Climate change is a complex and multi-faceted problem that affects many different aspects of our lives. For example, the climate change influenced on crops adapations (Raze et al., 2019), energy production, and economic (Tol, 2018), making governments have introduced legislation to mitigate the effects of environmental change universally. Using Data science analysis from a variety of datasets can help us to understand the causes and effects of climate change and develop effective strategies to mitigate its impact.
import pandas as pd
import pprint
df = pd.read_csv('all countries global temperature.csv')
df
ObjectId | Country Name | Unit | Change | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | ... | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | Afghanistan, Islamic Rep. of | Degree Celsius | Surface Temperature Change | 0.898 | 0.652 | -1.089 | 0.262 | -0.470 | -0.468 | ... | 0.234 | 1.308 | 0.457 | 1.101 | 1.607 | 1.568 | 1.580 | 0.960 | 0.544 | 1.421 |
1 | 2 | Albania | Degree Celsius | Surface Temperature Change | -0.119 | -0.200 | -0.077 | -0.299 | -0.134 | -0.203 | ... | 1.568 | 1.444 | 1.322 | 1.665 | 1.601 | 1.269 | 2.146 | 1.823 | 1.623 | 1.682 |
2 | 3 | Algeria | Degree Celsius | Surface Temperature Change | 0.114 | -0.380 | -0.342 | -0.028 | -0.502 | -0.554 | ... | 1.128 | 1.173 | 1.676 | 1.101 | 1.736 | 1.498 | 1.211 | 1.094 | 1.913 | 2.317 |
3 | 4 | American Samoa | Degree Celsius | Surface Temperature Change | -0.036 | -0.473 | -0.070 | 0.322 | -0.317 | -0.128 | ... | 0.646 | 0.883 | 0.554 | 0.394 | 0.924 | 0.820 | 0.574 | 0.924 | 0.815 | 0.653 |
4 | 5 | Andorra, Principality of | Degree Celsius | Surface Temperature Change | 0.081 | -0.355 | -0.526 | -0.010 | -0.412 | 0.207 | ... | 1.196 | 0.757 | 1.857 | 1.546 | 1.830 | 1.771 | 1.761 | 1.813 | 2.401 | 1.367 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
222 | 223 | Western Sahara | Degree Celsius | Surface Temperature Change | 0.547 | -0.620 | -1.104 | -0.013 | -0.600 | -0.267 | ... | 1.234 | 1.282 | 1.244 | 1.277 | 1.636 | 2.078 | 0.851 | 1.430 | 2.026 | 1.557 |
223 | 224 | World | Degree Celsius | Surface Temperature Change | 0.153 | -0.089 | -0.193 | 0.271 | -0.179 | 0.091 | ... | 1.058 | 1.007 | 1.042 | 1.406 | 1.658 | 1.424 | 1.284 | 1.449 | 1.713 | 1.442 |
224 | 225 | Yemen, Rep. of | Degree Celsius | Surface Temperature Change | 0.388 | -0.199 | 0.049 | 0.333 | -0.108 | 0.031 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
225 | 226 | Zambia | Degree Celsius | Surface Temperature Change | 0.354 | -0.249 | -0.146 | 0.386 | -0.393 | -0.116 | ... | 0.926 | 0.746 | 0.638 | 1.486 | 1.474 | 0.721 | 0.727 | 1.295 | 1.252 | 1.002 |
226 | 230 | Zimbabwe | Degree Celsius | Surface Temperature Change | 0.427 | -0.033 | -0.367 | 0.627 | -0.471 | -0.253 | ... | 0.329 | 0.102 | -0.008 | 0.808 | 1.051 | 0.116 | 0.405 | 0.939 | 0.415 | -0.101 |
227 rows × 56 columns
dict_cc = {'Country name': 'each country names', 'Unit': 'Degree Celsius', 'Change': 'surfance temperature change', '1970-2020': 'temperature change data per year'}
pprint.pprint(dict_cc)
{'1970-2020': 'temperature change data per year', 'Change': 'surfance temperature change', 'Country name': 'each country names', 'Unit': 'Degree Celsius'}