".
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Theorem 4.20 implies that only non-defective matrices can be diagonal-
ized and that the columns of P are the n eigenvectors of A. For symmetric
matrices we can obtain even stronger out