Memory loss is a real issue that is extremely hard to predict other than from family heritage. Multiple genes can cause memory loss. (https://www.alz.org/alzheimers-dementia/what-is-alzheimers/causes-and-risk-factors/genetics#:~:text=APOE%2De4%20is%20one%20of,increased%20risk%20of%20developing%20Alzheimer%27s). The hippocampus is one of the core parts of the memory circuit of the brain. Fortunately, there have been studies to tell how key of a role it plays in the brain and what genes are key to its function.(https://www.medicalnewstoday.com/articles/313295#:~:text=The%20hippocampus%20helps%20humans%20process,memories%20involve%20pathways%20or%20routes.) A few of these genes are in the tables below, along with hippocampal reaction time and activation. These will be able to show how affected a key region of the memory loss problem is by a certain combinations of genes.

In [ ]:
# memory loss
In [1]:
import pandas as pd

table1 = pd.read_csv('suppltable-1.csv', sep=",", header=0)
table2 = pd.read_csv('suppltable-2.csv', sep=",", header=0)
table3 = pd.read_csv('suppltable-3.csv', sep=",", header=0)
table4 = pd.read_csv('suppltable-4.csv', sep=",", header=0)
table5 = pd.read_csv('suppltable-5.csv', sep=",", header=0)
table6 = pd.read_csv('suppltable-6.csv', sep=",", header=0)
In [2]:
table1
Out[2]:
ID Day treatment training trial trialNum ShockOnOff PairedPartner TotalPath Speed ... pTimeShockZone pTimeCCW pTimeOPP pTimeCW RayleigLength RayleigAngle Min50.RngLoBin AnnularSkewnes AnnularKurtosis ShockPerEntrance
0 15140A 1 conflict.trained trained Pre 1 Off 15140B 22.68 3.78 ... 0.2277 0.2583 0.1788 0.3352 0.11 330.67 60 0.88 3.13 0.000000
1 15140A 1 conflict.trained trained T1 2 On 15140B 19.36 3.23 ... 0.0211 0.6961 0.2049 0.0779 0.65 112.66 130 1.81 6.70 1.166667
2 15140A 1 conflict.trained trained T2 3 On 15140B 15.01 2.50 ... 0.0092 0.6413 0.3245 0.0250 0.78 124.87 150 1.87 8.91 1.500000
3 15140A 1 conflict.trained trained T3 4 On 15140B 14.39 2.40 ... 0.0069 0.5790 0.4018 0.0123 0.80 128.39 150 2.84 12.51 1.000000
4 15140A 2 conflict.trained trained Retest 5 On 15140B 14.04 2.34 ... 0.0026 0.2945 0.6300 0.0729 0.72 159.36 170 2.42 11.83 1.000000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
301 15148D 2 conflict.yoked yoked Retest 5 On 15148C 11.41 1.90 ... 0.2085 0.1145 0.2694 0.4076 0.31 262.12 300 1.24 6.83 0.307692
302 15148D 2 conflict.yoked yoked T4_C1 6 On 15148C 17.76 2.96 ... 0.1425 0.1573 0.2520 0.4483 0.20 264.67 320 1.23 5.03 1.941176
303 15148D 2 conflict.yoked yoked T5_C2 7 On 15148C 15.00 2.50 ... 0.1518 0.2156 0.3478 0.2848 0.08 158.40 170 1.42 5.11 1.866667
304 15148D 2 conflict.yoked yoked T6_C3 8 On 15148C 12.49 2.08 ... 0.2318 0.1614 0.2757 0.3311 0.14 297.44 340 1.40 5.49 1.437500
305 15148D 3 conflict.yoked yoked Retention 9 Off 15148C 4.92 0.82 ... 0.1629 0.2525 0.3438 0.2408 0.14 125.49 200 -0.01 1.97 0.000000

306 rows × 34 columns

In [3]:
table2
Out[3]:
treatment trial trialNum m se measure
0 standard.yoked Pre 1 0.000 0.00 NumShock
1 standard.yoked Retention 9 0.000 0.00 NumShock
2 standard.yoked Retest 5 4.000 1.20 NumShock
3 standard.yoked T1 2 7.000 0.85 NumShock
4 standard.yoked T2 3 5.000 2.12 NumShock
... ... ... ... ... ... ...
139 conflict.trained T2 3 0.007 0.00 pTimeShockZone
140 conflict.trained T3 4 0.009 0.01 pTimeShockZone
141 conflict.trained T4_C1 6 0.046 0.01 pTimeShockZone
142 conflict.trained T5_C2 7 0.011 0.00 pTimeShockZone
143 conflict.trained T6_C3 8 0.009 0.00 pTimeShockZone

