team-1_report

January 10, 2022

1 DS3000 Final Project: Board Game Reccomendation

1.1 Team -1 (example)

- Piotr Sapiezynski (p.sapiezynski@northeastern.edu)
- Matt Higger (m.higger@ccs.neu.edu)

2 Executive Summary

We build a board game recomendation system by collecting a data from boardgamegeek.com's list of boardgames and collecting 13 users preferences about which games they do and don't enjoy. Our recomender works by identifying the unrated game most similar to the user's top rated games. To validate our method, we estimate how closely the predicted user preferences match the observed user preferences under cross validation. The predicted user ratings do a poor job of matching actual user preferences. We suggest that the model struggles because it fails to find a meaningful way of measuring whether two games are similar or not.

3 Ethical Considerations

Like any tool which recommends products on might buy, this tool may be subject to bias from board game companies who wish to drive consumers to their products. We suggest that any product derived from this work be open-source to allow for people to easily audit its use for commercial bias.

4 Introduction

Finding the right board game to play is difficult. The time and money required to play test a game is considerable and media which describes gameplay can fail to capture the experience accurately. As a result, many players learn about new games by word of mouth. This situation leaves many great games "undiscovered" and hinders player enjoyment of gaming by only playing popular games. **This project aims to reccomend new board games to a player who submits their preferences on other games**.

5 Data Description

5.1 Games

(Full details of game data can be found in ex_game_clean.ipynb, a summary of the relevant details is given here).

We scrape a list of boardgames ranked by popularity from BoardGameGeek.

```
[1]: import pandas as pd
     df_game = pd.read_csv('game_final.csv', index_col='game_id')
     df game.loc[:, ['description', 'title']].head()
[1]:
                                                     description \
     game_id
     174430
              Vanquish monsters with strategic cardplay. Ful...
     161936
              Mutating diseases are spreading around the wor...
     224517
              Build networks, grow industries, and navigate ...
              Compete with rival CEOs to make Mars habitable...
     167791
     233078
              Build an intergalactic empire through trade, r...
                                           title
     game_id
     174430
                                      Gloomhaven
     161936
                      Pandemic Legacy: Season 1
     224517
                              Brass: Birmingham
     167791
                              Terraforming Mars
              Twilight Imperium: Fourth Edition
     233078
```

In particular, we collect the category tags associated with each individual game:

```
[2]: def is_feat(col, feat_prefix=('cat: ',)):
    for prefix in feat_prefix:
        if col.startswith(prefix):
            return True
    return False

def strip_feat(col, feat_prefix=('cat: ',)):
    for prefix in feat_prefix:
        if col.startswith(prefix):
            return col[len(prefix):]
        raise Error('input column is not a feature')

# build x feature list (any category a game belongs to)
x_feat_list = list()
for col in df_game.columns:
    if is_feat(col):
```

```
x_feat_list.append(col)
     x_feat_list[:5]
[2]: ['cat: Adventure',
      'cat: Exploration',
      'cat: Fantasy',
      'cat: Fighting',
      'cat: Miniatures']
     df_game.loc[:, x_feat_list[:5]].head()
[3]:
              cat: Adventure
                                cat: Exploration
                                                   cat: Fantasy
                                                                  cat: Fighting \
     game_id
     174430
                         True
                                             True
                                                            True
                                                                            True
     161936
                        False
                                            False
                                                           False
                                                                           False
                                            False
                                                           False
                                                                           False
     224517
                        False
     167791
                        False
                                            False
                                                           False
                                                                           False
     233078
                        False
                                             True
                                                           False
                                                                           False
              cat: Miniatures
     game_id
     174430
                          True
     161936
                         False
                         False
     224517
                         False
     167791
     233078
                         False
```

5.2 User Preferences

User preferences were collected by soliciting student responses via a google form. Students of the spring 2020 DS3000 class were solicited:

Each user is represented by an integer alias. Each column represents a game and the values are the responses to the question above. Missing values indicate that a user did not give their preference on a particular game.

```
[4]: df_pref = pd.read_csv('pref_final.csv', index_col='alias')
     df_pref
[4]:
              174430
                       2398
                              171
                                    178900
                                              188834
                                                        105134
                                                                 2453
                                                                        12962
                                                                                 2181
                                                                                        278
     alias
                                                                                        2.0
     1
                 1.0
                         7.0
                              6.0
                                        5.0
                                                  4.0
                                                           4.0
                                                                  5.0
                                                                           1.0
                                                                                  5.0
     6
                 6.0
                              NaN
                                        4.0
                                                  5.0
                                                           NaN
                         {\tt NaN}
                                                                  NaN
                                                                           NaN
                                                                                  NaN
                                                                                       {\tt NaN}
     7
                 NaN
                              NaN
                                        4.0
                                                  NaN
                                                                  NaN
                                                                           NaN
                         NaN
                                                           NaN
                                                                                  NaN
                                                                                        NaN
                                        7.0
     9
                 NaN
                         NaN
                              3.0
                                                  NaN
                                                           {\tt NaN}
                                                                  5.0
                                                                           NaN
                                                                                  NaN
                                                                                        NaN
     15
                 NaN
                         NaN
                              7.0
                                        NaN
                                                  6.0
                                                           NaN
                                                                  NaN
                                                                           NaN
                                                                                  NaN
                                                                                        NaN
     17
                 NaN
                         NaN
                              NaN
                                        6.0
                                                  NaN
                                                           NaN
                                                                  NaN
                                                                           NaN
                                                                                  NaN
                                                                                       NaN
```

18	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
19	NaN	NaN	4.0	NaN	NaN	NaN	6.0	NaN	4.0	NaN	
20	NaN	5.0	5.0	7.0	6.0	6.0	NaN	NaN	NaN	NaN	
21	NaN	NaN	7.0	4.0	5.0	${\tt NaN}$	NaN	NaN	NaN	NaN	
22	NaN	3.0	3.0	6.0	NaN	NaN	2.0	NaN	NaN	NaN	
23	NaN	NaN	7.0	7.0	7.0	NaN	4.0	NaN	NaN	NaN	
24	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	195162	92415	275467	128882	204305	169	786	120677	31627	17478	5 \
alias											
1	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
6	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
7	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
9	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
15	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
17	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
18	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
19	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	Na	
20	4.0	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
21	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	Na	
22	NaN	5.0	NaN	NaN	NaN		NaN	NaN	NaN	Na	N
23	NaN	NaN	2.0	NaN	NaN		NaN	NaN	NaN	Na	
24	NaN	NaN	NaN	NaN	NaN		3.0	4.0	6.0	5.	0
	253284										
alias											
1	NaN										
6	NaN										
7	NaN										
9	NaN										
15	NaN										
17	NaN										
18	NaN										
19	NaN										
20	NaN										
21	NaN										
22	NaN										
00	37 37										

[13 rows x 78 columns]

 ${\tt NaN}$

6.0

23

24

Users were asked to rank at least 9 games, though we include all users with at least 8 to include a few more users:

```
[5]: # games ranked per user
(df_pref >= 0).sum(axis=1)
```

```
[5]: alias
      1
             11
      6
             15
      7
             21
      9
              8
      15
              9
      17
              9
      18
             10
      19
              9
      20
             10
      21
             10
      22
             12
      23
              8
      24
              8
      dtype: int64
```

6 Method

6.1 1 - NN Regressor

To reccomend games to users we use a 1-Nearest Neighbor Regressor. In essense, every game is given an estimated user preference as the preference score of the "most similar" game among all the games the user has rated.

This approach requires that we are able to identify the "most similar" game to any other. To do so we build a distance metric which measures game similarity. The distance between similar games should be small while the distance between different games should be large. We choose the metric as the traditional squared distance:

$$d_{i,j} = ||y_1 - y_0||_2^2 = \sum_i (y_{1,i} - y_{0,i})^2$$

where vectors x_i represent a board games tags:

```
[6]: # for example, for our first two games:
y = df_game.loc[:, x_feat_list].values.astype(int)
y0 = y[0, :]
y1 = y[1, :]
y0
```

The vector x0 above indicates that the first game has the first 5 tags (i.e. Adventure, Exploration, Fantasy, Fighting, Miniatures) but none of the others.

```
[7]: import numpy as np

# compute distance between first and second games
d01 = np.linalg.norm(y1 - y0) ** 2
d01
```

[7]: 7.00000000000001

Notice that the distance is equivilent to a count of how many category tags in x_feat_list which are different between two games.

