team-1 report
January 10, 2022

1 DS3000 Final Project: Board Game Reccomendation

1.1 Team -1 (example)

o Piotr Sapiezynski (p.sapiezynski@northeastern.edu)
o Matt Higger (m.higger@ccs.neu.edu)

2 Executive Summary

We build a board game reccomendation system by collecting a data from boardgamegeek.com’s list
of boardgames and collecting 13 users preferences about which games they do and don’t enjoy. Our
reccomender works by identifying the unrated game most similar to the user’s top rated games. To
validate our method, we estimate how closely the predicted user preferences match the observed
user preferences under cross validation. The predicted user ratings do a poor job of matching actual
user preferences. We suggest that the model struggles because it fails to find a meaningful way of
measuring whether two games are similar or not.

3 Ethical Considerations

Like any tool which reccomends products on might buy, this tool may be subject to bias from board
game companies who wish to drive consumers to their products. We suggest that any product
derived from this work be open-source to allow for people to easily audit its use for commercial
bias.

4 Introduction

Finding the right board game to play is difficult. The time and money required to play test a game is
considerable and media which describes gameplay can fail to capture the experience accurately. As
a result, many players learn about new games by word of mouth. This situation leaves many great
games “undiscovered” and hinders player enjoyment of gaming by only playing popular games. This
project aims to reccomend new board games to a player who submits their preferences
on other games.

https://boardgamegeek.com/browse/boardgame
https://boardgamegeek.com/browse/boardgame

[1]1:

[1]:

[2]:

5 Data Description

5.1 Games

(Full details of game data can be found in ex_game_clean.ipynb, a summary of the relevant details
is given here).

We scrape a list of boardgames ranked by popularity from BoardGameGeek.

import pandas as pd

df _game = pd.read_csv('game_final.csv', index_col='game_id')
df _game.loc[:, ['description', 'title']].head()

description \
game_id
174430 Vanquish monsters with strategic cardplay. Ful..
161936 Mutating diseases are spreading around the wor..
224517 Build networks, grow industries, and navigate ..
167791 Compete with rival CEOs to make Mars habitable..
233078 Build an intergalactic empire through trade, r..

title
game_id
174430 Gloomhaven
161936 Pandemic Legacy: Season 1
224517 Brass: Birmingham
167791 Terraforming Mars

233078 Twilight Imperium: Fourth Edition

In particular, we collect the category tags associated with each individual game:

def is_feat(col, feat_prefix=('cat: ',)):
for prefix in feat_prefix:
if col.startswith(prefix):
return True
return False

def strip_feat(col, feat_prefix=('cat: ',)):
for prefix in feat_prefix:
if col.startswith(prefix):
return col[len(prefix):]
raise Error('input column is not a feature')

butld z feature list (any category a game belongs to)
x_feat list = 1list()
for col in df_game.columns:

if is_feat(col):

https://boardgamegeek.com/browse/boardgame

x_feat_list.append(col)
x_feat_list[:5]

[2]: ['cat: Adventure',
'cat: Exploration',
'cat: Fantasy',
'cat: Fighting',
'cat: Miniatures']

[3]: df_game.loc[:, x_feat_list[:5]].head()

[3]: cat: Adventure cat: Exploration cat: Fantasy cat: Fighting \
game_id
174430 True True True True
161936 False False False False
224517 False False False False
167791 False False False False
233078 False True False False

cat: Miniatures

game_id

174430 True
161936 False
224517 False
167791 False
233078 False

5.2 User Preferences

User preferences were collected by soliciting student responses via a google form. Students of the
spring 2020 DS3000 class were solicited:

Each user is represented by an integer alias. Each column represents a game and the values are the
responses to the question above. Missing values indicate that a user did not give their preference
on a particular game.