144 rows × 6 columns

In [4]:
table3
Out[4]:
ID treatment trial trialNum PC1 PC2
0 15140A conflict.trained Pre 1 -2.963453 -2.392646
1 15140A conflict.trained T1 2 0.903697 -2.064785
2 15140A conflict.trained T2 3 2.480396 -0.148906
3 15140A conflict.trained T3 4 3.823651 -0.256449
4 15140A conflict.trained Retest 5 5.439012 -0.285502
... ... ... ... ... ... ...
301 15148D conflict.yoked Retest 5 -0.714399 1.128465
302 15148D conflict.yoked T4_C1 6 -2.026176 -1.792379
303 15148D conflict.yoked T5_C2 7 -1.687280 -0.437753
304 15148D conflict.yoked T6_C3 8 -1.037671 0.329022
305 15148D conflict.yoked Retention 9 -2.302549 3.589102

306 rows × 6 columns

In [5]:
table4
Out[5]:
tissue gene lfc padj logpadj comparison direction
0 DG 1190002N15Rik 1.64 2.450000e-04 3.61 yoked vs. trained trained
1 DG A830010M20Rik 1.53 7.890000e-07 6.10 yoked vs. trained trained
2 DG Abhd2 0.86 1.530000e-02 1.81 yoked vs. trained trained
3 DG Acan 1.97 4.540000e-09 8.34 yoked vs. trained trained
4 DG Adamts1 1.88 1.880000e-03 2.73 yoked vs. trained trained
... ... ... ... ... ... ... ...
209 DG Zfp207 -0.40 9.730000e-02 1.01 yoked vs. trained yoked
210 DG Zfp275 1.23 1.200000e-02 1.92 yoked vs. trained trained
211 DG Zfp654 0.77 9.790000e-02 1.01 yoked vs. trained trained
212 DG Zfp668 -0.62 6.990000e-02 1.16 yoked vs. trained yoked
213 DG Zfp869 1.15 9.730000e-02 1.01 yoked vs. trained trained

214 rows × 7 columns

In [6]:
table5
Out[6]:
tissue gene lfc padj logpadj comparison direction
0 CA1 1110032F04Rik 3.70 0.07540 1.12 standard.yoked vs. conflict.yoked conflict.yoked
1 CA1 1600002K03Rik -4.51 0.05710 1.24 standard.yoked vs. conflict.yoked standard.yoked
2 CA1 1810030O07Rik -1.73 0.06860 1.16 standard.yoked vs. conflict.yoked standard.yoked
3 CA1 2010107G23Rik -2.14 0.01760 1.75 standard.yoked vs. conflict.yoked standard.yoked
4 CA1 2210013O21Rik -2.38 0.05170 1.29 standard.yoked vs. conflict.yoked standard.yoked
... ... ... ... ... ... ... ...
914 CA1 Znfx1 -1.18 0.09140 1.04 standard.yoked vs. conflict.yoked standard.yoked
915 CA1 Zscan26 -0.91 0.03020 1.52 standard.yoked vs. conflict.yoked standard.yoked
916 CA1 Ubash3a -5.79 0.03260 1.49 standard.yoked vs. conflict.yoked standard.yoked
917 CA3 Sco2 7.48 0.00417 2.38 standard.yoked vs. conflict.yoked conflict.yoked
918 CA3 Tbc1d16 -2.00 0.07050 1.15 standard.yoked vs. conflict.yoked standard.yoked