6.2 Principle Component Analysis

There are two problems with the distance metric above. 1. The scale of each feature is different:

```
[8]: df_game.loc[:, x_feat_list].var().sort_values()
[8]: cat: Vietnam War
                                         0.001008
     cat: Expansion for Base-game
                                         0.001008
     cat: Trivia
                                         0.002014
     cat: American Revolutionary War
                                         0.002014
     cat: World War I
                                         0.002014
     cat: Science Fiction
                                         0.110995
     cat: Fighting
                                         0.131274
     cat: Economic
                                         0.159312
     cat: Fantasy
                                         0.164704
     cat: Card Game
                                         0.183588
     Length: 79, dtype: float64
```

Left uncorrected, all the difference among Card Game would dominate the differences scores and ignore features with lower variances (i.e. Vietnam War, Expansion for Base-game).

2. Even if each features were given identical variance, some features effectively "double count" the importance of a feature by being correlated

```
[9]: df_game.loc[:, x_feat_list[:5]].corr()
[9]:
                       cat: Adventure
                                        cat: Exploration
                                                          cat: Fantasy \
     cat: Adventure
                              1.000000
                                                 0.426874
                                                               0.353859
     cat: Exploration
                                                 1.000000
                                                               0.177884
                              0.426874
     cat: Fantasy
                              0.353859
                                                 0.177884
                                                               1.000000
     cat: Fighting
                              0.320280
                                                 0.154813
                                                               0.391303
     cat: Miniatures
                              0.293766
                                                 0.155875
                                                               0.242340
                       cat: Fighting cat: Miniatures
     cat: Adventure
                             0.320280
                                              0.293766
     cat: Exploration
                             0.154813
                                              0.155875
```

```
cat: Fantasy 0.391303 0.242340 cat: Fighting 1.000000 0.434097 cat: Miniatures 0.434097 1.000000
```

Notice that these first 5 tags are all positively correlated with each other (when one tag occurs any of the others is more likely to occur). In some sense, we can consider that each of these tags are redundant measurements of the same intrinsic game feature. We are effectively over-counting this feature by including it with each feature.

To resolve both of these issues, we use a pre-processing step before applying our 1-NN regressor: Principle Component Analysis (PCA). PCA will: - ensure output features each have equal variance - ensure output features are all uncorrelated with each other

7 Results

7.1 Estimation

[10]: import pandas as pd

```
# reload data
      df_game = pd.read_csv('game_final.csv', index_col='game_id')
      df_pref = pd.read_csv('pref_final.csv', index_col='alias')
      # ensure column names are integers
      df_pref.rename(int, axis=1, inplace=True)
      # build x feature list (any category a game belongs to)
      x_feat_list = list()
      for col in df game.columns:
          if is_feat(col):
              x_feat_list.append(col)
      x_feat_list[:5]
[10]: ['cat: Adventure',
       'cat: Exploration',
       'cat: Fantasy',
       'cat: Fighting',
       'cat: Miniatures']
[11]: from sklearn.model_selection import KFold
      from sklearn.metrics import r2_score
      def get_x_y(alias, df_pref, df_game, x_feat_list):
          """ gets the input / output features of regressor for one user
          The input features are the game categories (binary) and
          the output features are the user preferences
```

```
Arqs:
    alias (int): alias given to a user (index of df_pref)
    df_pref (pd.DatFrame): user preferences
    df_game (pd.DataFrame): game stats
Returns:
    x (np.array): (n_samples, n_feat) corresponds to the
        categories every game does / doesn't belong to
    y (np.array): (n_samples) user preferences of corresponding
        samples
    game_id_list (list): game ids with ratings
# get non null preferences for a given alias
s_pref_alias = df_pref.loc[alias, :]
s_pref_alias.dropna(inplace=True)
# get list of game_id which user submitted preferences about
game_id_list = list(s_pref_alias.index)
# extract x, y
x = df_game.loc[game_id_list, x_feat_list].values
y = s pref alias.values
return x, y, game_id_list
```

```
[12]: import numpy as np
      from sklearn.linear_model import LinearRegression
      from sklearn.neighbors import KNeighborsRegressor
      def cv_train(x, y_true):
          """ leave one out cross validation regression of x, y
          Args:
              x (np.array): (n_samples, n_feat) input features
              y_true (np.array): (n_samples) output feature
          Returns:
              regressor (LinearRegression): model which predicts y
                  from x
              r2 (float): percentage of variance of y which is
                  explained by the model under cross validation
                  (r2=1 is strongest possible model, r2=0 is
                  a non-helpful model)
          HHHH
          # initialize kfold
```

```
n_samples = x.shape[0]
          kfold = KFold(n_splits=n_samples)
          # initialize regressor
          reg = KNeighborsRegressor(n_neighbors=1)
          y_pred = np.empty_like(y_true)
          for train_idx, test_idx in kfold.split(x):
              # split data
              x_train = x[train_idx, :]
              y_train = y_true[train_idx]
              x_test = x[test_idx, :]
              # fit regressor
              reg.fit(x_train, y_train)
              # predict
              y_pred[test_idx] = reg.predict(x_test)
          # compute r2
          r2 = r2_score(y_true=y_true, y_pred=y_pred)
          # fit model on entire dataset (best for predicting new samples)
          reg.fit(x, y_true)
          return reg, r2
[13]: def predict_score(alias, df_pref, df_game, x_feat_list):
          """ predicts scores on all games
          Args:
              alias (int): integer alias of user
              df_pref (pd.DataFrame): user preferences
              df_game (pd.DataFrame): games stats
              x_feat_list (list): features used to define distance
                  between games
          Returns:
              df_predicted_pref (pd.DataFrame): estimated user preferences
                  (includes preferences for all games, not just the ones
                  the user has rated)
              req (KNeighborsRegressor): regressor which predicts user preferences
              r2 (float): cross validated r2 value
          ,, ,, ,,
          # extract relevant data
```

```
x, y, game_id_list = get_x_y(alias, df_pref, df_game, x_feat_list)
# cross validate & train model
reg, r2 = cv_train(x, y)
# predict scores of all games (not just ones with observed preferences)
x_all = df_game.loc[:, x_feat_list].values
y_predict = reg.predict(x_all)
# collect / sort preferences in dataframe
df_predicted_pref = pd.DataFrame({'title': df_game['title'],
                                  'pref': y_predict,
                                  'url': df_game['url']},
                                 index=df_game.index)
# record whether preferences were observed (user supplied) or not
df_predicted_pref.loc[:, 'observed'] = False
df_predicted_pref.loc[game_id_list, 'observed'] = True
# store x_feat in df_predcticted_pref (redundant but helpful to know
# which were used across multiple runs)
for x_feat_idx, x_feat in enumerate(x_feat_list):
    df_predicted_pref.loc[:, x_feat] = x_all[:, x_feat_idx]
# sort by estimated rating
df_predicted_pref.sort_values('pref', inplace=True, ascending=False)
return df_predicted_pref, reg, r2
```