[4]: df_pref = pd.read_csv('pref_final.csv', index_col='alias')

df _pref
[4]: 174430 2398 171 178900 188834 105134 2453 12962 2181 278 .. \

alias

1 1.0 7.0 6.0 5.0 4.0 4.0 5.0 1.0 5.0 2.0

6 6.0 NaN NaN 4.0 5.0 NaN NaN NaN NaN NaN

7 NaN NaN NaN 4.0 NaN NaN NaN NaN NaN NaN

9 NaN NaN 3.0 7.0 NaN NaN 5.0 NaN NaN NaN

15 NaN NaN 7.0 NaN 6.0 NaN NaN NaN NaN NaN

17 NaN NaN NaN 6.0 NaN NaN NaN NaN NaN NaN

18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

19 NaN NaN 4.0 NaN NaN NaN 6.0 NaN 4.0 NaN
20 NaN 5.0 5.0 7.0 6.0 6.0 NaN NaN NaN NaN
21 NaN NaN 7.0 4.0 5.0 NaN NaN NaN NaN NaN
22 NaN 3.0 3.0 6.0 NaN NaN 2.0 NaN NaN NaN
23 NaN NaN 7.0 7.0 7.0 NaN 4.0 NaN NaN NaN
24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

195162 92415 275467 128882 204305 169786 120677 31627 174785 \

alias

1 NaN NaN NaN NaN NaN NaN NaN NaN NaN

6 NaN NaN NaN NaN NaN NaN NaN NaN NaN

7 NaN NaN NaN NaN NaN NaN NaN NaN NaN

9 NaN NaN NaN NaN NaN NaN NaN NaN NaN

15 NaN NaN NaN NaN NaN NaN NaN NaN NaN

17 NaN NaN NaN NaN NaN NaN NaN NaN NaN

18 NaN NaN NaN NaN NaN NaN NaN NaN NaN

19 NaN NaN NaN NaN NaN NaN NaN NaN NaN

20 4.0 NaN NaN NaN NaN NaN NaN NaN NaN

21 NaN NaN NaN NaN NaN NaN NaN NaN NaN

22 NaN 5.0 NaN NaN NaN NaN NaN NaN NaN

23 NaN NaN 2.0 NaN NaN NaN NaN NaN NaN

24 NaN NaN NaN NaN NaN 3.0 4.0 6.0 5.0
253284

alias

1 NaN

6 NaN

7 NaN

9 NaN

15 NaN

17 NaN

18 NaN

19 NaN

20 NaN

21 NaN

22 NaN

23 NaN

24 6.0

[13 rows x 78 columns]

Users were asked to rank at least 9 games, though we include all users with at least 8 to include a
few more users:

[6]: # games ranked per user
(df _pref >= 0).sum(axis=1)

[5]:

[6]:

[6]:

alias

1 11
6 15
7 21
9 8
15 9
17 9
18 10
19 9
20 10
21 10
22 12
23 8
24 8

dtype: int64

6 Method

6.1 1 - NN Regressor

To reccomend games to users we use a 1-Nearest Neighbor Regressor. In essense, every game is
given an estimated user preference as the preference score of the “most similar” game among all
the games the user has rated.

This approach requires that we are able to identify the “most similar” game to any other. To do
so we build a distance metric which measures game similarity. The distance between similar games
should be small while the distance between different games should be large. We choose the metric
as the traditional squared distance:

dij = |lyi = woll3 = D (i — 0.0)°

7

where vectors x; represent a board games tags:

for example, for our first two games:
y = df_game.loc[:, x_feat_list].values.astype(int)

yo = y[0, :]

yl = yl1, :]

yO

array([1, 1, 1, 1, 1, 0, 0, 0, 0, O, O, 0, O, O, O, O, O, O, O, O, O, O,
o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O,
o, o, o, o, o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, O, 0, O, 0, 0, 0D)

The vector x0 above indicates that the first game has the first 5 tags (i.e. Adventure, Exploration,
Fantasy, Fighting, Miniatures) but none of the others.

[7]: | import numpy as np

compute distance between first and second games
d01 = np.linalg.norm(yl - y0) *x 2
do1

[7]: 7.000000000000001

Notice that the distance is equivilent to a count of how many category tags in x_feat_list which
are different between two games.
6.2 Principle Component Analysis

There are two problems with the distance metric above. 1. The scale of each feature is
different:

[8]: df_game.loc[:, x_feat_list].var().sort_values()

[8]: cat: Vietnam War 0.001008
cat: Expansion for Base-game 0.001008
cat: Trivia 0.002014
cat: American Revolutionary War 0.002014
cat: World War I 0.002014
cat: Science Fiction 0.110995
cat: Fighting 0.131274
cat: Economic 0.159312
cat: Fantasy 0.164704
cat: Card Game 0.183588

Length: 79, dtype: float64
Left uncorrected, all the difference among Card Game would dominate the differences scores and
ignore features with lower variances (i.e. Vietnam War, Expansion for Base-game).

