
A Survey of Heap Allocators in Multithreaded
Processes

Rose Silver

April 28 2023

References

https://dl.acm.org/doi/abs/10.1145/356989.357000

https://www.bsdcan.org/2006/papers/jemalloc.pdf

http://supertech.csail.mit.edu/papers/Kuszmaul15.pdf

Introduction
Using memory in heap is crucial in a lot of programs, and thus allocators are
crucial to the performance of a lot of processes. It becomes even more crucial
when you have multiple threads. While the operating systems include their
own functions for grabbing memory (mmap, for example), mmap is very slow.
Allocators, on the other hand, have the opportunity to be smart and responsible
with memory. However, since the rise of multithreaded programs, the allocator
has been noted to be a bottleneck to performance. This has thus inspired a lot
of work to improve allocators, especially in the implementation of multithreaded
programs. In this paper, I analyze three different allocators–Hoard, JEmalloc,
and Supermalloc. I detail the bottlenecks of allocators in more detail, as well as
overview how each allocator is designed to tackle these bottlenecks. The paper
is focused mostly on design principles, data structures, and algorithms, although
for more information on experimental results, one can consult the papers. In the
next section, I introduce preliminaries, then, I discuss each allocator individually,
and then finally, I compare and contrast all of the allocators.

Preliminaries
Let’s review the basic concepts needed to understand how memory allocation
works.

1



Dynamic Memory Allocation
Recall the memory layout of a process in RAM. In the memory layout, there
is a section for data which includes sections for data used during the program.
The important section of the memory layout for this paper is the dynamic data
section, often referred to as the “heap”. The heap is where a process’s global
variables are stored. At runtime, a process is allowed to both initialize global
variables in the dynamic data section (“on the heap”) and remove them. Both
of these actions are known as dynamic memory allocations, or simply memory
allocations.

One way a user can request pages of memory is via the system call mmap().
The function mmap() takes a number of arguments, such as the address for the
data to be stored, the size of the data to be stored, protections, flags, etc. The
mmap() function does not do anything very clever; it simply finds a segment in
memory that satisfies the requests in the argument. However, mmap has several
drawbacks. For example, mmap() can be quite slow, and even if it was fast,
it requires a lot of decisions from the user. It is also inefficient for allocating
objects that are very small, much smaller than a page.

There is another way to request memory, via a memory allocator. In C, the user
can interact with the memory allocator via the functions malloc() and free().
The function malloc(k) will request k bytes of memory on the heap and return a
pointer, ptr, to the address of the memory. Once a piece of memory is allocated,
it cannot be deallocated (or moved). If a user wants to remove this memory,
they can use the function “free(ptr)” to free this memory. There are a few points
that one can observe at this point. Note that free(ptr) does not indicate the size
of the memory pointed at by ptr, so the allocator needs to determine that on
its own. Under the hood, the memory allocator can interact with the operating
system using mmap, but allocators are generally a lot more clever than this.

Allocator Objectives
A good allocator should strive to do/have the following:

Minimize memory usage. An allocator should strive to use as little memory
as possible. In particular, the amount of memory requested from the operating
system should not be too much bigger than the memory that the user needs to
use. To understand memory usage, it’s important to discuss memory paging
and virtualization. Memory paging is when the computer stores pages in disk
and tries to use it in RAM. It may use more memory than fits in RAM, and
be forced to resort to using swap space. The primary function of swap space
is to substitute disk space for RAM memory when real RAM fills up and more
space is needed. The kernel uses a memory management program that detects
blocks, aka pages, of memory in which the contents have not been used recently.
The memory management program swaps enough of these relatively infrequently
used pages of memory out to a special partition on the hard drive specifically
designated for “paging,” or swapping. This frees up RAM and makes room for

2



more data to be entered into your spreadsheet. Those pages of memory swapped
out to the hard drive are tracked by the kernel’s memory management code and
can be paged back into RAM if they are needed.

Utilize virtualization. Virtualization is a very useful tool for allocators to
save on memory. The operating system has the ability to create new virtual
pages in the page table and to map them to arbitrary positions in physical
memory (so the operating system doesn’t experience any fragmentation at the
page-level granularity). With virtualization, memory could be accounted for
without having to touch any physical pages in RAM. Interestingly, the operating
system can create a virtual page in the page table and lazily wait until later to
allocate that page to physical memory (wait until it gets its first write)—one of
the allocators that will be studied here ends up making use of this (Supermalloc).