7.2 Validation

To validate our model, we compute the cross-validated r^2 value among all the games a user has given ratings for.

- If this value is close to 1, then we can effectively predict user preferences - If this value is close to zero, then we are effectively guessing user preferences blindly - If this value is negative, then we are doing worse than guessing user preferences blindly

7.2.1 Without applying PCA:

```
[14]: def validate_all(df_pref, df_game, x_feat_list):
    """ computes cross validated r2 for each alias

Args:
    df_pref (pd.DataFrame): user preferences
    df_game (pd.DataFrame): games stats
    x_feat_list (list): features used to define distance
```

```
between games
          Returns:
              df_validate (pd.DataFrame): index is alias, contains
                  column `cv_r2` as well as `num_pref`, the number of
                  preferences available for a given user
          11 11 11
          df_validate = pd.DataFrame()
          for alias in df_pref.index:
              # predict scores
              df_predicted_pref, reg, r2 = predict_score(alias, df_pref, df_game,_
       \rightarrowx_feat_list)
              # collect validation stats in one dataframe
              row = dict(alias=alias, cv_r2=r2,_
       →num_pref=df_predicted_pref['observed'].sum())
              df_validate = df_validate.append(row, ignore_index=True)
          # prep and display df_validate
          df_validate.set_index('alias', inplace=True)
          df_validate.sort_values('cv_r2', inplace=True)
          return df_validate
[15]: # validate model (without pca)
      df_validate = validate_all(df_pref, df_game, x_feat_list)
      df validate
```

```
[15]:
               cv_r2 num_pref
     alias
                          8.0
     9.0
           -3.296296
     23.0 -2.692308
                          8.0
     1.0 -1.360236
                          11.0
     18.0 -1.128514
                          10.0
     21.0 -0.875000
                          10.0
     17.0 -0.660428
                          9.0
     7.0
          -0.625000
                          21.0
     20.0 -0.562500
                          10.0
     15.0 -0.528302
                          9.0
     22.0 -0.336709
                          12.0
     19.0 -0.170000
                          9.0
     6.0 -0.097561
                          15.0
     24.0 0.125000
                          8.0
```

Only user alias=24 achieved any improvement in preference estimation from our method.