2. Even if each features were given identical variance, some features effectively “dou-
ble count” the importance of a feature by being correlated

[9]: df_game.loc[:, x_feat_list[:5]].corr()

[9]: cat: Adventure cat: Exploration cat: Fantasy \
cat: Adventure 1.000000 0.426874 0.353859
cat: Exploration 0.426874 1.000000 0.177884
cat: Fantasy 0.353859 0.177884 1.000000
cat: Fighting 0.320280 0.154813 0.391303
cat: Miniatures 0.293766 0.155875 0.242340

cat: Fighting cat: Miniatures
cat: Adventure 0.320280 0.293766
cat: Exploration 0.154813 0.155875

[10]:

[10]:

[11]:

cat: Fantasy 0.391303 0.242340
cat: Fighting 1.000000 0.434097
cat: Miniatures 0.434097 1.000000

Notice that these first 5 tags are all positively correlated with each other (when one tag occurs any
of the others is more likely to occur). In some sense, we can consider that each of these tags are
redundant measurements of the same intrinsic game feature. We are effectively over-counting this
feature by including it with each feature.

To resolve both of these issues, we use a pre-processing step before applying our 1-NN regressor:
Principle Component Analysis (PCA). PCA will: - ensure output features each have equal variance
- ensure output features are all uncorrelated with each other

7 Results

7.1 Estimation

import pandas as pd

reload data
df _game = pd.read_csv('game_final.csv', index_col='game_id')
df _pref = pd.read_csv('pref_final.csv', index_col='alias')

ensure column names are integers
df_pref.rename(int, axis=1, inplace=True)

butld z feature list (any category a game belongs to)
x_feat_list = list()
for col in df_game.columns:
if is_feat(col):
x_feat_list.append(col)

x_feat_list[:5]

['cat: Adventure',
'cat: Exploration',
'cat: Fantasy',
'cat: Fighting',
'cat: Miniatures']

from sklearn.model_selection import KFold
from sklearn.metrics import r2_score

def get_x_y(alias, df_pref, df_game, x_feat_list):
nnnogets the input / output features of regressor for one user

The input features are the game categories (binary) and
the output features are the user preferences

Args:
alias (int): alias given to a user (index of df_pref)
df_pref (pd.DatFrame): user preferences
df_game (pd.DataFrame): game stats

Returns:
z (np.array): (n_samples, n_feat) corresponds to the
categories every game does / doesn't belong to
y (np.array): (n_samples) user preferences of corresponding
samples
game_id_list (list): game ids with ratings

nimnn

get non null preferences for a given alias
s_pref_alias = df_pref.loc[alias, :]
s_pref_alias.dropna(inplace=True)

get list of game_id which user submitted preferences about
game_id_list = list(s_pref_alias.index)

extract =, y
x = df_game.loc[game_id_list, x_feat_list].values
y = s_pref_alias.values

return x, y, game_id_list

[12]: import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor

def cv_train(x, y_true):
" leave one out cross wvalidation regression of T, Yy

Args:
z (np.array): (n_samples, n_feat) input features
y_true (np.array): (n_samples) output feature

Returns:
regressor (LinearRegression): model which predicts y
from x
r2 (float): percentage of wariance of y which is
explained by the model under cross wvalidation
(r2=1 is strongest possible model, 12 = 0 s
a non-helpful model)

nimnn

initialize kfold

n_samples = x.shape[0]
kfold = KFold(n_splits=n_samples)

initialize regressor
reg = KNeighborsRegressor(n_neighbors=1)

y_pred = np.empty_like(y_true)
for train_idx, test_idx in kfold.split(x):
split data
X_train = x[train_idx, :]
y_train = y_true[train_idx]
X_test = x[test_idx, :]

fit regressor
reg.fit(x_train, y_train)

predict
y_pred[test_idx] = reg.predict(x_test)

compute T2
r2 = r2_score(y_true=y_true, y_pred=y_pred)

fit model on entire dataset (best for predicting new samples)
reg.fit(x, y_true)

return reg, r2

[13]: def predict_score(alias, df_pref, df_game, x_feat_list):
" predicts scores on all games

Args:
alias (int): integer alias of user
df_pref (pd.DataFrame): user preferences
df_game (pd.DataFrame): games stats
z_feat_list (list): features used to define distance
between games