Efficiency. It’s important that allocators do not become a time bottleneck to a
running process. The hope is that an allocator should be orders of magnitude
more efficient than calling mmap(). The tricky thing is guaranteeing that
concurrent allocators run about as fast as their state-of-the-art serial allocators.

Good spatial locality. Allocators should want to maintain good data locality.
Spatial locality is the probability of accessing some data (or a storage location)
soon after some nearby data (or a storage location) on the same medium has
been accessed. This is related to false sharing, which will be discussed later. One
wants each thread’s allocations to be in a local region specific to that thread.
This is very helpful for caching.

Core Problems Allocators Face
Before continuing to the next section, it’s important to understand some of the
core problems that allocator designers are up against.

Fragmentation and memory overhead. Fragmentation, a phenomenon
when memory is not utilized efficiently, affects both serial and concurrent alloca-
tors. In particular, a chunk of memory could have multiple unused fragments
that are too small to put any objects in. There are two kinds of fragmentation:
internal fragmentation and external fragmentation. Internal fragmentation is
space wastage caused by padding an object to a larger size. External fragmen-
tation is space wastage due to unallocated space between objects. One famous
result from the theory literature, which does not appear to be covered in these
papers, is that fragmentation is unavoidable in the sense that there exists a
workload that forces any allocator to allocate t bytes of space using Θ(t log t)
memory. Finally, related to fragmentation is space consumption of metadata:
the allocator needs data structures to keep track of where the free space is, how
big each allocator is, etc. This metadata itself can be space inefficient, especially
if the allocations in the system are small.

The following problems are central to concurrent allocators.

Memory blowup. One common thing that allocators do is allocate on a per

3



processor level. But then if processor x allocates, and processor y deallocates,
this can cause an issue where the memory never actually gets freed. In some
implementations of malloc (not the ones here) this can cause an asymptotic
blowup in memory usage as a function of the number of processors. Unbounded
blowup refers to when memory consumption grows without bound while the
memory required is fixed. Better than unbounded blowup is blowup that scales
with P , the number of processors, but unbounded blowup is the worse of two
evils.

Synchronization costs and contention. When talking about concurrency,
one cares a lot about synchronization costs. Synchronization costs refer to
the overhead or additional resources required to coordinate and synchronize
the actions of different processes or threads in a computer system. When
multiple threads or processes are running concurrently and need to access shared
resources, such as memory or I/O devices, they must coordinate their actions
to ensure that they do not interfere with each other. Synchronization costs
can arise due to various factors, such as the need for locking mechanisms to
ensure mutual exclusion and prevent race conditions, the overhead of context
switching between threads or processes, the cost of communication and message
passing between processes or threads, and the delay introduced by waiting for
synchronization primitives like semaphores, monitors, or condition variables. In
general, minimizing synchronization costs is important for improving the overall
performance and scalability of multi-threaded or multi-process systems. However,
achieving efficient synchronization requires careful design and implementation, as
excessive synchronization can lead to contention and performance degradation,
while inadequate synchronization can result in data inconsistency and program
errors.

False Sharing. Lastly, it’s important that allocators don’t induce false sharing
of cache lines. False sharing of cache lines is a performance issue that can
occur in multi-threaded programs when two or more threads access different
variables that happen to be located on the same cache line in memory. A cache
line is a fixed-size block of memory that is loaded into the processor’s cache
when a variable is accessed. If two or more threads access different variables
that happen to share the same cache line, each time one thread modifies its
variable, it will cause the cache line to be invalidated or updated, and the other
thread(s) will have to reload the cache line from memory, even though they didn’t
modify the shared variable. This can result in unnecessary cache thrashing and
reduced performance, especially if the affected cache line is frequently accessed
by different threads. False sharing of cache lines is called “false” because it is not
caused by the threads actually sharing the same variable, but by the way the
variables are laid out in memory and how they are mapped to cache lines. To
avoid false sharing of cache lines, allocators can pad the variables to ensure that
they are located on separate cache lines, using thread-local variables instead of
shared variables where possible, or using specialized libraries or tools that can
detect and mitigate false sharing issues. The problem is that padding induces
an unacceptable amount of internal fragmentation.

4



Hoard
The Algorithm
In this section, I will describe the Hoard allocator and demonstrate how this
allocator is able to (mostly) solve all of the four problems above.

