
An Introduction to Objects:
Beyond the Procedural Paradigm

DS 2000
Intro. Programming with Data

The procedural paradigm

Programs are recipes: a series of
statements that transform our data into
visualizations and insight.

In procedural programming, we
manage complexity by being
modular: adhering to top-down
programming practices that break
down difficult tasks into a sequence
of more manageable sub-tasks.

input

output

Recipes are a powerful metaphor for data science!

start with
raw data

data refinement
(munging)

build data
structures

processing
and

visualization

don’t forget
to label your

axes!

load
data

…and it’s adequate for a wide range of use-cases!

But consider the Desktop

source: https://www.gnome.org

We interact with the desktop
interface by performing actions
on objects that each support well-
defined behaviors.

Objects
• files and folders
• windows
• apps
• menus
• status bar

Behaviors
• open/close
• move
• resize

The paradigm has clearly changed!

The object paradigm: Objects are containers

method

Objects have fields and attributes
that constitute the state of the
object. These are the objects
attributes.

The state is accessed and
modified through various
methods that constitute the
object’s interface.

The layout and organization of the
state (i.e., the implementation) is
usually shielded from the user.

method
method

The Hidden State

interface
(public)

implementation
(typically hidden)

The Interface/Implementation Dichotomy

We can operate complex machines without knowing what’s under the hood.

Similarly, to build more complex software, we need to express ideas at a
higher level of abstraction with a focus of interface over implementation.
Object-oriented thinking enables us to do this.

Classes and Objects

Class (Type) List Circle Cat Account

Object
Instances

[1, 2, 3]

[‘Jack’, ‘Abby’]

[]

[(0,0), (5,7), (-2,2)]

my_cat

not_my_cat

MyChecking
MySavings
.
.
etc.

Classes define a type. It acts as a template or blueprint.
We then construct many objects that are instances of a particular class.

Lists, Tuples, and Dictionaries are objects!

The Hidden List Implementation of Python 3.9.2

Notice the for loop.

To find an element in a
list we scan across the
items of list one item at
a time.

Lists and Tuples similarities à Redundant Code!

Object-Oriented Python

Let’s construct some objects!

(Python syntax for creating classes and objects)

