Homework 7: Undecidablility \& Complexity

CS 390 - Spring 2009
Assigned: April 10
Due: April 17 (Friday) 3:25 pm

Problem 1

Prove that the following language is undecidable:
$L=\{\langle M\rangle \mid M$ is a Turing machine, and M accepts the string " 000 " $\}$
Hint: Reduce from $A_{T M}$. Your reduction will be similar to the reduction we used to show that REGULAR $R_{T M}$ was undecidable (pg. 191 Sipser): M^{\prime} will filter its inputs and take one action if the input string is "000" and another if the input string is not.

Problem 2

Prove that the following language is undecidable:

$$
L=\left\{\langle M\rangle \mid M \text { is a Turing machine accepting the regular language } 0^{*} 1^{*}\right\}
$$

Hint: Reduce from $A_{T M}$. Your reduction will be similar to the reduction we used to show that $\operatorname{REGULAR} R_{T M}$ was undecidable: M^{\prime} will filter its inputs and take one action if the input string is of the form $0^{*} 1^{*}$ and another if the input string is not. You may need to "flip" the output bit....

Problem 3

Prove that the following language is undecidable:
$L=\left\{\left\langle M_{1}, M_{2}, k\right\rangle \mid M_{1}\right.$ and M_{2} are Turing machines, and $\left.\left|L\left(M_{1}\right) \cap L\left(M_{2}\right)\right| \geq k\right\}$
Hint: You can reduce either from $A_{T M}$ or from $E I N T_{T M}$. If you reduce from $E I N T_{T M}$, think about how you should set k and whether you should flip the output bit or not.

Note: The following language is also known to be undecidable:
$\operatorname{EINT}_{T M}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are Turing machines, and $\left.\left|L\left(M_{1}\right) \cap L\left(M_{2}\right)\right|=\emptyset\right\}$

Problem 4

Show that P and NP are closed under concatenation.
Note: Use determinism to prove that P is closed under concatenation, and nondeterminism to prove that NP is closed under concatenation. Don't forget to prove that your Turing Machines run in polynomial time in each case.

Problem 5

Problem 7.20 from Sipser

Problem 6

Problem 7.21 from Sipser
Hint: Reduce from SAT or 3SAT. You may do so by adding one extra clause to the given formula.

Problem 7 [Difficult]

Problem 7.24 from Sipser

