
Practicum 7 - CSV files!

DS2001 - Computer Science Practicum
Fall 2021
October 20/21th, 2021
Practicum Deadline: October 22nd, 2021 at 12:00pm (that's noon!) Boston time

Project groups + initial topics are due on Friday, October 22nd at 9pm on Gradescope.
Note! You may find many of the functions that you write in practicum today to be very helpful when implementing

your final project. Pay attention to them! :)

What we’re practicing today:
- functions
- lists of lists
- functions + lists

Handouts:
- Writing Functions (from DS 2000)
- Functions + Scope (from DS 2000)
- Functions + Testing (from DS 2000)
- 2D Lists (from DS 2000)

What to do if you miss practicum this week:
- Fill out the "I'm missing class" form ASAP
- Follow up in office hours with Felix (find office hours links on the course website). Note that this is required.
- Come to practicum next week if you are well again. Do not come to class if you are not feeling well.

How far we expect you to get this week:
- We expect you to complete Task 2, which means writing the get_column function with the correct parameters

and return value. We *highly* recommend attempting task 3 as well.

Everyone should create one file for the whole practicum called p7.py.

We have a few problems to tackle today; get through as many as you can, and submit whatever you have done at the end
of your section. Each question in this write-up will describe a problem to work on, then might ask you a question that
you'll answer with your group.

At the end, everyone should make sure to turn in your code to gradescope with your group's answers to the questions
written as comments in your file!

Set-up: background of your data

This week, we'll be working with data from Analyze Boston's crime incident reports, filtered just for March from 2020.

We can think of a list of lists as corresponding to a table of data where each sublist is a row in our data set. Columns of
data are represented by values corresponding to the same index in multiple rows (sublists).

https://docs.google.com/document/d/1gr-lYPUkJv53Le1OVV7rdscHGQv9fre-MCbplkN4W1w/edit?usp=sharing
https://docs.google.com/document/d/1Dlwh3olOYoab_Zwh069A4OjuPudT-KYNt5soMxRfh5Q/edit?usp=sharing
https://docs.google.com/document/d/1ix1sfQhlSNCBgEYEi3Y1W767unZsKjMlmXfW3YMKsYA/edit?usp=sharing
https://docs.google.com/document/d/1WZ3MEPPjePzayV5S_EKtkqiPPkysdOMszWPjMOt7CwM/edit?usp=sharing
https://docs.google.com/forms/d/e/1FAIpQLSfw2f0pnnpq6p-mlKA5Om0yNa0U9o4eiWxz5wOYvQYlU4PG6Q/viewform
https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-date-source-new-system/resource/bc85f079-e36f-4269-9c07-e47a40f0976b?filters=MONTH%3A3

Here is an example, looking at the 1st, 30th, and 59th row in your big data file (so that you can see how the values vary).

INCIDENT
_NUMBER

data[row][0]

OFFENSE_
DESCRIPTI
ON

data[row][1]

SHOOTING

data[row][2]

OCCURRE
D_ON_DAT
E

data[row][3]

DAY_OF_
WEEK

data[row][4]

HOUR

data[row][5]

STREET

data[row][6]

data[0] I20219259 LARCENY
ALL
OTHERS

0 2020-03-10
11:49:00

Tuesday 11 BOWDOIN
ST

data[29] I20203469 TOWED
MOTOR
VEHICLE

0 2020-03-28
00:00:00

Saturday 0 TREMONT
ST

data[58] I20203113 ASSAULT -
SIMPLE

0 2020-03-25
22:00:00

Wednesday 22 BLUE
HILL AVE

Here, if this were a list of lists saved in the variable data, then we would access rows (sublists) with the first index given
and columns with the second index given as in data[row][column].

Task 0: Write your file comment, your if __name__ == "__main__": and import the p7_utils and
matplotlib.pyplot modules

First, write down your name in a comment at the top of your file and a small description of what the file is, like we did last
time. This is a good habit to get into for all your programs!

Next, import the p7_utils and matplotlib.pyplot modules so that you can access the functions in them.

Task 1: Read in the example data, define a FILENAME constant

For all of this practicum, test each task with the file called "boston-incident-reports-march2020-tiny.csv",
then, after it's working, run your code on "boston-incident-reports-march2020.csv". The only code that you
should need to modify for this is the value of your FILENAME constant.

Using the p7_utils.read_csv() function, read in the data to a new list of lists. Once you've read it in, print out the
length and the first three elements of the list. Notice that this function is different from the read_csv function that you're
implementing for your DS 2000 homework :).

