import pandas as pd
import pprint
all_stocks_df = pd.read_csv("all_stocks_5yr.csv")
data_dictionary = {'date': 'The date at which metrics were recorded for respective company',
'open': 'Price of the respective stock at the beginning of the day',
'high': 'Highest price for respective stock over the duration of the day',
'low': 'Lowest stock price for respective stock over the duration of the day',
'volume': 'Total amount of respective stocks traded on that day',
'Name': 'NYSE ticker of the respective stock'
}
pp = pprint.PrettyPrinter(width=70, compact=True)
pp.pprint(data_dictionary)
all_stocks_df.head()
{'Name': 'NYSE ticker of the respective stock', 'date': 'The date at which metrics were recorded for respective ' 'company', 'high': 'Highest price for respective stock over the duration of ' 'the day', 'low': 'Lowest stock price for respective stock over the duration ' 'of the day', 'open': 'Price of the respective stock at the beginning of the day', 'volume': 'Total amount of respective stocks traded on that day'}
date | open | high | low | close | volume | Name | |
---|---|---|---|---|---|---|---|
0 | 2013-02-08 | 15.07 | 15.12 | 14.63 | 14.75 | 8407500 | AAL |
1 | 2013-02-11 | 14.89 | 15.01 | 14.26 | 14.46 | 8882000 | AAL |
2 | 2013-02-12 | 14.45 | 14.51 | 14.10 | 14.27 | 8126000 | AAL |
3 | 2013-02-13 | 14.30 | 14.94 | 14.25 | 14.66 | 10259500 | AAL |
4 | 2013-02-14 | 14.94 | 14.96 | 13.16 | 13.99 | 31879900 | AAL |
# we can access the 5 year historicals of any given stock
aapl_index = all_stocks_df['Name'] == 'AAPL'
all_stocks_df[aapl_index]
date | open | high | low | close | volume | Name | |
---|---|---|---|---|---|---|---|
1259 | 2013-02-08 | 67.7142 | 68.4014 | 66.8928 | 67.8542 | 158168416 | AAPL |
1260 | 2013-02-11 | 68.0714 | 69.2771 | 67.6071 | 68.5614 | 129029425 | AAPL |
1261 | 2013-02-12 | 68.5014 | 68.9114 | 66.8205 | 66.8428 | 151829363 | AAPL |
1262 | 2013-02-13 | 66.7442 | 67.6628 | 66.1742 | 66.7156 | 118721995 | AAPL |
1263 | 2013-02-14 | 66.3599 | 67.3771 | 66.2885 | 66.6556 | 88809154 | AAPL |
... | ... | ... | ... | ... | ... | ... | ... |
2513 | 2018-02-01 | 167.1650 | 168.6200 | 166.7600 | 167.7800 | 47230787 | AAPL |
2514 | 2018-02-02 | 166.0000 | 166.8000 | 160.1000 | 160.5000 | 86593825 | AAPL |
2515 | 2018-02-05 | 159.1000 | 163.8800 | 156.0000 | 156.4900 | 72738522 | AAPL |
2516 | 2018-02-06 | 154.8300 | 163.7200 | 154.0000 | 163.0300 | 68243838 | AAPL |
2517 | 2018-02-07 | 163.0850 | 163.4000 | 159.0685 | 159.5400 | 51608580 | AAPL |
1259 rows × 7 columns