
Review Problems - DS 2000/2001 F 2021
(Please note that these practice problems are not reflective of the format of the DS 2000 midterm. These are
intended to be an extra tool for you to study the content of this course so far!)

Output and loops
Write the output of the following code snippets.

Code Snippet Output

my_fave_num = 97
if my_fave_num > 0:

print("so big")
if my_fave_num < 100:

print("so small")

my_fave_num = 13
if my_fave_num > 0:

print("so big")
elif my_fave_num < 100:

print("so small")

party = "birthday"
p = 0
while p < len(party):

print(party[p] + party)
p += 1

target = ""
doodads = ["bauble", "cat", "lamp", "stop sign"]
ind = 0
while ind < len(doodads):

print(str(len(target)) + ": " + doodads[ind])
target = doodads[ind]
ind += 1

s = "skee ball"
num = 0
while num < len(s):

print(s[len(s) - num - 1])
num += 1

amount = 1
items = ["toothbrush", "toothpaste", "volcano"]
i = 0
while i < len(items):

amount = amount + len(items[i])
print(amount)
i += 1

Code Snippet Answers

x = 10
y = 2
while y < x:

print(x)
x += 10

Number of times this loop executes:

x = 10
animals = ["cat", "dog", "bear"]
for animal in animals:

print(x)
x += 10

Number of times this loop executes:

my_s = "ds2001"
index = 0
while index < len(my_s) - 2:

index += 1
print(my_s[index])

The output of this code snippet:

my_s = "ds2001"
for i in range(len(my_s)):

print(my_s[i])

The output of this code snippet:

How many times does the inner loop iterate for the following code snippet?

count = 0
while count < 3:

count2 = 0
while count2 < 4:

print(count2)
count2 += 1

count += 1

number of iterations of inner loop:

Challenge: how many times does the inner loop iterate for the following code snippet?

for outer in range(5):
count = 0
print("outer:", outer)
while count < outer:

print("count:", count)
count += 1

number of iterations of inner loop:

Fill in the blanks so that the following code snippet computes what the comments indicate.

create one string by duplicating all letters in a string.
Example "resume101" => "rreessuummee110011"

target = ______________ # string to duplicate here (updated 3/20)

two_times = _____________

count = _________________

while ____________________________________:

___________ = _________________ + __________________

count = _______________ + __________________

print(_____________) # print the final string

Next, write the same code but use a for loop to do so instead!

Writing Functions

a) Write a function, number_words, that takes one string as a parameter and returns the number of
words in that string. You may assume that all words are separated by spaces.

Function call Return value

number_words("Hello there") 2

number_words("Hello") 1

number_words("Hello there I am an ocelot") 6

number_words("Wow! I'm glad I'm
studying for this midterm!")

8

number_words("I'm excited to use my
awesome programming skills in other
domains!")

11

As a challenge, re-write this function, but without using the str.count() or str.split() methods!

b) Write a function, sandwich, that takes two strings as parameters, s1 and s2, and prints a new string
composed of the first string repeated n times where n is the length of the first string, followed by the
second string, followed by the first string n times.

Function call Output

sandwich("a","cheese") "acheesea"

sandwich("bb","spinach") "bbbbspinachbbbb"

sandwich("ham","cheese") "hamhamhamcheesehamhamham"

c) For the following function, select all types for the parameters that will cause it to run without errors, then
describe what the function does.

code: def mystery3(param1, param2):
var1 = 0
while var1 < len(param1):

print(param1[var1])
var1 += param2

Type of param1 (circle all that
will run without errors): int float string boolean

list of ints list of floats list of strings list of booleans

Type of param2 (circle all that
will run without errors): int float string boolean

list of ints list of floats list of strings list of booleans

A better name for this function:

What does the function do:

d) Write a function, same_maximum, that takes two parameters, lists or strings, and prints "different
types!" if they are not either both strings or both lists, "same max: [the maximum]" if they have the same
maximum element, and "different max!" if they don't. Use the type() and the max() functions to help
you. You may assume that only strings or lists are passed to your function.

Example Function Calls Output

same_maximum(["a", "b"], "b") different types!

same_maximum([7, 2], [1, -3, 7, 2, 4]) same max: 7

same_maximum([100, 2], [1, -3, 7, 2, 4]) different max!

same_maximum("zebra", "the letter z") same max: z

e) Write a function, sum_positives, that takes one list of numbers as a parameter and uses a loop to
calculate then return the sum of all positive numbers from the list.

Example Function Calls Return value

sum_positives([1]) 1

sum_positives([-2, 2, -2, 3]) 5

sum_positives([-2, 0, -2, 0, -100]) 0

sum_positives([]) 0

f) Write a function to extract course number (returned as an integer) from a course name (taken as a
parameter) like “DS2001” gives 2001, “CS4120” gives 4120 and so on. You may assume that the
department code is always 2 letters long.

Function call Return value

course_number("DS2000") 2000

course_number("DS2001") 2001

course_number("CS4120") 4120

g) Write a function to display a table of dice rolls for a given list of people. Each person will roll a six-sided
die 5 times. Return a list of lists where each row in the list represents the rolls that one person made.

Function call Output (printed)

roll_table(["Felix", "Arushi"]) Felix: 1 1 1 3 6
Arushi: 5 3 2 1 3

roll_table(["Asa", "Smit", "Archit"]) Asa: 4 4 2 6 4
Smit: 2 1 1 3 2
Archit: 6 6 2 6 3

h) Now, update your function to return a list of lists where each row in the list represents the rolls that one
person made.

Function call Return value

roll_table(["Felix", "Arian"]) [[1, 1, 1, 3, 6], [5, 3, 2, 1, 3]]

i) Write a function, end_digits, that takes two parameters, an integer representing a target number and
an integer n, and prints the n ending digits of the target number. (Hint: think about using the % operator
or about converting the integer to a string)

Function call Output (printed)

end_digits(123, 1) 3

end_digits(123, 2) 23

end_digits(123, 3) 123

