

DS2000

2/21 - Tues.

Admin

- HW5 due Fri
- Quiz 6 out 4:30pm → Fri 9:50AM
- mini quiz due 3/3

Agenda

1. Tuples
2. Utility Functions
3. Nearest neighbor
4. Python

1. Tuples

- data structure: one label, many values
- Similar to lists, except...
 - create with () not []
 - tuples are immutable

Any new data structure:

1. Create — $tup = (4, 5, 6)$ val
 0 1 2 pos

2. Add → can't! ~~+ tup.append(7)~~ xxxxx error
 $tup[3] = 12$ xxxxx error

3. Look at one thing

 ↳ $\text{print}(tup[1])$ ✓ $\text{num} = \text{tup}[2] + 4$ ✓

4. Look at all the things

 ↳

```
for item in tup:  
    print(item)
```

Usefulness of Tuples

1. protect our data
2. more efficient than lists
3. combine data in useful ways

```
def get_max(m):  
      
      
    return thing1, thing2
```

```
val1, val2 = get_max(m)
```

Secret Python:

```
tup = (thing1, thing2)  
return tup
```

Secret python

```
var1 = tup[0]  
var2 = tup[1]
```

2. Utility Functions

- Tweak code from Friday
- Also in HW5 starter code

last time ...

```
list, long, city[state, address]  
[  
  ~, ~, ~, ~  
  ~, ~, ~, ~  
]  
~.CSV
```

→ 2D list

```
[list, long, city, state, address]
```

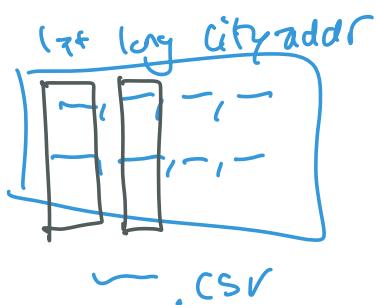
Search: "Boston"

get: Boston, MA
Boston, IN

want: "Boston, MA"

Fix: use CSV library

new python:


import csv

→ above main

→ read function

CSVfile = CSV. Reader(infile) } instead of
next (CSVfile) readLine(),
split()

Last time

want:

list of lats

list of langs

```
def col_to_lst(lst, col):
```

new-lst = []

for row in lst:

new - (st.append(raw [col]))

return new-lst

$\cup [col])$ } save the same
pr. in every
row
→ D list

Nearest neighbour algorithm

- distance measure (ex: euclidean)
- Find closest physical thing (Hw2)
- Find most similar thing (Hw4)

Building block for: nearest neighbor classifier (ML)

Which DD is closest
to Gary's house?