Homework 2

CS 390 — Spring 2009

Assigned: Fri January 16 Due: Tue January 27 3:25 PM

- 1. Give a regular expression for each of the languages below:
 - (a) $L = \{w | w \text{ contains an even number of 0s} \}$. $\Sigma = \{0, 1\}$
 - (b) $L = \{w | w \text{ is any string except a and b} \}$. $\Sigma = \{a, \dots, z\}$
 - (c) $L = \{w | w \text{ is any string that doesn't contain exactly two a's} \}$. $\Sigma = \{a, \dots, z\}$
 - (d) $L = \{w | w \text{ is a palindrome of length less than four}\}$. $\Sigma = \{a, b\}$
- 2. Problem 1.20 (Regexp membership)
- 3. Problem 1.7 b,e,h (Designing NFAs)
- 4. Problem 1.16 (NFA→DFA conversion)
- 5. Problem 1.28 (regexp→NFA conversion)
- 6. Problem 1.21 (NFA→regexp conversion)

(For this problem, you can use the T1/T2/T3 method given in class; you don't have to use the similar, but slightly different, procedure described in the book.)

7. The following language L is composed of the intersection of two simpler languages L_1 and L_2 . Construct a NFA for each of the two simpler languages and perform the NFA intersection needed to create the NFA for the full language (L). The alphabet for the languages is over $\{0,1\}$.

 $L_1 = \{w | w \text{ either starts with a } 0 \text{ or ends with a } 0 \}.$

 $L_2 = \{w | w \text{ contains an odd number of 0s } \}.$

$$L = L_1 \cap L_2$$

8. Now, do NFA intersection in the general case. Suppose we have two NFAs, NFA₁ = $(Q_1, \Sigma, \delta_1, s_{0,1}, F_1)$ and NFA₂ = $(Q_2, \Sigma, \delta_2, s_{0,2}, F_2)$. Show how to define a "cross-product" NFA whose language is L(NFA₁) \cap L(NFA₂).

Don't solve this problem by converting the machines to DFAs and working there. Define the components of the new NFA (its Q, δ , etc.) directly in terms of the components of NFA₁ and NFA₂.

Hint: Work out a solution without worrying about ϵ -transitions, then figure out how to extend your solution to handle these.