This question is important because COVID is a crisis we are currently going through. Housing market is a market that matters to every citizens from every countries and it's one of the most important constituent part of whole econimic system.
News from Bankrate about Covid and Housing Market
As we can see nowadays, covid is impacting everybody's life, not just health but also econ system of the world. For example, in China, the house market been crashed by covid totally. By having this question and collecting data about this topic, I think we can learn more about the relationship between covid and the world we live in deeply.
Data and statistic of China'housing price before and after covid
(*The covid had explosive growth at the end of 2021)
import pandas as pd
china_covid = pd.read_csv('China_covid.csv',skiprows=213)
us_covid = pd.read_csv('US_covid.csv',skiprows=213)
japan_covid = pd.read_csv('Japan_covid.csv',skiprows=4)
china_house = pd.read_csv('China_housing_indexed.csv')
us_house = pd.read_csv('US_housing_indexed.csv')
japn_house = pd.read_csv('Japan_housing_indexed.csv')
china_cov_data = pd.DataFrame(china_covid)
china_cov_data.drop(['Unnamed: 0', 'Unnamed: 4','Deaths'], axis=1, inplace=True)
china_cov_data.columns.values[0] = "Dates"
print(china_cov_data)
Dates Confirmed 0 Jan 20, 2020 278 1 Jan 21, 2020 326 2 Jan 22, 2020 547 3 Jan 23, 2020 639 4 Jan 24, 2020 916 .. ... ... 864 Jun 2, 2022 2,094,100 865 Jun 3, 2022 2,094,300 866 Jun 4, 2022 2,094,300 867 Jun 5, 2022 2,104,600 868 Jun 6, 2022 2,104,800 [869 rows x 2 columns]
us_cov_data = pd.DataFrame(us_covid)
us_cov_data.drop(['Unnamed: 0', 'Unnamed: 3','Unnamed: 4'], axis=1, inplace=True)
us_cov_data.columns.values[0] = "Dates"
us_cov_data.columns.values[1] = "Confirmed"
print(us_cov_data)
Dates Confirmed 0 1/20/20 1 1 1/21/20 1 2 1/22/20 1 3 1/23/20 1 4 1/24/20 1 .. ... ... 979 10/12/22 95,434,094 980 10/14/22 95,529,714 981 10/16/22 95,636,402 982 10/18/22 95,653,603 983 10/20/22 95,726,462 [984 rows x 2 columns]
japan_cov_data = pd.DataFrame(japan_covid)
japan_cov_data.drop(['Unnamed: 0', 'Unnamed: 3','Unnamed: 4'], axis=1, inplace=True)
japan_cov_data.columns.values[0] = "Dates"
japan_cov_data.columns.values[1] = "Confirmed"
print(japan_cov_data)
Dates Confirmed 0 Feb 10 '20 26 1 Feb 12 '20 28 2 Feb 17 '20 59 3 Feb 21 '20 93 4 Feb 25 '20 156 .. ... ... 736 Mar 12 '22 5,665,636 737 Mar 13 '22 5,720,394 738 Mar 14 '22 5,772,396 739 Mar 15 '22 5,808,242 740 Mar 16 '22 5,855,240 [741 rows x 2 columns]
china_hous_data = pd.DataFrame(china_house)
print(china_hous_data)
DATE QCNR628BIS 0 2005-04-01 87.9389 1 2005-07-01 89.5385 2 2005-10-01 89.7531 3 2006-01-01 88.5259 4 2006-04-01 90.6989 .. ... ... 63 2021-01-01 110.5650 64 2021-04-01 112.6115 65 2021-07-01 112.9903 66 2021-10-01 111.0794 67 2022-01-01 109.3374 [68 rows x 2 columns]
us_hous_data = pd.DataFrame(us_house)
print(us_hous_data)
DATE QUSR628BIS 0 1970-01-01 60.8237 1 1970-04-01 60.2667 2 1970-07-01 60.5358 3 1970-10-01 60.4802 4 1971-01-01 61.6646 .. ... ... 205 2021-04-01 149.4852 206 2021-07-01 153.7293 207 2021-10-01 157.7780 208 2022-01-01 161.9757 209 2022-04-01 162.6433 [210 rows x 2 columns]
us_hous_data = pd.DataFrame(us_house)
print(us_hous_data)
DATE QUSR628BIS 0 1970-01-01 60.8237 1 1970-04-01 60.2667 2 1970-07-01 60.5358 3 1970-10-01 60.4802 4 1971-01-01 61.6646 .. ... ... 205 2021-04-01 149.4852 206 2021-07-01 153.7293 207 2021-10-01 157.7780 208 2022-01-01 161.9757 209 2022-04-01 162.6433 [210 rows x 2 columns]