
DS2000 – Programming with Data

Introduction

The Programming with Data Track
• Northeastern’s Data Science curriculum includes three courses in Python programming:

- DS 2000: Programming with data
- DS 2500: Intermediate programming with data
- DS 3500: Advanced programming with data

• All three courses leverage the python software development ecosystem.

• The three-course programming track follows a logical progression from learning first principles of
software development in DS2000 (with no programming experience required) to building object-oriented
libraries and data applications in DS2500, to developing more complex enterprise-grade systems for data
engineering and data science in DS3500.

• The DS Programming with Data track provides an alternative to the traditional CS-oriented fundamentals
sequence (Fundamentals 1 and 2 and Object-Oriented Design) with special emphasis on data-centric
problem solving, analytics, and engineering.

Pathways to Code @ Northeastern

Take DS 2000 / 2500 / 3500 if: Take CS 2500 / 2510 / 3500 if:
• You are a DS major or DS minor

• You are a non-CS / non-DS major looking to gain practical
experience with computer programming and data-centric
problem solving.

• You want to become proficient in Python programming
for data analysis and visualization, or for developing data-
centric applications in business, finance, healthcare, or
the sciences.

• You are a CS major or CS minor

• You are a DS major interested in obtaining a deeper
understanding of the fundamentals of computer science:
data structures, algorithms, and programming paradigms.

• You want to become proficient in functional programming as
well as object-oriented languages such as Java and C++ for
general application development.

The Data Science Track The Computer Science Track
DS 2000: Programming with data
DS 2500: Intermediate programming with data
DS 3500: Advanced programming with data

CS 2500: Fundamentals of Computer Science
CS 2510: Fundamentals of Computer Science II
CS 3500: Object-oriented Design

DS 2000: Programming with Data
What is DS 2000 about?
DS2000: Programming with Data is a first-course introduction to computer programming using the Python programming
language. The course will introduce using various Python toolkits for manipulating and analyzing data in a broad range of
applications including science, finance, and healthcare. The course assumes no prior programming experience.

Who should take DS 2000?
DS 2000 is aimed at students majoring in subjects outside of Computer Science or Data Science who wish to use computer
programming as an essential tool for working with data in their respective fields. The course teaches students how to
work with data algorithmically. DS 2000 is the one computer programming course to take if you are only going to take one!

Take DS 2000 if: Alternatively, take CS 2500 if:

You are a DS major aiming to become a professional data
scientists or you are a non-CS / non-DS major looking to gain
some practical experience with computer programming as a
tool for solving problems in various technical fields. Students
with some prior programming skills should consider DS 2500
instead.

You are a CS major aiming to become a professional
computer programmer or computer scientist. CS minors
interested in the foundations of Computer Science and
hoping to eventually tackle larger-scale software projects
will also find CS 2500 to be a better fit.

Recommended: Downey, 2016: Think Python, 2nd ed. O’Reilly

https://learning.oreilly.com/library/view/think-python-2nd/9781491939406/
https://greenteapress.com/thinkpython2/html/
https://www.amazon.com/Think-Python-Like-Computer-Scientist/dp/1491939362/

Recommended: Deitel and Deitel, 2019: Intro to Python for Computer Science and
Data Science, 1st ed. Pearson

https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://www.amazon.com/Intro-Python-Computer-Science-Data/dp/0135404673/

Textbooks

https://learning.oreilly.com/library/view/think-python-2nd/9781491939406/
https://greenteapress.com/thinkpython2/html/
https://www.amazon.com/Think-Python-Like-Computer-Scientist/dp/1491939362/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
http://www.amazon.com/Intro-Python-Computer-Science-Data/dp/0135404673/

How to learn from the textbook: Practice and Experiment

Read the book.

Read the book AND type in the examples.

Tinker with the examples. Change them and observe the
behavior. Try to break the examples and see what happens.

Write lots of programs while becoming practiced with editors,
testing and debugging, and third-party libraries that can do
powerful stuff for you.

GOOD

BETTER

BEST

Languages

Natural languages are languages that people speak: English, Spanish,
French, etc.

Formal languages are languages that are designed for a specific
purpose and having a well-defined syntax.

Mathematics: y = mx + b, 2 + 2 = 4,

Programming languages are formal languages designed to express
computations as a program.

What is a program?

A program is an ordered sequence of instructions
(rendered as one or more text files) that specifies
how to perform a computation.

The Python interpreter parses a python program, validates the
syntax, and runs the program on a computer.

Program

print(‘hello world!’)
print(2+2)

Python
interpreter

hello world!
4

Output (Screen)

What is programming?

Programming or coding is
the art of writing programs
designed to carry out the
intended computations as
concisely and efficiently
as possible.

Programming languages are many and varied
LISP

Assembly

Java

Prolog

Python

High-Level vs. Low-Level Languages
High-Level Languages
(Python, Java, C++, LISP …)

Low-Level (Machine language)

• Expressive
• Easier to learn
• Easier to read and maintain
• Slower execution
• Cross-platform (portable)

• CPU-level instruction
• CPU-specific operations
• More difficult to understand
• Requires more lines of code
• Super super fast

What is an algorithm?

An algorithm is a procedure, formula, or
specification for solving a particular problem.

Algorithms are implemented by writing a program.
The algorithm doesn’t depend on the programming
language, but the implementation does!

Examples:
• Sorting numbers: [3,1,6,4] à [1,3,4,6]
• Google search
• Encryption / Decryption

Advantages of Python

• A very popular language, widely used in industry, particularly for
data science / machine learning applications.

• A rich collection of re-usable libraries. (“batteries included!”)
o Graphics and visualization
o I/O (text, csv, json, database…)
o AI / Machine learning / Data Science / Scientific computing
o Web development frameworks
o Graphics and User Interfaces
o Etc.

• Easy to learn because of its expressive and clean syntax

The growing popularity of python

Source:

Nick Heath (2019): Python is
eating the world: How one
developer’s side project
became the hottest
programming language
on the planet. Tech Republic.
(August 6, 2019)

Disadvantages of Python
• Slower performance because it is an interpreted language

• High memory consumption

• Not ideal for mobile development

• Runtime errors due to dynamic typing may make testing and
debugging more challenging

• The use of whitespace / indentation to denote program structure
is controversial

While loops

countdown(10) è

Debugging

Programming mistakes are called bugs.

Debugging is the process of eliminating bugs,
i.e., figuring out why your program doesn’t
behave the way it is expected to.

With experience, programmers learn to:
• Write code with fewer bugs
• Track down existing bugs
• Systematically verify that code is bug-free

Types of programming errors: Can you identify?

Syntax Errors: print(‘hello!)
Print(‘hello!’)
print(‘hello”)

Runtime Error: x = 0
y = 12 / x

Semantic Error: miles = kilometers * 1.609344

Python Keywords

print(“Hello, Students!”)

()