919 rows × 7 columns

In [7]:
table6
Out[7]:
rowname PC1 Naf1 Ptgs2 Rgs2 Hist1h1d Col10a1 Arc Hspb3 Npas4 ... Areg Hist1h3i Armcx5 Atf3 Syt4 Nexn Hoxc4 Abra Fosl2 Ubc
0 PC1 1.000000 0.861710 0.840046 0.833975 0.815008 0.812722 0.805927 0.803447 0.802382 ... 0.784206 0.779006 0.775536 0.774300 0.774266 0.771603 0.765295 0.764433 0.762014 0.753432
1 Naf1 0.861710 1.000000 0.853795 0.810304 0.822065 0.802797 0.747035 0.682500 0.813929 ... 0.584414 0.617801 0.702905 0.732662 0.820325 0.774886 0.884765 0.741153 0.802733 0.796188
2 Ptgs2 0.840046 0.853795 1.000000 0.942791 0.747602 0.885850 0.933437 0.716260 0.963923 ... 0.648379 0.622406 0.732795 0.879031 0.883762 0.743377 0.748623 0.844199 0.920882 0.873972
3 Rgs2 0.833975 0.810304 0.942791 1.000000 0.708767 0.945479 0.898791 0.694389 0.877231 ... 0.531741 0.578752 0.832968 0.854276 0.848425 0.782270 0.769571 0.900119 0.942091 0.930976
4 Hist1h1d 0.815008 0.822065 0.747602 0.708767 1.000000 0.747891 0.609192 0.602161 0.712381 ... 0.619715 0.477320 0.635545 0.629609 0.719632 0.746408 0.816151 0.623478 0.717901 0.595381
5 Col10a1 0.812722 0.802797 0.885850 0.945479 0.747891 1.000000 0.842001 0.658760 0.860330 ... 0.509401 0.459277 0.800312 0.794113 0.831175 0.799600 0.798270 0.844814 0.881100 0.906915
6 Arc 0.805927 0.747035 0.933437 0.898791 0.609192 0.842001 1.000000 0.662738 0.903617 ... 0.664667 0.537830 0.738534 0.963703 0.880583 0.589693 0.601560 0.810139 0.885906 0.911216
7 Hspb3 0.803447 0.682500 0.716260 0.694389 0.602161 0.658760 0.662738 1.000000 0.708906 ... 0.739534 0.730282 0.700024 0.592542 0.538325 0.732298 0.508571 0.480273 0.604450 0.577074
8 Npas4 0.802382 0.813929 0.963923 0.877231 0.712381 0.860330 0.903617 0.708906 1.000000 ... 0.678595 0.587246 0.674063 0.842902 0.817552 0.724191 0.670742 0.767242 0.865242 0.816451
9 Fzd5 0.798759 0.822728 0.902913 0.880734 0.686966 0.882801 0.858059 0.704945 0.911606 ... 0.706219 0.623661 0.718331 0.782778 0.750272 0.780524 0.735385 0.805505 0.907861 0.857066
10 Acan 0.784206 0.806749 0.871607 0.828620 0.744796 0.812073 0.871398 0.710476 0.859979 ... 0.680139 0.513611 0.788082 0.848874 0.823281 0.761335 0.697077 0.719405 0.884047 0.834426
11 Areg 0.784206 0.584414 0.648379 0.531741 0.619715 0.509401 0.664667 0.739534 0.678595 ... 1.000000 0.719754 0.503143 0.593103 0.484727 0.469028 0.385089 0.459426 0.562174 0.457249
12 Hist1h3i 0.779006 0.617801 0.622406 0.578752 0.477320 0.459277 0.537830 0.730282 0.587246 ... 0.719754 1.000000 0.526630 0.436253 0.420689 0.589943 0.520603 0.553285 0.530151 0.442282
13 Armcx5 0.775536 0.702905 0.732795 0.832968 0.635545 0.800312 0.738534 0.700024 0.674063 ... 0.503143 0.526630 1.000000 0.665476 0.774165 0.738661 0.655356 0.734390 0.792222 0.786702
14 Atf3 0.774300 0.732662 0.879031 0.854276 0.629609 0.794113 0.963703 0.592542 0.842902 ... 0.593103 0.436253 0.665476 1.000000 0.840290 0.538641 0.574977 0.762065 0.836550 0.900746
15 Syt4 0.774266 0.820325 0.883762 0.848425 0.719632 0.831175 0.880583 0.538325 0.817552 ... 0.484727 0.420689 0.774165 0.840290 1.000000 0.668123 0.796928 0.821299 0.847184 0.839796
16 Nexn 0.771603 0.774886 0.743377 0.782270 0.746408 0.799600 0.589693 0.732298 0.724191 ... 0.469028 0.589943 0.738661 0.538641 0.668123 1.000000 0.849573 0.734314 0.708273 0.650460
17 Hoxc4 0.765295 0.884765 0.748623 0.769571 0.816151 0.798270 0.601560 0.508571 0.670742 ... 0.385089 0.520603 0.655356 0.574977 0.796928 0.849573 1.000000 0.798651 0.753632 0.702854
18 Abra 0.764433 0.741153 0.844199 0.900119 0.623478 0.844814 0.810139 0.480273 0.767242 ... 0.459426 0.553285 0.734390 0.762065 0.821299 0.734314 0.798651 1.000000 0.830302 0.867754
19 Fosl2 0.762014 0.802733 0.920882 0.942091 0.717901 0.881100 0.885906 0.604450 0.865242 ... 0.562174 0.530151 0.792222 0.836550 0.847184 0.708273 0.753632 0.830302 1.000000 0.888569
20 Ubc 0.753432 0.796188 0.873972 0.930976 0.595381 0.906915 0.911216 0.577074 0.816451 ... 0.457249 0.442282 0.786702 0.900746 0.839796 0.650460 0.702854 0.867754 0.888569 1.000000

21 rows × 22 columns

We will look into the gene expression and see if it predicts if a gene expressed or not expressed is an indicator of early memory loss. Different gene expression is in different tables and the status of the hippocampus is also indicated. The correlation between the two will be measured.

In [ ]: