

Solving World Problems

Learning One Example at a Time

Problem: Signaling Networks

To <u>treat/cure disease</u>, we need to understand the <u>chains of protein</u> <u>interactions</u> that determine <u>how cells</u> <u>process signals</u> from their environment

Problem: Robotic Interaction

To <u>safely operate</u> in distant/dangerous terrain, we need <u>robotic</u> <u>teammates</u> that can <u>autonomously</u> perceive, understand, interact with, and <u>manipulate</u> <u>their environment</u>

Problem: Winning on the Merits

To enact the <u>best</u> <u>policies</u>, we need to understand what makes for a <u>strong argument</u>

Solving World Problems

The common link in solving these and many other complex problems is the potential for using **Machine Learning**, which exploits...

- Big Data: <u>examples</u> from the world
- Cloud Computation: cheap, fast processing
- Algorithms: automatically <u>uncovering value</u>

Machine Learning

- 1. What is it?
 - Why you should care!
- 2. How does it work?
- 3. You + ML

http://ai.berkeley.edu

Solving World Problems: Learning One Example at a Time

April 4, 2019

What is Machine Learning?

Computer programs that can improve performance with experience

But Wait...

Why Learn?

Many complex tasks are <u>hard to describe</u>, but <u>easy</u> <u>to learn</u> from experience

Why Now?

Data sources and powerful computing are increasingly cheap and plentiful

Natural Language Processing (NLP)

Modern NLP algorithms are typically based on statistical ML

Applications

- Summarization
- Machine Translation
- Speech Processing
- Sentiment Analysis

Computer Vision

Methods for acquiring, processing, analyzing, and understanding images

Applications

- Image search
- Facial recognition
- Object tracking
- Image restoration

Games, Robotics, Medicine, Ads, ...

Northeastern University

Fusing Disciplines

ML/DS Pipeline

Jobs!

Position	Salary
Data Scientist	\$117,345
Software Engineer	\$103,035

 ご Q Che New York Cimes
 TECHNOLOGY
 A.I. Researchers Are Making More Than \$1 Million, Even at a Nonprofit
 By CADE METZ APRIL 19, 2018
 ご C C

Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent

Nearly all big tech comparing intelligence project, and the sequence project proj

"Software Is Eating the World, but AI Is Going to Eat Software" - Jensen Huang (CEO, NVIDIA)

*glassdoor.com, USA National Avg as of April 4, 2019

Machine Learning Tasks

• Supervised

 Given a dataset of input-output pairs, learn a function that maps future (novel) inputs to appropriate outputs

• Unsupervised

Given a dataset and a hypothesis, find interesting patterns/parameters

Reinforcement

 Learn an optional action *policy* over time; given an environment that provides states, affords actions, and provides feedback as numerical *reward*, maximize the *expected* future reward

ML Terminology

example, instance Unit of input

Composed of *features* (or *attributes*)

- In this case, we could represent each digit via raw pixels: 28x28=784-pixel **vector** of greyscale values [0-255]
 - Dimensionality: number of features per instance (|vector|)
- But other *data representations* are possible, and might be advantageous

 In general, the problem of *feature* selection is challenging

Instances/Features = Table

Instance

"Target" Feature

When trying to predict a particular feature given the others

target, label, class, concept, dependent

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

Supervised Learning

Supervised Learning in Action

Training Set

Testing Set

α

β

β

γ

?

A Simple ML Technique: **kNN**

Training

• Store all examples

Testing

- Find the <u>k nearest</u> <u>neighbors</u> to input
- Vote on output

2D Multiclass Classification

Boundary Tree

1-NN via Linear Scan

Northeastern University

Many Approaches

Supervised Tasks (1)

Classification

Discrete target

SepalLength	SepalWidth	PetalLength	PetalWidth	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa

Supervised Tasks (2)

