The method of induction can be stated as follows. Let \(S(1), S(2), \ldots \) be a sequence of statements such that a statement \(S(i) \) is either true or false. The Axiom of Induction says:

If \(S(1) \) is true and if \(S(k) \Rightarrow S(k + 1) \) for all \(k > 0 \), then \(S(n) \) is true for all \(n \geq 1 \).

In the above statement, \(S(1) \) is the “base case”, \(S(k) \) is the “induction hypothesis”, \(S(k) \Rightarrow S(k + 1) \) is the “induction statement”, and \(S(n) \) is true for all \(n \geq 1 \) is the “conclusion of the induction”.

Recall that “\&” means “and”. An alternative form is:

If \(S(1) \) is true and if \(S(1) \land S(2) \land \cdots \land S(k) \Rightarrow S(k + 1) \) for all \(k > 0 \), then \(S(n) \) is true for all \(n \geq 1 \).

Here is an example. Recall that \(\lg 7 \) means \(\log_2 7 \).

Given: \(T(n) = 7T(n/2) \)
Induction: \(T(n) \leq n^{\lg 7} \)

Base case: \(T(1) \leq 1^{\lg 7} \) is true.

Show: \(T(k) \leq k^{\lg 7} \) for all \(k \Rightarrow T(r) \leq r^{\lg 7} \)
Proof: \(T(r) = 7T(r/2) \leq 7(r/2)^{\lg 7} = r^{\lg 7} \)

(Note that the inequality “\(\leq \)” follows because \(r/2 < r \) and so we can invoke the induction hypothesis for \(K < r \), where \(k = r/2 \).)

We have satisfied the prerequisites for induction. So \(T(r) \leq r^{\lg 7} \).

Hence, \(T(n) \leq n^{\lg 7} \) for all \(n \)
So, \(T(n) = O(n^{\lg 7}) \).

If we had not been able to guess \(T(n) \leq n^{\lg 7} \) at the beginning, we would have done induction on \(T(n) \leq c_1 n^{c_2} \) for some constant \(c_1 \) and \(c_2 \) that will be decided later. Then we would have written:

\[T(r) = 7T(r/2) \leq 7c_1(r/2)^{c_2} \]

We would then have noted that in order to make \(7c_1(r/2)^{c_2} \leq r^{\lg 7} \), we will now choose \(c_1 = 1 \) and \(c_2 = \lg 7 \).