Warning! This is A LOT of data! (Even for the "tiny" file!) We do NOT recommend printing out the entire list of lists. :)

Example output:
Number of rows: 208687

[['I20219259', 'LARCENY ALL OTHERS', 'C11', '340', '0', '2020-03-10 11:49:00', '3',

'Tuesday', '11', 'BOWDOIN ST'], ['I20219259', 'LARCENY ALL OTHERS', 'C11', '340', '0',

'2020-03-10 11:49:00', '3', 'Tuesday', '11', 'BOWDOIN ST'], ['I20219259', 'LARCENY ALL

OTHERS', 'C11', '340', '0', '2020-03-10 11:49:00', '3', 'Tuesday', '11', 'BOWDOIN ST']]

Task 2: Get the data from one column
Write a function with the following signature.
"""

name: get_column

This function takes a list of lists and an integer and gives the user the list of values

from the indicated column. Does not change the passed in list of lists.

data - list of lists

index - integer indicating which column values to access

return:

List of values where the first value is the value at position "index" from the first row

in data, the second value is the value at position "index" from the second row in data,

etc for all rows in data

"""

Use this function to get the data from the column containing information about the day of the week that the incident
occurred on. Make sure that the length of the list you get back matches the number of rows in your data!

Example output (for tiny file):
length of column list (should be 21277): 21277

Example output (for "regular" file):
length of column list (should be 208687): 208687

Group Question: how should the length of a column relate to the dimensions of your dataset? If we gave you a new
dataset with 1,000,000 rows and 25 columns, is there anything that you would have to update about your code? What
would you expect to be the length of the list returned from this function?

Task 3: Graph some histograms

Use the functions that you've written so far to plot two different histograms of columns. A histogram is a special kind of
graph on which one axis is always frequency/count. Matplotlib conveniently has some built-in functionality for you here!

Make sure that one of the graphs represents the day of the week. Columns that are good options for histograms in general
are columns where there is a set number of categories that the different incidents are categorized into. Columns like
incident id are not good options for histograms.

Use the plt.hist(values) function to create this histogram.

Hint: if you end up with overlapping labels on the x-axis, you can rotate them like this:

plt.hist(values)

plt.xticks(rotation=90)

plt.show()

Group Question 1: Take a look at the day of the week graph that you created. What about this graph could be improved?

Group Question 2: Compare the graph from the tiny data file with the one using the full-size data set. Do you see the
same trends here? What may have caused differences in what you see?

Task 4: Filter rows, make a new graph
Write a function with the following signature.
"""

name: exact_match

This function takes a list of lists of values and returns a new list of lists containing

only rows from the original data where the value at column index matches the provided

target value.

parameters:

data - list of lists (your table of data)

index - column to look in

target_value - value to match

return:

a new list of lists containing all target rows

"""

Then, use this function to help produce a bar graph of day of the week vs. count of incidents for that day. You'll need to
build a list of days and a corresponding list of counts for each day. Print out these lists to verify your counts.

Note that this is not the output of the exact_match function! You'll write this function and then use it alongside other
code to achieve your goals here.

Example output (for the tiny data):
['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

[2917, 2880, 2238, 2071, 2310, 6294, 2567]

Use the plt.bar(x_values, y_values) function to do this, which is a more general version of what you saw with
plt.hist(values).

Your graph should be "in order" — starting with either Sunday or Monday, the x-axis should look similar to (note that
we're not showing the whole y-axis here):

Hint 1: you'll want to make a list that defines the order that you want your bars to be plotted in.

Hint 2: if you call your exact_match function appropriately, you won't need to re-write any code to loop through your
overall data searching for matching rows. :)

Group Question: Looking at your exact_match function, what would you need to alter about it if you wanted to write
another, similar function that looked for a specific range of values (e.g. "I want rows where the 2nd column's value is
between 10 and 100") instead?

Task 5: Get unique values
Write a function with the following signature.
"""

name: unique_values

This function takes a list of values and returns a list containing only one copy of every

value in the given list, in sorted order.

parameters:

lst - list of values

return:

a new list of unique values, in sorted order

"""

Then, use this function to find what different values the offense description column might contain. Pick out one of these
offenses and investigate it further. Does it follow the same overall pattern for frequency by day of the week that we see
reflected in the data as a whole? Make sure to call the functions that you've already implemented to help figure this out!

Hint: first, you'll want to use your exact_match function to isolate the relevant part of the data. Next, you'll follow the
same strategy as in task 4! (feel free to make this graphing code into a function that you re-use!)

Finished early? Do the following....

● Make constants for the index positions of the different columns that you access. This avoids having "magic
numbers" and makes it so when you update your code, you'd only need to change one thing.

● Investigate the number of reports in the week(s) surrounding March 10th, when a state of emergency was declared
in Boston due to the pandemic. Was there a dip in incidents reported at this time?

○ Hint: you'll need to do some string manipulation here to do what's called "parsing" the information in the
date column. You can use the string split() function to first split on spaces, then split the first chunk based
on "-" characters. Don't forget to convert any strings to integers if you want to compare them by their
numeric ordering!

