1. Organization of Corpora

(a) By Media
 i. Text
 A. Example: Brown corpus (discussed in class).
 ii. Speech (with or without transcriptions)
 A. Example: TIMIT [10]
 B. Designed for developing speech recognition.
 C. 630 speakers, each speaking the same 10 sentences.
 iii. Video

(b) By Language
 i. multilingual parallel corpora

(c) By Content [10, 6]
 i. Many written corpora are news stories.
 ii. Good spoken collections of conversational speech (Switchboard)

(d) By Tagging
 i. POS Tagging
 ii. Categorization
 A. Example: RCV1 and RCV2 [14]
 B. Large collection of Reuters news stories.
 C. Hierarchically categorized.
 D. Used for training and testing text classification systems.
 iii. Treebanks
 iv. Annotation Graphs [1]
 A. Represent all corpus annotations as a directed acyclic graph
 B. Intended for text, audio, pos, treebanks, etc.

2. Major Resources

(a) Linguistic Data Consortium [10]
 i. Academic/Business consortium, led by UPenn
ii. Big collection of corpora, mostly non-free.

(b) Evaluation and Language Resources Distribution Agency (ELDA) [6]
 i. Part of the European Languages Resource Association (ELRA)
 ii. Mainly multilingual (European languages) corpora

(c) International Computer Archive of Modern and Medieval English (ICAME) [7]
 i. English-only (US, UK, historical, others)
 ii. Older than other collections (nothing new since 1999?)
 iii. Includes Brown corpus

(d) NIST Collection of Reuters Corpora [14, 12]
 i. Two large collections (one English, one multilingual) of news stories
 ii. Manually categorized
 iii. Free for research use

(e) British National Corpus [2]
 i. Very large (100 million words) and varied (spoken & written)
 ii. Tagging
 A. C5 tagset (basic) - entire corpus (automatic tagged)
 B. C7 tagset (extended) - 2 million words (manually tagged)
 C. Tagged with CLAWS4 tagger [11]

(f) European Corpus Initiative Multilingual Corpus I (ECI/MCI) [5]
 i. Large, varied topics and languages (mainly European)
 ii. Not free, but cheap (50 euros)

3. Web as Corpus [9]

 (a) Really big (estimate 2000 billion words in 2003)
 (b) Untagged, but good for word usage statistics
 (c) Pages within a site approximate a domain-specific corpus
 (d) Multi-language web pages make up a parallel corpus
 (e) Issues:
 i. Is it representative?
 ii. Rates of incorrect words higher than many traditional corpora
 iii. Search engines don’t return what you want

4. Example Uses

 (a) Corpus-Based Stemming [15]
 i. Objective: Common stemmers are too agressive. A corpus-based
 approach improves precision.
ii. Methodology: Modify aggressive stemming using a corpus-derived similarity value.

iii. Corpora: WEST legal documents, WSJ(87-91) and WSI(91) from TREC.

(b) Corpus-Based Machine Translation [4]
 ii. Methodology: Estimate most probable translation of a word with tri-grams.
 iii. Corpus: Proceedings of Canadian parliament (100 million words French-English).
 iv. Results: 48% acceptable, 5% exactly correct.

(c) Corpus-Based Parsing [13]
 i. Objective: A self-learning parser that may extend itself without relying on extra input.
 ii. Methodology: Generate hypothesis from partial results - choose the ones generated most.
 iii. Corpus: WSJ corpus (for verifying validity).

(d) Corpus-Based Word Sense Disambiguation [8]
 i. Objective: A system that learns to disambiguate using an un-tagged corpus as examples.
 ii. Methodology
 A. Compute closely-related sentence context from a MachineReadable Dictionary
 B. Compare similarities of an appearance of a word with the trained context
 iii. Corpus: Treebank-2
 iv. Lexicon: WordNet
 v. Results: 92% average success rate.

(e) Corpus-Based Tagging [3]
 i. Brill tagger - as discussed in class.

References