7.2.2 Applying PCA:

```
[16]: from sklearn.decomposition import PCA
      # extract old x values
      x = df_game.loc[:, x_feat_list].values
      # transform to new x values
      n_{components} = 2
      pca = PCA(n_components=n_components, whiten=True)
      x_new = pca.fit_transform(x)
      # add pca features back into dataframe
      x_feat_list_new = [f'pca{idx}' for idx in range(n_components)]
      for idx, feat in enumerate(x feat list new):
          df_game.loc[:, feat] = x_new[:, idx]
[17]: # validate using only first n_pca features
      df_validate_pca = validate_all(df_pref, df_game, x_feat_list_new)
[18]: df_validate_pca
[18]:
                cv_r2 num_pref
     alias
      17.0 -2.633690
                            9.0
      9.0
          -2.481481
                            8.0
      1.0
           -1.988189
                           11.0
      23.0 -1.961538
                           8.0
      21.0 -1.569444
                           10.0
      18.0 -1.369478
                           10.0
      15.0 -0.910377
                           9.0
      7.0
          -0.825000
                           21.0
     20.0 -0.687500
                           10.0
     22.0 -0.518987
                           12.0
      6.0 -0.219512
                           15.0
      19.0
           0.010000
                           9.0
      24.0
            0.125000
                            8.0
```

PCA does improve results, though we are still not able to predict user preferences better than chance on the average user.

7.2.3 Visualization

```
[20]: import plotly.graph_objects as go
     import plotly.express as px
     from plotly.subplots import make_subplots
     hovertemplate = '%{text}'
     def print_plotly_scatter(alias, df_pref, df_game, x_feat_list, f_html=None,_
      →x_feat_idx_horz=0, x_feat_idx_vert=1):
         if f_html is None:
             f_html = f'user{alias}.html'
         # compute predicted scores
         df_predicted_pref, reg, r2 = predict_score(alias, df_pref, df_game,_
      →x_feat_list_new)
         x_feat0 = x_feat_list[x_feat_idx_horz]
         x_feat1 = x_feat_list[x_feat_idx_vert]
         # build scatter
         fig = make subplots()
         for observed in [False, True]:
             # select only relevant rows
             row_bool = df_predicted_pref['observed'] == observed
             df = df_predicted_pref.loc[row_bool, :]
             s_text = df_game.loc[df.index, 'hovertext']
             if observed:
                 marker_dict = dict(size=12, line=dict(width=2, color='black'),__
      name = 'user-given'
             else:
                 marker_dict = dict(colorscale='viridis',__
      name = 'estimated'
             trace = go.Scatter(x=df[x_feat0],
                               y=df[x_feat1],
                               mode='markers',
                               marker=marker_dict,
                               marker_color=df['pref'],
                               hovertemplate=hovertemplate,
```

[41]: <IPython.lib.display.IFrame at 0x7efbfdbe09a0>

8 Discussion

The project did not succeed in being able to predict a user's preference any better than chance for the average user. (Cross validated $r^2 < 0$ for all users). This can be due to three reasons: 1. Our user preference data was insufficient: - With only 8 to 20 games per user, we may not have enough data to accuractely characterize a single user's preferences among all the unique board games - The user rating scale is somewhat subjective and was often biased towards games users enjoyed. This makes intuitive sense as the majority of time one is interacting with a game they're interacting with a game they've selected because they enjoy it. - We'd suggest future work collect only a list of games that a user enjoys 1. Our distance metric, which defines which games are similar or different, was insufficient: - After much experimenting, we couldn't identify an x_feat_list which significantly improved the cross validated r^2 metric. - We'd suggest future work do more feature engineering to identify which aspects of a game make is "similar" or "different".

Alternatively, one could define a metric of game similarity based on the correlation of user re-- users typically rate both games high / low - games are similar

- users typically rate one game high and the other low:games are different
- 9
- 1. (Most significantly) Our 1-NN classifier was insufficient because:

- it gave identical scores to many games. This is not helpful in identifying a single best game to recommend to a user
- it never synthesizes all the user preferences into its estimate. Instead, it relies exclusively on only the nearest neighbor.
- We'd suggest future work discard the 1-NN classifier in favor of something which synthesizes all of a user's preferences (Regression, Density Estimation)

Not all results were negative, while the distance between games was not sufficient to reccomend games, it did provide some intuitive meaning: - games in the lower left corner above are typically economic / negotiation games - games in the upper right corner above are typically strategy / fighting / minature games

8.1 Takeaway:

Taken together, we do not think this work should be used to reccomend board games.