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On the Security of Public Key Protocols 
DANNY DOLEV AND ANDREW c. YAO, MEMBER, IEEE 

Abstract-Recently the use of public key encryption to provide secure 
network communication has received considerable attention. Such public 
key systems are usually effective against passive eavesdroppers, who merely 
tap the lines and try to decipher the message. It has been pointed out, 
however, that an improperly designed protocol could be vulnerable to an 
active saboteur, one who may impersonate another user or alter the 
message being transmitted. Several models are formulated in which the 
security of protocols can be discussed precisely. Algorithms and characteri- 
zations that can be used to determine protocol security in these models are 
given. 

I. INTRODUCTION 

T HE USE of public key encryption [ 11, [ 1 l] to provide 
secure network communication has received consider- 

able attention 121, [7], [8], [lo]. Such public key systems are 
usually very effective against a “passive” eavesdropper, 
namely, one who merely taps the communication line and 
tries to decipher the intercepted message. However, as 
pointed out in Needham and Schroeder [8], an improperly 
designed protocol could be vulnerable to an “active” 
saboteur, one who may impersonate another user and may 
alter or replay the message. As a protocol might be com- 
promised in a complex way, informal arguments that assert 
the security for a protocol are prone to errors. It is thus 
desirable to have a formal model in which the security 
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issues can be discussed precisely. The models we introduce 
will enable us to study the security problem for families of 
protocols, with very few assumptions on the behavior of 
the saboteur. 

We briefly recall the essence of public key encryption 
(see [ 11, [ 1 l] for more information): In a public key system, 
every user X has an encryption function E, and a decryption 
function D,, both are mappings from (0, l}* (the set of all 
finite binary sequences) into (0, l}*. A secure public direc- 
tory contains all the (X, E,) pairs, while the decryption 
function D, is known only to user X. The main require- 
ments on E,, D, are: 

1) E,Dx = D,E, = 1, and 
2) knowing E,(M) and the public directory does not 

reveal anything about the value M. 

Thus everyone can send X a message E,(M), X will be 
able to decode it by forming D,( E,(M)) = M, but nobody 
other than X will be able to find M even if E,(M) is 
available to them. 

We will be interested mainly in protocols for transmit- 
ting a secret plaintext M between two users. To give an 
idea of the way a saboteur may break a system, we 
consider a few examples. A message sent between parties in 
the network consists of three fields: the sender’s name, the 
receiver’s name, and the text. The text is the encrypted part 
of the message. We will write a message in the format: 
sender’s name, text, receiver’s name. 

Example 1: Consider the following protocol for sending 
a plaintext M between A and B: 

a) A sends B the message (A, EB( M), B), 
b) B answers A with the message (B, E,(M), A). 
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This protocol is easy to break by a  saboteur 2  in the 
following way: 

1) 2  intercepts the message sent from A to B in step a). 
2) 2  sends to B the message (2, EB( M), B). 
3) B answers Z  according to the protocol (step b)) by 

(B, E,(M), Z>. 
4) Z  decodes E,(M) to find the plaintext M . 

One  way to overcome the weakness in the above proto- 
col is to encode the name of the sender together with the 
plaintext in the encrypted text. Consider the following 
variation of a  protocol suggested in Needham and 
Schroeder [ 81. 

Example 2: Consider the following protocol (MA de- 
notes concatenation of M  and A): 

a) A sends B the message (A, E,(MA), B), 
b) B answers A by sending (B, EA( MB), A). 

W e  will prove later in this paper  that this protocol is secure 
against arbitrary behavior of the saboteur. What  will hap- 
pen  if one  tries to improve the above protocol by adding 
another layer of encryption? 

Example 3: Consider the following protocol: 

a) A sends B the message (A, E,(E,(M)A), B), 
b) B answers by sending (B, EA ( EA (M) B), A). 

Surprisingly, this protocol is breakable in the following 
way: 

1) 

2) 

2 takes the message sent back from B to A in step b), 
i.e., (4 EA(EA(WB),-4. 
Denote EA( M)B by M , then Z  can extract E,(li;r> 
from the above message. 
Z  initiates a  conversation with A, sending 

3) 

4) 

5) 

(Z J%(J%@~), A), 
according to the protocol (step a)). 
A, as a  receiver, answers Z  by 

(A> E,(Ez(ti)A), Z). 

2  de_codes $!l from the message he  received in step 3). 
As M  = E,(M)B, Z  now possesses E,(M). 
Z  establishes a  new connection and sends to A the 
message 

(z, EA(EA(WZL 4  

6) Now A should answer by (A, E,( E,( M) A), Z). 
7) At this step Z  is able to find the plaintext M . 

The  precise mathematical mode ls will be  defined in the 
ensuing sections. Below we list the basic assumptions on  
the system that we wish to mode l. 

1) In a  perfect public key system, 
a) the one-way functions used are unbreakable; 
b) the public directory is secure and cannot be  

tampered with; 
c) everyone has access to all E,; 
d) only X knows 0,. 

2) 

3) 

4) 
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In a  two-party protocol, only the two users who wish 
to communicate are involved in the transmission pro- 
cess; the assistance of a  third party in decryption or 
encryption is not needed.  
In a  uniform protocol, the same format is used by 
every pair of users that wish to communicate. In the 
three examples given previously, the user’s names 
A, B are symbolic parameters and  can be  any two 
names. 
W ith respect to the behavior of the saboteur, we will 
focus attention on  saboteurs who are “active” 
eavesdroppers. That means someone who first taps 
the communication line to obtain messages and then 
tries everything he  can in order to discover the plain- 
text. More precisely, we will assume the following 
about a  saboteur: 

a>, 
b ! 

c> 

He can obtain any message passing through the 
network. 
He is a  legitimate user of the network, and  thus 
in particular can initiate a  conversation with 
any other user. 
He will have the opportunity to be  a  receiver to 
any user A. (More generally, we allow the possi- 
bility that any user B may become a  receiver to 
any other user A.) 

W e  give a  summary of the results obtained in this paper. 
Two mode ls will be  developed. 

1) The  Cascade Protocols: These are protocols in which 
the users can apply the public key encryption-decryption 
operations to form messages; several layers of such opera- 
tors may be  applied, however. A simple example of cascade 
protocol is given in Example 1. 

2) The  Name-Stamp Protocols: These are protocols in 
which the users are allowed to append,  delete, and  check 
names encrypted together with the plaintext. A name-stamp 
protocol can also contain layers of encryptions (as in 
Examples 2  and  3). 

In Section II we prove that a  cascade protocol is secure 
if and  only if both the following conditions are satisfied: 

1) the messages transmitted between X and Y always 
contains some layers of encryption functions E, or 
E,; 

2) in generat ing a  reply message, each participant A 
(A = X, Y) never applies DA without also applying 
E A’ 

This gives a  simple characterization of security and  also an  
efficient algorithm for deciding whether a  given cascade 
protocol is secure. 

In Section III we give a  polynomial-time algorithm for 
deciding if a  given name-stamp protocol is secure. In 
Section IV we consider the question whether a  saboteur 
can break the protocol without waiting for others to ini- 
tiate a  conversation. This corresponds to the use of items a) 
and  b) only in the previous discussion of the behavior of 
the saboteur. W e  give extensions of the results in Sections 
II and  III to this case. 
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To end this introduction, we remark that other types of 
sabotage activities exist that may defeat the purpose of a 
public-key protocol (or any protocol). We refer the readers 
to Needham and Schroeder [8] for further discussions. The 
problem of sabotage in network communications also arises 
in other context (see Dolev [3], Pease et al. [9]). 

II. CASCADEPROTOCOLS 

In this section we consider a simple class of protocols in 
which the only operations the users employ to generate 
messages are the encryption-decryption operators. Our 
goal is to analyze the security of such protocols against 
saboteurs. To achieve that, we have to develop a formal 
model. We have to specify 1) the syntax of the protocol, 
i.e., what operations the users apply at each step to gener- 
ate a message, and 2) the inference rules that the traitor 
can use to discover the plaintext. 

A. Notation 

Let Z be a finite set of distinct symbols. We use Z* to 
denote the set of all finite sequences composed of the 
symbols in Z; the set Z* also contains the empty string X. 
We define Z+= Z* - (h}, i.e., the set of all nonempty 
words over Z. The concatenation of the words (Y and /3 is 
denoted by @. Let y = ofi be a word, then (Y is called a 
prefix of y, and f3 is a suffix of y. 

The basic properties of the public-key operators are 
E,D, = DIE, = 1, the identity function. As a result, any 
string of operators of the form aE,D,a’ will be equivalent 
to uu’, in the sense that (uE,D,u’)P = (au’) P for all 
P E (0, l}*. We will say that uE,D,u’ (or uD,E,u’) can be 
reduced to uu’. For any string y of operators, let ylx denote 
the complete reduced string obtained from y by deleting all 
E, D, and D,E, pairs iteratively, until no further reduction 
is possible. Denote by 7 the string obtained from y by 
complete reduction with respect to all users X in the 
system, 7 is the reduced form of y. Notice that y], and 7 are 
all unique. 

For convenience we sometimes write D, as Ei, the 
complement of E,. Similarly, E, is also written as 0,‘. Let 
Y = a, w. 1 a, be a word of n symbols, each of which is an 
E or a D. Define 

yc = ai . ai-, . . . . . af. 

The word y ’ is complement of y, and it satisfies yy ’ = y ‘y 
= 1 when y and yc are considered as operators. For any 
string y, let It(y) be the set of symbols in y. 

B. The Model 

Definition I: A two-party cascade protocol T is specified 
by a series of finite strings 

Ei, E {z,, z2, zj)*, l<i<t 

Pi E {zI> ‘2, '4)*? 1 < i < t’, 

where t' = t or t - 1. For each pair of distinct users X and 
Y, let ai(X, Y), p,(X, Y) denote the strings Gi, pi with the 

symbols z,, z2, zs, z4, respectively, replaced by 
E,, E,, D,, 4. 

Clearly, ari(X, Y) E (E,, E,, D,)* and &(X, Y) E 
(E,, E,, D,}*. When user X wants to transmit a secret 
plaintext M to user Y, they exchange message according to 
Tin the following way: 

X sends Y the message (Y, (X, Y)M; 
Y applies p,( X, Y) to the received message and sends it 
to x; 
X applies az( X, Y) to the received message and sends it 
to Y, 
Y applies a( X, Y) to the received message and sends it 
to x; 

Note that the protocol is uniform in that q(A, B) and 
&(A, B), for any users A, B, can be obtained from 
(Y~ (X, Y), pi (X, Y) by substituting X by A and Y by B. For 
convenience, we assume that Ei and Bi are such that 
ai( X, Y), &(X, Y) are in reduced form. 

Definition 2: Let T be a two-party cascade protocol 
specified by {&, b’]l G i G t, 1 <j G t’}, and let X, Y be 
two distinct users. Define 

N,(X, Y) = q(X, Y>, 
Nzj(X, Y> = b”(X, Y)Nzj-,(X> Y>> 1 <j < t’, 

N2r+l(X, Y) = cUi+,(X, Y)N,i(X, Y), 1 < i < t - 1. 
When X wishes to send a plaintext M to Y, the message 
exchanged are then Ni(X, Y)M, where i = 1,2; . ., t + t’. 

Example: Consider the protocol T given by (6, = z2zg, 
p, = z,z4z,z,z4}. One has a,(X, Y) = E,D, and p,(X, Y) 
= E,D,E,E,D,. For a plaintext M, the messages trans- 
mitted are N,(X, Y)M = E,D,M and N,(X, Y)M = 
E,D.E,M. 

So far we have discussed the syntax of the cascade 
protocol. We will now define the notion of security for a 
cascade protocol, i.e., when will a saboteur be able to 
deduce the plaintext M being transmitted between two 
users. We first give a formal definition. Let E be the set of 
all EA and D the set of all DA. Let X, Y, Z denote distinct 
user names. 

Definition 3: Let T be a two-party cascade protocol 
specified by { Ei,, fij}. Define 

z,(Z) = E u {D,), 
Z, = {ai(A, B)] for allA * Band i > 2}, 

Z, = {&(A, B)(forallA * Bandi >, 1). 

We will say that T is insecure if some y E (Z,(Z) u Z, u 
Z,)* exists such that 

Ylv,(X,Y) =A 

for some Ni( X, Y); T is secure otherwise. 
Remark: Clearly, the definition of security for T is inde- 

pendent of the choice of X, Y, Z. 
We now give the motivation behind the definition. Sup- 

pose X is trying to send a plaintext M to Y (using protocol 
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T). The  actual messages transmitted between them are 
then Ni(X, Y)M (i = 1,2,. .. ) and  may fall into the 
hands of the saboteur Z. Taking any Ni( X, Y) M , the 
saboteur Z  has the chance to transform it by repeatedly 
applying any of the following three types of operators: 

a) any u  E Z,(Z); 
b) any u  E 2,: Z  can initiate a  plaintext transmission 

c> 

with a  user B, claiming himself to be  A, and  send any 
string P to B in the (2i - 1)st message; Z  then gets 
back &( A, B)P, effectively putting the operator 
pi (A, B) on  any chosen P; 
any u  E 2,: let u  = q(A, B); there is a  chance that 
A may wish to transmit a  plaintext to B some time  in 
the future; Z  may intercept the (i - 1)st reply from B 
to A, prevent it from reaching A, and  replace it with 
any chosen string P and receive from A the string 
q(A, B)P. 

As a  result, Z  has the opportunity to obtain the string 
yN](X, Y)M for any y E (Z,(Z) U Z, U X3)*. This 
means Z  may deduce M , if yNi ( X, Y) = h  for some 
Y E (q(z) u  x2 u  q>*. 

W e  wish to point out that, in order to obtain ai( A, B) P 
from P, Z  has to wait for A to initiate a  conversation with 
B. It may or may not happen.  Thus our definition of 
security is a  conservative one, in the sense that we are 
concerned with the worst-case possibility. 

C. A Characterization of Secure Protocols 

Definition 4: Let 7~ E {E, D>* be  a  string and A be  a  
user name. W e  say that 7~ has the balancing property with 
respect to A if 

DA E It(r) implies EA E h(r). 
As will be  seen, the balancing property is inherent in secure 
cascade protocols. 

Definition 5’ Let X, Y be  two distinct user names. A 
two-party cascade protocol T  = {&, bj} is a  balanced 
cascade protocol if 

1) for every i > 2, oi( X, Y) has the balancing property 
with respect to X, and  

2) for every i > 1, &(X, Y) has the balancing property 
with respect to Y. 

Remark: W e  emphasize that oi( X, Y), /3,(X, Y) are in 
reduced form for i, j > 1. 

Lemma 1: Let Z  be  a  user name and T  be  a  balanced 
cascade protocol. Then  for every string 11  in (Z,(Z) U Z, 
U &)*, ?j has the balancing property with respect to every 

A * Z. 
The  proof is given in Appendix I. 
W e  are ready now to state and  prove the ma in result of 

this section. Let X, Y be  two distinct user names. 

Theorem 1: A two-party cascade protocol T  = {gi, b,} 
is secure if and  only if 

1) Nq(X, Y>> n  {E,, E,) * 0, and  
2) T  is balanced. 
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Proof: Let Z  be  a  user name distinct from X and Y. 
A) Necessity: Assume that either property 1) or 2) is not 

true. W e  will show that T  is insecure, i.e., y E (Z,(Z) U Z, 
U Z,)* exists such that yNi( X, Y) = X for some i. 

If 1) is not true, then yN,( X, Y) = X where y = af E 
Z,( Z  j*, and we are done. W e  can thus assume that 2) is 
false, i.e., T  is not balanced. By definition, either some 
pk( X, Y) contains D, but not E, or some (ui( X, Y) (i & 2) 
contains D, but not E,. W e  first restrict ourselves to the 
former case (fik contains D, but not E,); the latter case 
will be  treated later. W e  will establish under  this restriction 
the following stronger result. For any 6  E ({E,, E,} u D)*, 
y E (Z,(Z) U {fik(Z, X), Pk(Z, Y)})* exists such that y8 
= A. The  proof will be  carried out by induction on  r, the 
number  of E, and  E, in the string 6. 

If r = 0  then y = 6’ E (Z,(Z))* satisfies the require- 
ment. Now let r > 0  and  assume that the result has been 
established for all smaller values of r. Let 6  be  a  string 
containing exactly r E,‘s and E,‘s. W ithout loss of gener-  
ality, we can assume that the leftmost E is an  E,. Write 
6  = u,E,u,, where lt(u,) n {E,, E,} = 0; clearly, a; E 
(Z,(Z))*. By assumption, Pk(Z, Y) contains D, but not 
E,; hence we can write Pk(Z, Y) = Q-,D,~,, where 7, E 
(E,, Dy}* and  r2 E {E,}*. Clearly, r: E (Z,(Z))* for i = 
1,2. Now a, contains r - 1  E ‘s, and  by the inductive 
hypothesis, y’ E (Z,(Z) U (Pk(Z, X), Pk(Z, Y)})* exists 
such that y’uz = X. Define y = y’~pJ?~(z, Y)QF. Then 
y E (Z,(Z) U {Pk(Z, X), Pk(Z, Y)})* from the above dis- 
cussions. Furthermore, 

-;-s = ~‘T;&(Z, Y)$$u,E,u, 

= y’u, 
= A. 

This completes the inductive step. 
Still to be  shown is that T  is insecure when some 

a;( X, Y) (i 2  2) contains D, but not E,. One  can prove the 
following stronger result: For any 6  E ({E,, E,} u D)*, 
y E (Z,(Z) U {ai(X, Z), cw,(Y, Z)})* exists satisfying y8 
= X. The  proof is almost identical to the previous proof 
and  will not be  repeated. 

B) Sufficiency: Assume that both properties 1) and  2) 
are satisfied; we will prove that T  is secure. 

Suppose, to the contrary, a  y E (Z,(Z) U Z, U Z,)* 
exists such that yNj( X, Y) = X for some i. W e  will derive a  
contradiction. Write yN, (X, Y) = Pa, (X, Y) such that P 
E (Z,(Z) U Z, U Z,)*. By definition of y, we have 

&(x, Y) = A. (1) 
By the definition of a  protocol, h(a,(X, Y)) c 
(E,, D,, E,}. W e  distinguish two cases. 

Case Bl, E, E ft(a,( X, Y)): As the string OL, does not 
contain D,, the only possibility for (1) to hold is that p  
contains some D, but no  E,. This means that P does not 
have the balancing property with respect to Y. As Y f Z, 
this is a  contradiction to Lemma 1. 

Case B2, E, G  h(a,(X, Y)): In this case D, @  
/t( Ly,( X, Y)), because (Y,( X, Y) is in reduced form and the 
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protocol satisfies property 1) in the lemma. This implies 
that (Y,( X, Y) = Ei . Similarly to Case Bl, the only possi- 
bility for (1) to hold is that p contains D, and does not 
contain E,, which again contradicts Lemma 1. 0 

A cascade protocol T is called doubly verified if for some 
i, Zt(Ni( X, Y)) c {Ey, D,, D,) and for some j > 2, 
M$(X Y>> c (4, 4, 4). 

Theorem 2: Every doubly verified protocol is insecure. 

Proof: Let T be a doubly verified protocol such that 

It(&) G {Ey, 4, Dy), (2) 
and 

lt(g,) c (E,, D,, D,). (3) 
(We have used the abbreviations pi for N,( X, Y).) Write 
fl, = a,(X, Y), flk = yka,(X, Y) and N,= y[a,(X, Y), 
where ri E (Z, U Es)*. Suppose T is secure. We will derive 
a contradiction. 

By Theorem 1, T has to be balanced. 
Case 1, E, E Zt(a,(X, Y)): Clearly, (3) demands that 7, 

should contain D, but no E,. This contradicts Lemma 1. 
Case 2, E,E Zt(cy,(X, Y)) and E, G Zt(a,(X, Y)): In 

this case, (2) requires that yk contains D, but no E,, 
contradicting Lemma 1. 0 

Theorem 2 implies that in a secure cascade protocol T, if 
the receiver Y is able to decode the encrypted message M, 
then the sender X cannot obtain M by simply decrypting 
some of the messages sent back to X. That means X should 
not be able to reconstruct M if X has thrown away M after 
the first transmission. This theorem implies that the proto- 
col in Example 1 is not secure (a fact we demonstrated 
before). It also implies that the protocol suggested in Diffie 
and Hellman [2] (the message exchanges being 
Es(DA(M)), EA(DB(M))) for obtaining public-key 
authentication is not secure. 

We wish to emphasize that our security concept is based 
on the assumption that the plaintext M is arbitrary. If the 
structure of M is known and a consistency check can be 
made, then the protocol is no longer considered to be a 
cascade protocol. In the next section, we consider a case in 
which the internal structure of the message can be used to 
achieve security. 

III. NAME-STAMP PROTOCOLS 

In Section I we discussed several protocols that append 
names to the message before the encryption. We will now 
introduce a model that includes such protocols. 

A. Informal Description 

Assume that the names of all users are of the same 
length, say, m bits. For any string y E (0, l}*, we will write 
y = head(y)ta where tail(y) is a suffix of m bits. A 
user Y can apply any of the following operations to a 

string y: 

a) encryption E,; 
b) decryption D,; 
c) appending i,; with i,y = yX, 
d) name-matching d,; with d,y = head(y) if tail(y) = X 

and undefined otherwise; 
e) deletion d, with dy = head(y). 

The name X can be any user’s name, but the only decryp- 
tion Y can apply is D,. The following equations are clearly 
true. For any name X, 

E,D, = D,E, = 1, 

and 
d,i,= di,= 1. 

We remark that i,d, * 1. 
(4) 

Under a name-stamp protocol, any text transmitted by a 
user is obtained by applying a sequence of operations a)-e) 
to the most recently received text. In particular, when a d, 
is applied to a string y, the transmission will not proceed 
unless tail(y) = X. To ensure the completion of the com- 
munication, we will require that any text transmitted be- 
tween two normal users X, Y will be of a form 

y~{E~,D~,i~,d~,dlallusersA}*M 

such that no d, remains after (4) is repeatedly applied. 
As before, a saboteur is allowed to intercept all the texts 

between X and Y, modify them with operations a)-e), and 
use them freely in any conversation, initiated either by him 
or by others. In this fashion he can obtain numerous 
strings y E {EA, DA, i,, d,, dl all A}*M. If any of the 
obtained y can be reduced to M by the repeated use of (4), 
then the saboteur will have succeeded in the quest for M. 

B. Some Notation 

Consider the following set of rules: 
E.&y* A, D,E, -+ A, 

d,i, + X, di, -+ h. (5) 
For any string y E {EA, DA, d,, i,, dl all user A}*, let 7 
denote a string obtained when the rules in (5) have been 
used to reduce y until no further replacement can be made. 
Clearly, yis unique, independent of the order of the reduc- 
tion. Call 7 the reduced form of y. A string y is irreducible 
if 7 = y. 

C. Formal Model 

Definition 6: A two-party name-stamp protocol T is 
specified by a set of strings 

4 E (F - <z,>>*, Bj E (F - <ZI>>* 

where F = {z,, z2,. . . , z9}, 1 < i < t, and 1 6 j < t’(t’ = t 
or t - 1). Let a,( X, Y) and /3,(X, Y) denote the strings Gi 
and bj when z,, z2; 1 *, zg are each replaced by D,, D,, 
E,, E,, ix, i,, d,, d,, d. Let N,(X, Y) = cu,(X,Y), 
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N,(X, y> = P,(X, Y)N,(X, Y), N ,(X, y> = 
as(X, V&(X, n- . ., N2 i(x3 ‘) = PiCx3 y)N2i-,(x3 ‘>> 
Nzi+ ,( X, Y) = (Y~+ ,(X, Y)N,,( X, Y), . . . . W e  require that 
Ni ( X, Y) do  not contain any dA. 

Remark: {Ni(X, Y)M} is the sequence of texts trans- 
m itted between X and Y, when X wishes to send plaintext 
M  to Y. That N, ( X, Y) contains no  dA means the i th 
transmission is well-defined. 

Definition 7: Let X, Y, Z  be  three given distinct users. A 
two-party name-stamp protocol T  is insecure if a  string 
Y E v;,.@xx> 0) exists such that 7  = X; the set V,, r is 
defined by 

V Z,T = {a,(A, B)l all A f B allj > 2) 

U {/3,(A, B)I allA * B, allj} 

U {EA, i,, d,, dl all A) U CD,>. (6) 

Otherwise, T  is secure. 
Remark: The  security of T  in the above definition is 

clearly independent of the choice of X, Y, Z. The  motiva- 
tion for the definition is similar to the cascade case (see 
Section II-B) and  will not be  elaborated. 

D. Examples 

1) Consider the protocol given in Example 2. In the 
present notation, “,(X9 Y) = E,i,, P,(X, Y) = 
E,i,d,D,. W e  also have N,( X, Y) = E,i, and  
N,(X, Y) = E,i,. 

2) The  protocol in Example 3  corresponds to the case 
(Y,(X, Y) 2  E,i,E,, p,(Xy Y) = E,i,i,D,d,D,. W e  
then have N, (X, Y) = E,i,E, and  N,( X, Y) = E,i,E,. 
This protocol is insecure, as the string 

Y = D,dD,P,(Z X)ExizdDzdDzP,(Z X) 

.E,i,J$(X, Y) E VS,T(N,(X, Y> > 
satisfies 7  = A. (This particular y actually corresponds to 
the sequence of operations used by the saboteur in Exam- 
ple 3.) 

E. A Secure Protocol 

W e  now prove that the protocol in Example 2  is secure 
in our mode l. Suppose to the contrary, a  y E 
vg.uYv> y>> exists with 7  = X. W e  will derive a  con- 
tradiction. 

Take such a  y = v,v2 . . . v,Ni( X, Y) with a  m inimum 
number  of vk E V&. Assume i = 1  (the other case i = 2  
can be  treated similarly). From the previous subsection, we 
have Ni( X, Y) = E,i, and  N,( X, Y) = E,i,. Since 7  = 
X, there must be  a  D, in y that cancels the Ey in N, ( X, Y). 
Let vj be  the word that contains this D,, then vj = 
/3,(W, Y) = E,i,d,D, for some W(as D, occurs only in 
j3,. This implies j = 1, otherwise y’ = U,V* . . . v,N, ( X, Y) 
would be  an  instance shorter than y. There are now two 
cases. 

1) If W  * X, then v,N,(X, Y) = E,i,d,ix, and  7  
= v,v* *. . VI-,E,i,d,i, f X. 

2) If W= X, then v,N,(X, Y) = Exi, = N,(X, Y), 
and  hence the string y’ = v,v2 . . . vl- ,N2 ( X, Y) 
satisfies 7’ = 7  = A, contradicting the m inimality of 
Y. 

This completes the proof. 0  

F. An Algorithm for Checking Protocol Security 

W e  will give an  algorithm that can decide if a  given 
name-stamp protocol is secure. In particular, one  can run 
this algorithm to give an  alternative proof of security for 
the protocol 1) in the preceding section. 

G iven a  two-party name-stamp protocol T, specified by 
{ai, fi,}, we will use n  to denote the input length Bilail + 
Z,lp,l. The  rest of this subsection is devoted to a  proof of 
the following theorem. 

Theorem 3: There is an  algorithm that can decide in 
time  O(n8) whether a  given two-party name-stamp proto- 
col T  is secure. 

W e  will prove as an  intermediate step Theorem 4, which 
is of interest by itself. In principle, the saboteur Z  may 
start a  conversation with any user in the network. The  next 
lemma shows that we can assume that Z  only speaks to X 
and Y. This reduction is very useful for constructing an  
algorithm. Let us define 

S = {q(A, B)IA, B E {X, Y, Z}, A * B, i > 2) 

u @ ,(A, B)IA, B E (X, Y, Z),A f B) 
U {EA, i,, d,, dlA = X, Y, Z> U 1%). (7) 

Lemma 2: The  protocol T  is insecure if and  only if a  
string y E S*{&. ( X, Y)} exists such that 7  = X. 

Proof: It suffices to show that, if T  is insecure, then 
such a  y exists. In this situation, let y’ E Vg, &N, (X, Y)} 
be  a  string such that y’ = A. Replace in y’ all the EA, i,, d, 
when A @  {X, Y, Z} by E,, i,, d,, and  let y denote the 
resultinmng. Clearly, 7  = A. Observe also that y E 
S*{N,( X, Y)}, as q(A, B) and  &(A: B) become aj(Z, Z) 
and  &( Z, Z) E S if A, B 6  {X, Y, Z}, and  ai( A’, B’) and  
fii( A’, B’) with A’, B’ E {X, Y, Z), A’ #  B’, otherwise. 0  

Definition 8: Let 17  E {EA, DA, i,, d]A = X, Y}* be  an  
irreducible string. Denote by C(q) the set of all irreducible 
strings 6  E { EA, DA, i,, d,, dl all A}* satisfying & = A. 

Lemma 3: If 17  contains any d, then C(q) = 0. O ther- 
wise, let q  = b,, 6,;. ., b,, then C(q) consists of all the 
strings b,“b,C_ , . . . by, where (EA)’ = DA, (DA)’ = EA, (iA)C 
= d, or d. 

Proof: It follows from the fact that d  has no  left 
inverse, and  the fact that bF  are the only irreducible strings 
satisfying bfb, = A. q  

Write pk = Nk ( X, Y), and  let pi,, piz,. . +, p,> be  those pk 
that do  not contain d. 
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Lemma 4: The protocol T is insecure if and only if a 
string y E S* exists such that 7 E C(pi,) for some 1 6 j < 
s. 

Proof: 
Sufficiency: 

s*m(x, yh 
If y E S* and 7 E C(p,), then y’ = yp;, E 

and 7 = A. Thus T is insecure by Lemma 2. 
~&?ssitv:‘~If T is insecure, then by Lemma 2 a string 

Y’ = Y&ix y> exists with y E S* and 7 = X. This im- 
plies jipk = X, and thus by Lemma 3 7 E C(pi,) for somej. 

0 

We will show the following. 
Proposition I: Given a set of strings S = (h,, h,; . ., hp} 

and a string p, where 

h, E {EAT DA, i,.,, d,, dlA = X, Y, Z>* 
and 

P E {EA, DA, iAlA = X, Y>*, 
one can decide in time O(q7) if a string y E S* exists such 
that 7 E C(p). (q is defined to be Cf,,lhil + IpI.) 

Proposition 1 implies Theorem 3 by the followiug argu- 
ment. Given a protocol T specified by (ai, pi>, we first 
compute N, ( X, Y) and then pi = N, ( X, Y) for all i in time 
O(n*). (Observe that each Nj( X, Y) is of length at most 
O(n).) Consider those pi that contain no d. For each such 
pi, use Proposition 1 to decide if a y E S” exists such that 
jr E C(p,), where S is given by (6). By Lemma 4 the 
protocol is then insecure if and only if such a y for some pi 
exists. The total time is 

O[Z( Cla,l + ClPjl + IPil)‘] = O( Zn7) = OtnS)- 
i j J i 

Proposition 1 remains to be proved. We wilI consider a 
more general setting. 

G. The Extended Word Problem 

Let Z = {a,, u2;.., a,} be an alphabet, i.e., a set of 
distinct symbols. We call u --, v a transformation rule, 
where u E Z+ and v E Z*. Let P ={u, -+ v,, u2 -+ 
V2,’ * -7 uq + v~} be a set of transformation rules. For two 
strings y, 6 E Z*, we will write y ~~6 if y can be trans- 
formed into 6 by repeatedly using rules in P, i.e., replacing 
substrings ui by vi. For a string of subsets Gi of Z, 
v = G,, $2. .-> GqT let L(v) = (YIY = g,, g2,-+-, g,, 
where gi’E Gi}. We will use the notation y m&(q) if 
y H rp for some p E L( 7). The extended word problem for 
(Z, r) can be stated as follows. 

Given a set of input strings S,, 8,; * a, S,,(S, E Z*) and a 
string of subsets TJ = G,, G,; . a, G,(Gi c Z; Gi * 0), de- 
termine if a concantenation A = a,,, a,,,* * +, ais exists such 
that A ~j~L(q). 

Remark: The input length n is defined to be Zi]Si] + 
“,IGjI. 

In general, the extended word problem is known to be 
undecidable because it includes as a special case the mem- 
bership problem for a type-0 language, well-known to be 

undecidable (see, e.g., Hopcroft and Ullman [5]). However, 
we will show that the problem is solvable in polynomial 
time for a special class of the inputs. 

Definition 9: A transformation rule of the form a,a, + h 
is called a cancellation rule. 

Theorem 4: Let Z: be an alphabet and I a set of cancel- 
lation rules. Then the extended word problem for (Z, I?) 
can be solved in time O(n7), where n is the input length. 

Theorem 4 implies Proposition 1 by the following argu- 
ment. Let 

2 = (DA, EA, i,, d,, djA = X, Y, Z}, 
r=(DAEA -X,E,D, +X,d,i, -h, 

di, + AIA = X, Y, Z}. 

The problem stated in Proposition 1 with inputs 
h,, h,; . -7 h,, p can be solved as an extended word prob- 
lem for (Z, I?). The inputs are a,, 6,; * *, 13, and a subset 
string11 = G,,G,;*., G4, where ai = hi and TJ is such that 
L(q) = C(p). The input lengths are linearly related. Thus 
proving Theorem 4 will complete the proof of Theorem 3. 

To prepare for the proof of Theorem 4 we define a few 
terms. Let a,, 6,; 1 ., 8, be the input words in Z*, and let 
II = G,, G,,. . ., G4 be the input sequence of subsets (Gi c 
Z). Without loss of generality, we can assume that aj * X 
for all i. Denote by I, I’ the set of all proper prefixes and 
suffixes of a,, 6,; * ., 8, (including h, but not Si). Let J be 
the set of all substrings of 17 and J, the set of all substrings 
of 17 of length 1. For each w E J, let 

R, = ((8, b)lg E I’, b E I, e E {4,~,,.. ., s,>* 
exists such that geb - r L ( a)}. 

We emphasize that each w E J is of the form 
Gi> Gi+l>. . ‘7 Gj, where G, c Z. 

Lemma 5: R, can be computed in time O(n7). 
The proof is given in Appendix II. 

Proof of Theorem 4: We compute R, for w E J, induc- 
tively on 1 by “dynamic programming.” Initially, we com- 
pute R,. Now let I > 0, and suppose R, have been com- 
puted for all w E J, U J, U . . . U J,- I. For each w E Jj, 
we will compute R,. Let w = Gju. For each g E I’, b E I, 
let us decide if (g, b) E R,. Suppose gaipiZ . . . 6,$b jT 
L(G,u). Since cancellation rules do not create new sym- 
bols, gSi,8iZ . . * Sisb must be of the form pa,p’ for some 
uk E Gj with p jrX and p’ *rL(u). To cover all the 
possible breaking points for p and p’, we employ the 
following procedure: 

1) If g = akg, with ak E Gj, determine if (g,, b) E R,. 
2) For each 8, and each occurrence of a symbol uk E Gj 

in Sj, write 8, = SCI~S’. Determine if both (g, s) E R, 
and (s’, b) E R,. 

3) If b = b,b, with b, E L(w), determine if (g, b,) E 
RA- 

Set (g, b) E R, if any of the above tests yields a “yes” 
answer; otherwise (g, b) e R,. To check that the above 
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procedure correctly determines if (g, b) E R, is easy. To  
find the running time, note that each triplet (w, g, b) takes 
time  at most 

O(lR,I + n(IW  + IRA) + PAI + lR,I + n> 
= O(nlJl . 11’1) = O(n3). 

Thus the time  needed to compute R, for all w E J, is 

O(lJtI . 111  + 11’1) 1  n3  = O(n6). 
The  total computing time  for I = 1,2,. . . , 1~1 is thus 

O(n7). Since the extended word problem has a  solution if 
and  only if (h, X) E R,, the proof of Theorem 4  is com- 
pleted. q  

IV. THE IMPATIENT SABOTEUR 

To break a  protocol that is insecure as defined in the 
previous sections, a  saboteur may need to be  the receiver of 
a  conversation. In this section, we are interested in the 
characterizations (or decision procedures) for protocols 
that can be  compromised by an  impatient saboteur, i.e., one  
who only initiates conversations (and does not rely on  
being spoken to). 

For the name-stamp protocols, this corresponds to a  
mod ification of the definition of security (Definition 7). 
That is, one  should omit the term (a,( A, B)} from the 
definition of V., r (see (6)). 

Theorem 5: An algorithm exists that can decide in time  
0( n8) whether a  given two-party name-stamp protocol T  is 
secure against an  impatient saboteur. 

Proof: The  proof is identical to the proof of Theorem 
3  except that the (q(A, B)) term should be  omitted from 
(7). q  

For the cascade protocols, the definition of security 
(Definition 3) should be  mod ified as follows. T  is insecure 
(against an  impatient saboteur) if some y E (Z,(Z) U IX,)* 
exists such that yNj( X, Y) = A for some Ni( X, Y); T  is 
secure otherwise. W e  can obtain a  characterization similar 
to that in Theorem 1. 

Theorem 6: Let X, Y bedistinct user names. A two-party 
cascade protocol T  = ( Ei, /i,} is secure against an  impatient 
saboteur if and  only if, for every k 2  1, 

1) W ,,(X, Y>> n  (E,, E,) * 0, 
2) Pk(X, Y) has the balancing property with respect to 

Y. 

Although the statement of this result is simple, the proof 
is quite involved. The  rest of this section is devoted to a  
proof of Theorem 6. In the following, a  string always refers 
to a  string of E’s and D ‘s. Let A be  any user name. 

Definition 10: Let q  be  a  string. A substring r of TJ is 
called an  A-substring if one  of the following is true for 
someX,Y*A: 

1) 11  = v,DpDr~; 
2) v = v,Dp; 
3) 77 = 77&?/2. 

A 

205 

Definition 11: A string q  is strongly A-balanced if every 
substring r has the balancing property with respect to A. 
Lemma 6: Let 7  be  strongly A-balanced string. 

1) If 7  = q1D,q2 with B f A, then 77, and  q2  are both 
strongly A-balanced. 

2) If 11  = 9,~~ and EA P lt(q2), then 17, is strongly A- 
balanced. 

Proof: It is easy to see that 7  is strongly A-balanced 
iff every A substring that does not contain any D, for 
B * A has the balancing property with respect to A. This 
implies 1). 

The  balancing property with respect to A is concerned 
with the appearance of EA in case that DA appears. There- 
fore, by removing a  suffix or prefix which does not contain 
EA , we cannot change the balancing property or the strongly 
balanced property. This proves 2). q  

The key idea in the proof of Theorem 6  is the property 
presented in the following lemma. 

Lemma 7: Let y, 6  be  any strongly A-balanced strings 
given in a  reduced form. If 

(It(u) u  It(S)) n  {EA, DA) * 0  

then y8 * A. 

Proof: W e  prove the lemma by induction on  n, the 
number  of DA in the word ~6. 

The  lemma is trivially true for n  = 0. Assume now that 
one  DA appears in y13. W e  will assume that it is in y and  
that 6  contains no  DA. (The case where DA is in 6  can be  
similarly treated.) By assumption, the strings y, 6  are in 
reduced form. Therefore, yS = h  implies that y does not 
contain any EA, which contradicts the balancing property 
of y. The  lemma is thus true for n  = 1. 

For the inductive step, let n  > 1. Assume that the lemma 
holds for every y’, 6’ such that ~‘8’ contains at most n  - 1  
DA’s. Let y, 6  be  such that y8 contains nD,‘s, and  that y, 6  
satisfy the induction hypothesis. W e  wish to prove 2  * X. 

W e  prove by contradiction. Suppose 2  = A. By assump- 
tion y and  6  are in reduced form; thus 6  = yc. It follows 
that y and  8  contain the same number  of operators from 
the set ( EA, DA}. Let us assume that y = y2 DA+ y, where 
h(y,) n (EA, DA} = 0. (The case y = y2E,+yl is similar.) 
In this case S = 8, EA+a2 where 6, = yf and  6, = yi. 

The  string y is strongly A-balanced. Therefore, y2 should 
be  of the form y3EX for some X f A. (Otherwise, y = 
y3DxD,+yl for X * A and where EA @  It(y,), which con- 
tradicts the fact that DA+y, has the balancing property with 
respect to A.) This implies that 6, = D,S, and  6, = yt. 

By Lemma 6  and the fact that Zt(yl) n {EA, DA} = 0, 
we conclude that y3 and 6, are strongly A-balanced. More- 
over, the fact that y = y3 ExDA+y, and  EA G  lt(y,) implies 
that EA E lt(y3), which implies that DA E lt(S,). The  in- 
ductive assumption implies that y23 * A, which is a  con- 
tradiction to our assumption that y8 = h. q  

Lemma 8: Let Z, = (&(X, Y)l for all i and  all users 
X}. If every member  of Z, has the balancing property with 
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respect to Y, then for every string 

v E (2, u E U {DJX* Y>>*, 
7~ is strongly Y-balanced. 

Proof: The proof is very similar to the proof of Lemma 
1 given in Appendix I. The property of being strongly 
balanced is a special case of having the linkage property 
(Appendix I). The proof can be carried along the same line, 
with attention paid to only one party Yin the present case. 

q 

We are now ready to prove Theorem 6. 
Proof of Theorem 6: The necessity part is exactly as 

that of Theorem 1. 
Sufficiency: Assume to the contrary that P E (Z,(Z) U 

Z,)* exists such that for some k 

balancing property with respect to A. Moreover, n does not 
contain any D, with u * A. Let n = D,6D,, where X, Y * A, be 
a substring of D=J.LTJD~. If D, E It(p), then r is A-balanced 
because p satisfies the linkage property. Otherwise, D, should be 
the rightmost D,, n cannot contain D, (as Y * A). 

In this case n = D,S’sD,, where 6 = 6’17, because D, also 
cannot be in n. We have to prove that if 81, contains DA then it 
must contain E,. Assume to the contrary that 61, contains DA 
but no E,. It can be shown that either n or 6’1, should contain 
Da with no E,, because at most one block of DA+ or Ei can be 
cancelled in 61, (since only A-reductions can be done in it). This 
leads to a contradiction of either the assumption that n has the 
balancing property or the assumption that p has the linkage 
property. •1 

Lemma 10: Let T be a balanced cascade protocol. Then every 
string n E (8, u 2, u Es)* has the linkage property. 

PN, = A. 

(We will use the abbreviation Nk for Nk( X, Y).) 
Case A, Zf E, 4 It(p,): Property 2) and Lemma 8 

imply that the string & is strongly Y-balanced. Therefore, 
Fk cannot contain any D,. We thus have &?k = E$ , other- 
wise 1) would not hold. This means p = D$. Now, condi- 
tion 2) states that /3,.(A, X) have the balancing property 
with respect to X, for every A. Therefore, by Lemma 8 Pis 
strongly X-balanced, which contradicts the fact that p = 
0;. 

Proof: For each n E (Z, U 2, U X3)*, write n = w, . ... . 
w,, where each wi is either in Z: or 2, or 8,. One can finish the 
proof by a simple induction on n, the number of words in 7, 
using Lemma 9. 0 

Lemma 11: For any string q and any Z, if n has the linkage 
property, then ?j also has the same property. 

Case B, E, E lt(F,): In this case, by Lemma 8, rk 
and pare strongly Y-balanced. However, Lemma 7 implies 
that 

Proof: It suffices to prove that, if a string has the property, 
then so does the new string obtained by a reduction of any pair 
D,E, or E,D,, for any X. Let n be any string which has the 
linkage property. Assume 

v = v,E,vDxvz. 

which provides the desired contradiction. q 

APPENDIX I 
PROOF OF LEMMA 1 

Let A be any user other than Z. We have to show that every 
substring of Dzq,q2 D, is A-balanced. 

If A = X, then every substring of Dtq,q12D, is A-balanced 
because the corresponding substring of D,qD, is A-balanced. In 
the following, we assume A * X. 

Let D, be the first D, from the right of D,q, other than DA, 
and let D, be the first such D,,( V * A) from the left of TJ*D,. 
Then we can write 

Let Z be a distinguished user name. We will explore the 
structure of strings in (8, u Z, u Es)*, from which we will 
derive Lemma 1. (We use 2, for 2, ( Z) throughout this appendix.) 

Definition: Let 7~ be a string and A be a user name. We say that 
v is A-balanced if the following condition holds: rt = D,SD,, 
where X, Y * A and lt( SIA) n D c (DA) implies that 61, has the 
balancing property with respect to A. 

D,d?z = 4W,E,W,bvd’. 
The fact that n has the linkage property implies that D,6, E,D, 
and D,6, D, are A-balanced. It is then easy to see that D,S,& D, 
is also A-balanced. This completes the proof. 0 

Note that the lemma does not hold in the reverse direction, 
that is, if ?j has the linkage property, it does not imply that n has 
it. 

A string 7 is said to have the l inkageproperty if every substring 
r of D,qD, is A-balanced for all A * Z. 

Lemma 9: Let T be a balanced cascade protocol. Let p be any 
string having the linkage property. For every string n from either 
2: or Z, or Z,, pn and n)~ satisfy the linkage property. 

Example: Let 11 = E,D,E,EYD,DYE,, then ij has the link- 
age property but TJ does not have it. 

Proof: It suffices to prove that ~7 has the linkage property; 
the other case follows by symmetry. Let A * Z be any user of the 
network. We have to show that every substring of D,pqD, is 
A-balanced. 

Consider first the case that TV does not contain DA. In this case 
the number of DA in oJn)la cannot increase, and therefore, every 
substring of D,pqDz is A-balanced since every substring of 
D,p D, is A-balanced. 

Proof of Lemma 1: We have to prove that for every string 
11 E (C, u 2, u x.3)*, the reduced string ?j has the balancing 
property with respect to every A * Z. 

Assume to the contrary that, for some A, -?j does not have the 
balancing property with respect to A. It follows that ?j contains a 
D,., but does not contain any EA. This implies that ?j does not 
have the linkage property. However, ?j must have the linkage 
property by Lemmas 10 and 11. This leads to a contradiction. 0 

APPENDIX II 
PROOF OF LEMMA 5 

Next, assume n contains DA. In this case n should be some The purpose of this appendix is to show that R, can be 
01~ (A, B) or Pk( B, A) for some users A and B. Thus n has the computed in 0(n’) time. (See Section III for notations.) For 
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1=0,1,2;.., let 

Q,={(g,b)~g~Z’,b~Z,3i,,i,;~~,ijwithOdj<l 

such that gSi,6i2 . . . 6;, b  P rX}. 

Clearly, 

R, = It; Q,. (8) I=0 
Define V, = Q,. We  will give a procedure K which generates a 
set V, c Z’ x Z  once V,-, is given. Consider the sequence 
v,, v,, v,, . . . generated by this procedure iteratively. We  will 
show that the sequence (V,} satisfies the following properties: 

Pl) for all I > 0, V, c V,,, and V, E R,; 
P2) for all I B 0, Q, E V,; 
P3) for all I > 111 . IZ’I, V,,, = V,. 

It follows from (8) and Pl)-P3) that 

R, = v,, with 1 = 111 . IZ’I. (9) 

Thus, if we first compute V, = Q,, followed by lZ1 1 /Z’l applica- 
tions of procedure K, we will have obtained the desired R,. The 
time needed to compute V, is easily seen to be O(nlZl . 11’1). Let 
cost (K) denote the maximum running time of procedure K, then 
the total time to compute Rx is O((n + cost( K))lZl . IZ’I) =  
O(n3 + n2 cost(K)). We  will show that cost(K) = 0(n5), thus 
giving a 0( n7) total running time. 

We  now give a description of procedure K. Assume that V,.. , is 
given in a matrix representation of dimension 11’1 x 111, we will 
describe how v/ is generated. 

Procedure K 

We process the pairs (g, b) in I’ X Z one at a time in the 
increasing order of the length s = lgl + I bl. For each (g, b), we 
include (g, b) in V, if it is in V,_ , , and otherwise we execute the 
following steps according to the cases: 

Case 1, lgl =  0, lb/ =  0: 

Step a) For each 1 Q k, j <p, test if both (a,~, -+ X) E l? 
and (S;, 8;) E V,-, where 6, = ais;, Sj = 6,‘~~; let 
(g, b) E V, if the answer is “yes.” 

Step b) For each 1 < j < p and every partition S, = st (s, t 
may be X), test if both (g, s) E V,- , and (t, b) E 
ye ,; let (g, b) E V, if the answer is “yes.” 

Case 2, lg( =  0, b  =  b,u,: 

Step a) For each 1 < k < p, test if both (a,~, + X) E l? 
and(6;, b,) E V,-,,where6, = u,6;; let(g, b) E V, 
if the answer is “yes.” 

Step b) For each 1 Q k < p and every partition 6, = st (s, t 
may be h), test if both (g, s) E V,- , and (t, b) E 
v/- ,; let (g, b) E v( if the answer is “yes.” 

Case 3, g  = u,g,, Ibl =  0: 

Stepa) Foreachl <j<~,testifboth(u,u,-+X)~Fand 
(g,3 S/) E v,- 1, where S, = $‘a,; let (g, b) E v/ if 
the answer is “yes.” 

Step b) For each 1 < k < p  and every partition 6, = st, test 
if both (g,s) E V,-, and (t, b) E V,-,; let (g, b) E 
v/ if the answer is “yes.” 
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Case 4, g  = u,g,, b  =  b,aj: 

Step a) Test if both (uku, + X) E F  and (g,, b,) E V,; let 
(g, b) E V, if the answer is “yes.” 

Step b) For each 1 B k < p  and every partition 6, = st (s, t 
may be A), test if both (g, s) E V,-, and (t, b) E 
V,- ,; let (g, b) E V, if the answer is “yes.” 

Comment:  If (g, b) is not included in V, after these steps, then 
(g, b) @  v,. 

End Procedure K. 

It is easy to check that, for each pair (g, b), the needed time in 
its processing is at most 0( nlZl . 1Z’l) = 0( n3). Thus cost(K) = 
O(n31Z( . IZ’I) =  O(n5). 

We can now complete the proof of the lemma by showing that 
the sequence (V,) satisfies Pl)-P3). We  observe that, whenever a 
(g, b) is added to 6 in procedure K, the conditions give a natural 
construction of a string y E g(S,}*b that can be reduced to A. We  
omit a straightforward proof. This establishes Pl). 

To prove P3), observe that the construction of V, from V,-, 
does not explicitly depend on 1. Thus once we find V, = V,- ,, 
then V, = V,,, = V,,, = . . . This condition must be reached 
for some 14 111  . IZ’I, as at most 111  . IZ’I elements exist in any 6. 
This proves P3). 

We  prove P2) by induction on I. The case I= 0  is trivial, as 
V, = Q,. Now assume that we have proved P2) for all values less 
than I, and we will prove P2) for I (I > 0). 

We  need to show that, for any (g, b) E Q,, one must have 
(g, b) E v/. We  prove this by induction on the value s = lgl + IhI. 
For any s > 0, let us assume that the statement is true for all 
(g, b) with lgl + Ibl < s; we will prove the statement when lgl + 
lb1 = s. There are four cases to be considered, depending on 
whether lgl = 0 and whether lb] = 0. We  will consider the case 
lgl > 0 and IhI z 0, and leave the other three cases as an exercise. 

If (g, b) E Q,- ,, then by induction hypothesis, (g, b) E I’-, 
c V,. We  can thus assume that (g, b) E Q, -- Q,- ,. Write g = 
a,g,, b  = b,u,, and suppose 

~~glSr,Si2 . . S,,b,a, PI-X. 

In a reduction process to A, either the last step is uku, -+ h or the 
cancellation of the leftmost uk is with a symbol a, in some 6,“. In 
the former case (g,, b,) E Q, and, since lg,J + lb,1 <  s, we have 
(g,, b,) E h by induction hypothesis; this means (g, b) will be 
included in V, during the execution of procedure K (Case 4, Step 
a). In the latter case a partition S,” = st exists such that (g, s) E 
Q,- , and (t, b) E Q,- ,; this means (g, b) is added to V, in the 
process (Case 4, Step b). This completes the induction. 

We  have proved P2), and hence Lemma 5. 
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A Modular Approach to Key Safeguarding 
CHARLES ASMUTH AND JOHN BLOOM 

Abstract-A method is proposed for a key safeguarding scheme sacrificing some of this sharpness if there were compensat- 
(threshold scheme) in which the shadows are congruence classes of a 
number associated with the original key. A variation of this scheme 

ing improvements in some other feature, e.g., speed. 
provides efficient error detection and even exposes deliberate tampering. 

The polynomial interpolation method of Shamir [4] is 
Certain underlying similarities of this scheme with Shamir’s interpolation one of maximum sharpness. A set of numbers {x0, x,, . . *, 
method make it possible to incorporate these protective features in that xn} in some field is chosen. A polynomial P of degree r - 1 
method as well. is constructed so that P(x,) = x. The numbers y, = P(x,) 

for i = 1 to n are the shadows. The key is recovered by 
I. INTRODUCTION evaluating a Lagrange interpolating polynomial at x0. As 

W E CONSIDER the following problem. Given a key 
x, one wishes to decompose it into shadows y,, . . . , 

y,, in such a way that the key x is recoverable from any r of 
the y,, but essentially no information is derivable from s or 
any fewer y,. (See [I], also [4].) We will refer to any method 
that accomplishes this as a “key safeguarding scheme.” 
Such schemes are also called threshold schemes and have 
uses other than key safeguarding. 

The value of such a scheme depends on a number of 

we shall see, this method is somewhat sensitive to errors. 
Also, key recovery by the usual interpolation formula 
requires O(r log* r) operations. The modular method of 
this paper requires only O(r) operations. It also is maxi- 
mally sharp. Furthermore, it is easily modified to include 
the option of checking the validity of the shadows before 
recovery of the key. 

II. THE BASIC METHOD 

features. Some of these are A set of integers {p, m, < m2 < . . . < m,} is chosen 
1) the efficiency with which keys are decomposed and subject to the fo11owing’ 

recovered, 
2) the sensitivity of the method to random error or 

deliberate tampering, 
3) the relation between r, s, and n. 

1) (m,, mj) = 1 for i fj, 
2) (p, m;) = 1 for all i, 
3) TIl=Imi > pFI~Z:mn-ii,. 

To have r = s + 1 would be best. This is the sharpest Here, as before, n denotes the number of shadows. Any r 

possible arrangement. However, one might consider shadows will suffice for key recovery. Estimates of the 
density of primes show that one could easily find primes mj 
to satisfy 3). To find composite m; is still easier. Finally, let 
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M = nf= ,& 

TX, December 3, 1980. The decomposition process begins with the key x; we 
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arbitrary integer subject to the condition0 < y < M. Then 
CA. let y, = y(mod mi) be the shadows. 

0018-9448,‘83/0300-0208$01.00 01983 IEEE 


