
Python Style Guide
DS2000
Fall 2022
Credit: This style guide is largely taken from Prof. Strange. Thanks Prof. Strange!

Code Structure

Variable Names

Strings

Space between expressions

Comments

Vertical Space

One Statement Per Line

Functions

In all, you can expect the structure of your programs to look like…

Creating understandable, well-written code is just as important as writing functional code. Any piece of code is read far
more than it’s written. Computer science is a collaborative field, and it’s important to write code that others can read,
understand, reuse, and even plug into their own programs. (Even your own code can be difficult to decipher once a few
days have gone by!)

The Zen of Python
Above all, remember the foundation upon which Python is built:

● Beautiful is better than ugly
● Explicit is better than implicit
● Simple is better than complex
● Readability counts

If you’re ever unsure about a style choice, try to keep your code as simple and understandable as possible -- and you’ll be
fine!

Code Structure
We’ll write all our Python programs using the same structure, with the heart of our code inside a main function. Before
you write any other code, type def main(): at the very top and main() at the very bottom. Your program’s code will
go in between.

def main():

Your code goes here!

Your code goes here!

main()

https://www.python.org/dev/peps/pep-0020/

Variable Names
Variable names must be short and descriptive. Use lowercase letters, and put in underscores as a way to separate words.

Here are some acceptable variable names:
age = 31

birth_year = 1991

first_name = "Felix"

And some crummy ones:
a = 31

x = 1991

fn = "Felix"

You might feel like you're typing a lot but we promise—it will be worth it when your future self (or your TA or instructor)
reads through your code!

Constants, whose values never change once initialized, should be uppercase:
PI = 3.14159

Constants are the only permissible global variables. They will be defined at the very top of your program, below your
comments but above all your functions. All other variables you use in DS2000 must be local -- i.e., defined within a
function. (We'll talk more about what this means during week 5 and beyond!)

Here's an example:

PI = 3.14159

def main():

Your code goes here!

Your code goes here!

print("the value of pi", PI)

main()

Strings
In Python, single-quotes and double-quotes are the same. You can use either one, but be consistent throughout an entire
program.

Separate literals and variables using a comma. Don’t use the % string-formatting operator1.

Do this:

1 You'll come across this sometimes because this was the easiest way to print multiple strings or to include numbers in
previous versions of python. (But not in python 3, the version we're using!)

print("Hello", name)

Not this:
print("Hello %s" % name)

Space between expressions
Put an extra space between operators and variables.

Do this:
x = y + 5

Not this:
x=y + 5

Not this:
x = y+5

Do this:
if x == y:

Not this:
if x==y:

Comments
Every program you ever write needs to have comments. Before you write any code, put a block comment at the top of
every program with your name, the course, the assignment, the date, and a short summary of what this program does when
it is run.

''' Felix Muzny

DS2000

Homework 1

September 16, 2022

Introduces me to the DS 2000 course staff.

'''

Comments explaining your code should appear throughout your program. You’ll get the feel of what’s too much or too
little with experience. You don’t need to comment every single time you introduce a new variable (that’s too much!), but
you also don’t want to leave the reader to figure out all your code for themselves (that’s too little!). Typically, you’ll put a
few comments above a block of code that does something interesting.

Comments go above Python statements, not beside them.

Do this:
comment describing my code

python statement

Not this:
python statement # comment describing my code

Put a space between the crosshatch and the comment itself.

Do this:
comment

Not this:
#comment

Code Width
Limit your code to 80 columns or less. In Spyder, by default there will be a vertical line (normally either grey or green)
that shows you where 80 columns is. If you write a comment past this, just use the return key to go to the next line!

If you need to continue a line onto the next one, indent the following line so the spacing makes sense:
spam = long_function_name(var_one, var_two,

var_three, var_four)

You can also use Python line continuation, by putting a backslash (\) where you need the line to carry over:
a = 1 + 2 + 3 + 4 + \

5 + 6 + 7

If you have a long string to store or print, use Python’s linebreak syntax (but only for strings!)
print("In the loveliest town of all, where the houses were white "

"and high and the elms trees were green and higher than "

"the houses, where the front yards were wide and pleasant "

"and the back yards were bushy and worth finding about.")

Vertical Space
Separate groups of logically-tied statements with vertical whitespace. Don’t crowd too many lines together, which makes
your code hard to follow.

list1 = [1, 2, 3, 4]

list2 = [4, 5, 6, 7]

list1 = list2

list1.append(18)

list2.append(17)

print(list1)

print(list2)

One Statement Per Line
Don’t let multiple statements pile up on the same line.

Do this:
if x == y:

print(“equal!”)

Not this:
if x == y: print(“equal!”)

Functions
When calling Python’s built-in functions, leave space before and after the function call, but not within the parentheses:

print('Hello!')

num = random.randint(1, 10)

When calling any function, add a space after the comma separating your arguments, like this:
spam(18, 19, 'hello')

Your own functions should be generic -- write a function to add two numbers, rather than a function to add 3 + 4. Function
names follow the same style as variable names, and the name of a function describes what it does. Try using verbs for
function names.

Here’s an example of a function that prints a given argument plus an extra line break (note that the function name is a
verb):

def print_message(message):

print(message)

print("\n")

Functions should be concise; keep them under 30 lines of code.

Functions should also accept a limited number of parameters; five of them at the absolute max.

You’ll also need to comment every function you write. Function comments should include three things: 1) what does the
function do 2) what are the parameters 3) what does it return, and they should describe the what of a function as well.
Use Python docstrings to comment your functions, like this:

def print_message(message):

"""

Print supplied string message plus an extra linebreak

Parameters:

message - string to print

Returns: nothing

"""

print(message)

print("\n")

In all, you can expect the structure of your programs to look like…

""" Your Name

course

assignment

date

description

"""

EXAMPLE_CONSTANT1 = "value"

EXAMPLE_CONSTANT2 = 37

def example_function1(example_parameter):

"""

Your function comment here

"""

your function code here

def example_function2(example_parameter1, example_parameter2):

"""

Your function comment here

"""

your function code here

def main():

Your code goes here!

Your code goes here!

main()