Returns:
df_predicted_pref (pd.DataFrame): estimated user preferences
(includes preferences for all games, mot just the ones
the user has rated)
reg (KNeighborsRegressor): regressor which predicts user preferences
r2 (float): cross wvalidated r2 value

mnn

extract relevant data

X, y, game_id_list = get_x_y(alias, df_pref, df_game, x_feat_list)

cross waltidate & train model
reg, r2 = cv_train(x, y)

predict scores of all games (not just omes with observed preferrences)
x_all = df_game.loc[:, x_feat_list].values
y_predict = reg.predict(x_all)

collect / sort preferences in dataframe
df _predicted_pref = pd.DataFrame({'title': df_game['title'],
'pref': y_predict,
'url': df _game['url']l},
index=df_game.index)

record whether preferences were observed (user supplied) or not
df _predicted_pref.loc[:, 'observed'] = False
df _predicted_pref.loc[game_id_list, 'observed'] = True

store z_feat in df_predcticted_pref (redundant but helpful to know
which were used across multiple runs)
for x_feat_idx, x_feat in enumerate(x_feat_list):

df _predicted_pref.loc[:, x_feat] = x_all[:, x_feat_idx]

sort by estimated rating
df_predicted_pref.sort_values('pref', inplace=True, ascending=False)

return df_predicted_pref, reg, r2

7.2 Validation

To validate our model, we compute the cross-validated r? value among all the games a user has
given ratings for.

- If this value is close to 1, then we can effectively predict user preferences - If this value is close
to zero, then we are effectively guessing user preferences blindly - If this value is negative, then we
are doing worse than guessing user preferences blindly

7.2.1 Without applying PCA:

[14]: def validate_all(df_pref, df_game, x_feat_list):

" computes cross wvalidated T2 for each alias

Args:
df_pref (pd.DataFrame): user preferences
df_game (pd.DataFrame): games stats
z_feat_list (list): features used to define distance

10

between games

Returns:
df_validate (pd.DataFrame): indexr is alias, contains
column “cv_r2° as well as “num_pref”, the number of
preferences available for a given user
df _validate = pd.DataFrame()
for alias in df_pref.index:
predict scores
df _predicted_pref, reg, r2 = predict_score(alias, df_pref, df_game,,
—x_feat_list)

collect validation stats in one dataframe

row = dict(alias=alias, cv_r2=r2,
—num_pref=df_predicted_pref['observed'].sum())

df _validate = df_validate.append(row, ignore_index=True)

prep and display df_validate
df _validate.set_index('alias', inplace=True)
df_validate.sort_values('cv_r2', inplace=True)

return df _validate
[15]: | # validate model (without pca)

df_validate = validate_all(df_pref, df_game, x_feat_list)
df _validate

[15]: cv_r2 num_pref
alias
9.0 -3.296296 8.0
23.0 -2.692308 8.0
1.0 -1.360236 11.0
18.0 -1.128514 10.0
21.0 -0.875000 10.0
17.0 -0.660428 9.0
7.0 -0.625000 21.0
20.0 -0.562500 10.0
15.0 -0.528302 9.0
22.0 -0.336709 12.0
19.0 -0.170000 9.0
6.0 -0.097561 15.0
24.0 0.125000 8.0

Only user alias=24 achieved any improvement in preference estimation from our method.

11

7.2.2 Applying PCA:

[16]: from sklearn.decomposition import PCA

extract old = values
x = df_game.loc[:, x_feat_list].values

transform to new T wvalues

n_components = 2

pca = PCA(n_components=n_components, whiten=True)
x_new = pca.fit_transform(x)

add pca features back into dataframe
x_feat_list_new = [f'pca{idx}' for idx in range(n_components)]
for idx, feat in enumerate(x_feat_list_new):

df _game.loc[:, feat] = x_new[:, idx]

[17]: # wvalidate using only first n_pca features
df_validate_pca = validate_all(df_pref, df_game, x_feat_list_new)

[18]: df_validate_pca

[18]: cv_r2 num_pref
alias
17.0 -2.633690 9.0
9.0 -2.481481 8.0
1.0 -1.988189 11.0
23.0 -1.961538 8.0
21.0 -1.569444 10.0
18.0 -1.369478 10.0
15.0 -0.910377 9.0
7.0 -0.825000 21.0
20.0 -0.687500 10.0
22.0 -0.518987 12.0
6.0 -0.219512 15.0
19.0 0.010000 9.0
24.0 0.125000 8.0

PCA does improve results, though we are still not able to predict user preferences better than
chance on the average user.