Before an allocator can begin allocating, it must establish some tools. At the
highest level, every processor gets a bundle of its own per-processor heap, and
then every processor shares a global heap. In particular, Hoard allocates 2P + 1
heaps, where P is the number of processors. Heap 0 is the global heap, then
heaps 1, . . . , 2P are for the processors (every processor gets two heaps). Every
thread is then assigned its own thread-local heap. Note that, in general, the
number of threads is not equal to the number of processors. Thus, Hoard uses
a hash function to assign every thread its own heap in an attempt to avoid
multiple threads sharing a single heap. Going a level deeper, every heap contains
two kinds of content: superblocks and statistics. A superblock is a fixed-sized
chunk of memory (of size S). One can think of S as being a multiple of a page
size, and one can think of each heap as having many superblocks. Note that
these superblocks are given to Hoard by the operating system via system calls
such as mmap. Furthermore, a superblock can be divided up into smaller chunks
called blocks, whose sizes are constant within each superblock (but may be
different between different superblocks, more on this later). In addition to a set
of superblocks, each heap has two heap statistics: ui, the amount of memory
actively in use, and ai, the total amount of memory available in the heap.

Hoard uses these tools to allocate memory in the following way. When a thread
calls malloc, Hoard has two properties it must maintain at any time. The first
property is that a thread can only allocate memory from the heap to which it
was prescribed. This means that, if a thread calls malloc, but the thread’s local
heap has run out of free memory, then Hoard will bring in a superblock from the
global heap to the thread local heap to fulfill the thread’s request. If the global
heap does not have any superblocks to donate to the thread’s local heap (i.e. the
global heap has run out of memory), then at this point Hoard will simply ask
the operating system to fetch a superblock of memory. The second property
is that each object is allocated into the best-fitting block in the thread-local
memory, i.e. the minimum-sized block such that it has space to fit the request,
in order to reduce internal fragmentation.

I want to dive deeper here in how the second property is implemented. It’s first
important to note that objects are partitioned into size classes. Within each
heap, each size class has its own designated set of superblocks. For a set of
superblocks within the same size class, the super blocks are partitioned into
fullness groups, where the superblocks in a given fullness group have similar
fullnesses to each other. Each fullness group is then stored as a linked list. This
makes it so that in O(1) time one can (1) tell whether a free causes a super block
to become less than an f -fraction full; and (2) find the fullest superblock out of

5



those available. The reason that one would want to find the fullest super block
out of those available is that, heuristically, this strategy allows for less-full super
blocks to eventually empty out. The point of this strategy is to mitigate external
fragmentation, by hopefully allowing for the entirety of some superblocks to be
freed, so that those superblocks can be repurposed. A few things to note is that,
if the thread wants to allocate a really large item (larger than S/2), then Hoard
will call mmap directly. Also, the superblocks contain metadata at the beginning
of each superblock that keep track of the size of the objects in the superblock.

I now describe how the allocator uses these tools to perform a free. When
a thread calls free, the object’s block within the superblock is freed. If the
corresponding superblock after the free is nearly empty, then the superblock will
be donated to the global heap. In particular, if a local heap is using less than
an f -fraction of available memory in its heap (f is a parameter of the system)
and also the available memory in the heap is larger than KS for some K (also a
parameter of the system), Hoard will donate an f -empty superblock from the
heap to the global heap. Hoard can find f -empty superblocks in constant time
using the concept of “fullness groups”.

Analysis
I am now going to take a step back to talk about how this strategy addresses
the four problems addressed above. The first observation is that, when Hoard
donates superblocks from the local heaps to the global heaps, this reduces blowup.
If Hoard did not do this, then consider the malicious allocation pattern where one
thread only allocates blocks of memory while a different thread only frees. Since
the first thread can only use memory within its own heap, it has to consistently
ask for more memory. If a global heap did not exist, then Hoard would have to
fetch more memory from the system, even though the second thread was sitting
on a large batch of empty memory. As a result, the blowup is decreased. The
second observation is that this strategy reduces false sharing. Note that, the only
way any active/passive false sharing can occur is if a thread allocates memory
to a superblock, the superblock gets passed to the global heap (because there
has been a free or the block is just really empty), and then the superblock gets
passed from the global heap to another thread’s heap, and then that thread uses
that superblock. However, this should seldom happen due to the allocate-fullest
strategy. Finally, note that this algorithm reduces external fragmentation. When
Hoard partitions elements into size classes, and then uses the fullest available
superblock within a given size class (and within a given thread-local heap), the
probability that random accesses hit the same page is increased, and this also is
great for speed as this means that there is less pages, and thus a higher chance
of using the TLB instead of having to look in the page table.