Regression

Continuous target

mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	1	buick skylark 320
18	8	318	150	3436	11	70	1	plymouth satellite
16	8	304	150	3433	12	70	1	amc rebel sst
17	8	302	140	3449	10.5	70	1	ford torino
15	8	429	198	4341	10	70	1	ford galaxie 500
14	8	454	220	4354	9	70	1	chevrolet impala
14	8	440	215	4312	8.5	70	1	plymouth fury iii
14	8	455	225	4425	10	70	1	pontiac catalina
15	8	390	190	3850	8.5	70	1	amc ambassador dpl
15	8	383	170	3563	10	70	1	dodge challenger se
14	8	340	160	3609	8	70	1	plymouth 'cuda 340
15	8	400	150	3761	9.5	70	1	chevrolet monte carlo
14	8	455	225	3086	10	70	1	buick estate wagon (sw)
24	4	113	95	2372	15	70	3	toyota corona mark ii
22	6	198	95	2833	15.5	70	1	plymouth duster
18	6	199	97	2774	15.5	70	1	amc hornet
21	6	200	85	2587	16	70	1	ford maverick
27	4	97	88	2130	14.5	70	3	datsun pl510
26	4	97	46	1835	20.5	70	2	volkswagen 1131 deluxe sedan
25	4	110	87	2672	17.5	70	2	peugeot 504
24	4	107	90	2430	14.5	70	2	audi 100 ls
25	4	104	95	2375	17.5	70	2	saab 99e
26	4	121	113	2234	12.5	70	2	bmw 2002

ML in Python via scikit-learn

from sklearn.linear model import LinearRegression

model = LinearRegression()
model.fit(model_x_values, list_times)

print(model.coef_)
print(model.intercept_)
print(model.score(model_x_values, list_times))

print(fit.predict([[x] for x in all_positions]))

[0.17175444] 0.10182840236686364 0.9992863167421991 [0.27358284 0.44533728 0.61709172 0.78884615 0.96060059 1.13235503 1.30410947 1.47586391 1.64761834 1.81937278 1.99112722 2.16288166 2.33463609 2.50639053 2.67814497 2.84989941 3.02165385]

Under/Over-fitting

Underfitting: the model does not capture the important relationship(s)

Overfitting: the model describes noise instead of the underlying relationship

Approaches

- Regularization
- Robust evaluation
 - Cross validation

Validation Set

- One approach in an ML-application pipeline is to use a *validation* dataset (could be a *holdout* from the training set)
- Each model is built using just training; the validation dataset is then used to compare performance and/or select model parameters
- But still, the final performance is only measured via an independent test set

More Training Data = Better

- In general, the greater the amount of training data, the better we expect the learning algorithm to perform
 - But we also want reasonable amounts of validation/testing data!
- So how do we not delude ourselves, achieve high performance, and a reasonable expectation of future performance?

Northeastern University

k-Fold Cross Validation

One (of many) Challenges

https://xkcd.com/1838/

What's a "Good" (Unsupervised) Answer?

Did I Learn Correctly?

Northeastern University

Did I Learn Ethically and Safely?

Pop Quiz!

- Given a dataset of past credit-card transactions (known to be fraudulent or not), build a system to identify future fraud
- 2. If we assume incoming CS1 students are bi-modal, but normally distributed, find the average grades of the two groups
- 3. Build an Atari system that learns game-winning techniques via actually playing and adjusting actions based upon score changes

Supervised (classification)

Unsupervised

Opportunities for (Machine) Learning

- 1. Courses
- 2. Research

http://ai.berkeley.edu

Computing @ Northeastern

Some Offerings...

- Artificial Intelligence
- Supervised Machine Learning and Learning Theory
- Unsupervised Machine Learning and Data Mining
- Reinforcement Learning
- Natural Language Processing
- Advanced Machine Learning
- Information Presentation and Visualization
- Robotic Science and Systems
- Pattern Recognition and Computer Vision

Learning Signaling Networks

- Using NLP to aggregate and analyze scientific findings
- Given data, learn network structure

Learning Robotic Interaction

- Large-scale robotic grasp training
- Inter-planetary!

Learning to Win on the Merits

- Understanding content/style vs strength
- Making new arguments from past experience and data

Solving World Problems: Learning One Example at a Time

April 4, 2019

Thank You :)

Questions?