7.2.3 Visualization

[19]: def get_text(game_row):
gets a string, in plotly format, of all tags a game contains
title = game_row['title']
tags = '
'.join([strip_feat(col) for col, val in game_row.items() if wval
—and is_feat(col)])

12

return '
'.join([f'title: {titlel}',
f'{tags}'])
df_game['hovertext'] = df_game.apply(get_text, axis=1)

[20] : | import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

hovertemplate = 'J{text}'

def print_plotly_scatter(alias, df_pref, df_game, x_feat_list, f_html=None,,
—x_feat_idx_horz=0, x_feat_idx_vert=1):

if £ html is Nomne:
f_html = f'user{alias}.html'

compute predicted scores
df_predicted_pref, reg, r2 = predict_score(alias, df_pref, df_game,,
—x_feat list new)

x_feat_list[x_feat_idx_horz]
x_feat_list[x_feat_idx_vert]

x_featO
x_featl

build scatter

fig = make_subplots()

for observed in [False, True]:
select only relevant rows
row_bool = df_predicted_pref['observed'] == observed
df = df_predicted_pref.loc[row_bool, :]

s_text = df_game.loc[df.index, 'hovertext']

if observed:
marker dict = dict(size=12, line=dict(width=2, color='black'),
—colorscale="'viridis')
name = 'user-given'
else:
marker dict = dict(colorscale='viridis',
—colorbar=dict (thickness=20, title='preference'))
name = 'estimated'

trace = go.Scatter(x=df [x_featO],
y=df [x_featl],
mode='markers',
marker=marker_dict,
marker_color=df['pref'],
hovertemplate=hovertemplate,

13

text=s_text,
name=name)

fig.add_trace(trace)

legend_dict = legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)
fig.update_layout(title=f'user {alias} preferences',
xaxis_title=x_featO,
yaxis_title=x_featl,
legend=legend_dict)

fig.write_html(f_html)
return f_html
[41]: from IPython.display import IFrame

f_html = print_plotly_scatter(alias=7, df_pref=df_pref, df_game=df_game,
—x_feat list=x_feat list_new)

allows us to embed html in jupyter (helpful if error in creation of plot)
IFrame(src=f_html, width=900, height=600)

[41] : <IPython.lib.display.IFrame at Ox7efbfdbe09a0>

8 Discussion

The project did not succeed in being able to predict a user’s preference any better than chance for
the average user. (Cross validated 72 < 0 for all users). This can be due to three reasons: 1. Our
user preference data was insufficient: - With only 8 to 20 games per user, we may not have enough
data to accuractely characterize a single user’s preferences among all the unique board games - The
user rating scale is somewhat subjective and was often biased towards games users enjoyed. This
makes intuitive sense as the majority of time one is interacting with a game they're interacting
with a game they’ve selected because they enjoy it. - We’d suggest future work collect only a
list of games that a user enjoys 1. Our distance metric, which defines which games are similar
or different, was insufficient: - After much experimenting, we couldn’t identify an x_feat_list
which significantly improved the cross validated r? metric. - We’d suggest future work do
more feature engineering to identify which aspects of a game make is “similar” or
“different”.

Alternatively, one could define a metric of game similarity based on the correlation of user r:
- users typically rate both games high / low
- games are similar
- users typically rate one game high and the other low:
- games are different

1. (Most significantly) Our 1-NN classifier was insufficient because:

14

e it gave identical scores to many games. This is not helpful in identifying a single best
game to reccomend to a user

it never synthesizes all the user preferences into its estimate. Instead, it relies exclusively
on only the nearest neighbor.

e We’d suggest future work discard the 1-NN classifier in favor of something
which synthesizes all of a user’s preferences (Regression, Density Estimation)

Not all results were negative, while the distance between games was not sufficient to reccomend
games, it did provide some intuitive meaning: - games in the lower left corner above are typically
economic / negotiation games - games in the upper right corner above are typically strategy /
fighting / minature games

8.1 Takeaway:

Taken together, we do not think this work should be used to reccomend board games.

15

	DS3000 Final Project: Board Game Reccomendation
	Team -1 (example)

	Executive Summary
	Ethical Considerations
	Introduction
	Data Description
	Games
	User Preferences

	Method
	1 - NN Regressor
	Principle Component Analysis

	Results
	Estimation
	Validation
	Without applying PCA:
	Applying PCA:
	Visualization

	Discussion
	Takeaway:

