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Capacity of Wireless Networks

1 (Piyush Gupta & P.R. Kumar, 1998)

In past lectures, we have seen how to obtain the capacity of a link between
a sender and a receiver in both discrete and continuous cases. We have also
seen several techniques to make newtorks out of links in different ways and
environments. It seems natural to ask the question of what is the capacity
of a wireless network.

Such is the subject of the paper by Piyush Gupta and P.R. Kumar. They
present a fundamental result, even though the assumptions of which have
been under criticism, the capacity of a wireless network is not only limited,
but decreases by a function of the number of nodes, regardless of how the
nodes use each other to relay communication.

Theorem 1 When n identical randomly located nodes form a wireless net-
work, the throughput λ(n) obainable by each nodes is Θ(polylog(n)/

√
n)

The proof for the upper bound of the capacity presented here is the same
as in Peraki and Servetto’s paper: On multiflows in random unit-disk graphs
and the capacity of some wireless networks.
Proof: For O(polylog(n)/

√
n):

Consider a 1 by 1 square, in which n points have been set at random. We
assume that if 2 nodes are within a distance rn, a link between them exists,
and therefore they can communicate with a capacity C bits per second1.
Every node s chooses a random node t with which to communicate, creating
a pairing of the n nodes. We wish to find out the capacity each s → t
conversation has.

Taking a 1/2 cut of the square, we expect to have n/2 nodes on each
side of the cut, and therefore, n/4 conversations cross said cut. The number
of links that cross the cut is an upper bound on the capacity of a flow of
bits from s to t.

1This assumption has been cirticized.
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Figure 1: Areas crossing the half-cut

For a communication between s and t to exist, a path from s to t must
exist. For the entire network to be connected, it can be shown that the

minimum value for rn =
√

log n
n

The amount of capacity for each conversation is given by

# of links crossing the boundary
# of conversations

× C

To obtain the number of links crossing the boundary, consider the area
rn units left of the cut. Any node x falling inside this area who has another
node y within rn of it on the other side of the boundary, has a link to y.
So, the expected number of links is the expected area across the boundary
times

(
n
2

)
.

As shown in Figure 1 the area across the boundary starts at 0 when
the node is rn away from the boundary and grows as a function of r2

n as it
approaches the boundary. Integrating, we obtain that the area is cr3

n, and
thus the expected number of links is:

E[# of links crossing the boundary] = cn2 × c′r3
n
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The capacity is then

c
n2r3

n

n
= cn

log n

n

√
log n

n
=

(log n)
3
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√
n

2 Capacity of Wired Networks

A wired network is simply a directed weighted graph G(V,E) such as the
one in Figure 2. The capacity of a conversation from s to t is an instance of
a max-flow, min-cut problem. The central observation is that the capacity
of the network is upper bounded by the sum of the capacities that cross any
cut that has s on one side and t in the other.
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Figure 2: Wired network. The edges’ weight is the link capacity

If any cut of the graph is at least an upper bound for the capacity of
the network, then it would follow in our intuition that the one cut that
minimizes the capacity is the cut that comes closest to the capacity of the
network. In fact, such a cut achieves the capacity of the network as we shall
see.

The idea is to start with some flow, and check if there is a path from s
to t in which the capacity of every link in the path is still greater than the
flow in such link. Then, we increase the flow as much as is possible in such
path and then we update our flow information accordingly (intuitively, we
would remove the path, but we will see this is not the right way to go). If
we do this until we run out of paths to the sink, then we will have found a
min-cut.

(continued in next lecture)
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