The authors prove a theoretical result bounding their memory blowup as a
function of the number of processors. Let U(t) denote the maximum amount of
memory allocated and in use by the program after memory operation t. Theorem
1: blowup is linear in the number P of processors. If P << U(t), then blowup is

6



constant.

Unfortunately, this theorem is impossible, due to a lower bound that was proven
in Robson’s 1971 paper “An Estimate of the Store Size Necessary for Dynamic
Storage Allocation”, which shows that any allocator must incur Ω(log n) blowup,
where n is the size of memory. The theorem is true for each individual size class,
but is false across all the size classes. The authors dodge this issue by claiming
that the number of size classes is a constant. But it is actually logarithmic, and
by ignoring this the authors are able to ignore a logarithmic factor in their space
blowup.

Finally, it is worth noting that in terms of handling scalability issues, there are
two important ideas that they use: Idea 1: Grabbing a lock for a per-processor
heap should scale well because these should be low contention. Idea 2: Grabbing
a lock for the global heap does have scalability concerns, but the event seldom
happens, and that consequently should also typically have low contention.

JEmalloc
A Brief Overview
JEmalloc is a memory allocator that was introduced to the world six years after
the birth of Hoard. In some ways, it can be thought of as a version of Hoard that
is more technical. The advancements that JEmalloc made on Hoard came from a
few interesting insights about allocators that the author, Jason Evans, had. The
first insight is that, in practice, most memory allocations are being performed
on small objects. Having an efficient memory allocator for small objects is not
only important due to the sheer number of small objects, but also because the
overhead incurred is a much larger ratio compared to the amount of energy it
takes to write the object. The second insight that Evans had is that most users
care about the performance of the memory allocators over long periods of time.
It was thus important to Evans to improve allocators in such a way that their
memory footprint over time is minimized. In particular, JEmalloc first tries to
minimize memory usage, and tries to allocate contiguously only when it doesn’t
conflict with the first goal. The hope was also that, by making this the primary
goal, other secondary and tertiary goals would fall into place; one can begin to
see how this helps with other goals such as increasing data locality, reducing
lock contention, reducing false sharing, and reducing fragmentation.

Evans was interested in observing the empirical performance of his allocator. He
claims that it is actually difficult to measure allocation performance empirically,
and thus it’s hard to tell how well an allocator does in practice. For example,
there could be pathological allocation patterns that cause the allocator to perform
poorly, but it’s not easy to find such patterns in practice. JEmalloc tries to
handle this by doing various experiments.

7



Data Structures and Algorithms
In this section, I will define a few data structures and concepts used by the
JEmalloc algorithm. I hope to peel back the layers of the data structures,
depicting first the larger structures at play and then the smaller ones.

At a high level, just like Hoard, JEmalloc will divide the landscape into arenas,
where each thread is assigned to an arena. It’s worth mentioning now that,
while Hoard uses a hash function to assign threads to arenas, JEmalloc uses a
round-robin algorithm to assign threads to arenas, and these assignments are
made at runtime (during a thread’s first malloc or free). This requires that each
thread has its own thread-local storage where it can keep track of which arena
it is assigned to, but luckily most systems include thread-local storage. Every
arena contains chunks (the superblocks of JEmalloc), which are our next objects
of study.

The next smaller level has to do with the chunks in an arena. A chunk is a
contiguous 2MB piece of memory. All chunks are dished out by the operating
system via system calls like mmap; any chunk-sized memory allocated by the
operating system will be chunk-aligned and aligned with the 0 address. Note
that the large size of the chunk implies that it contains multiple contiguous
pages. There are a lot of similarities between the chunks of JEmalloc and the
superblocks of Hoard. Every arena gets a set of chunks, and these chunks can
be passed around to the global arena or other thread’s arenas. One additional
thing that a chunk has is metadata to keep track of the information within
the chunk; while superblocks only hold objects of one class size, a chunk can
contain multiple different size classes. While multiple size classes per chunk
makes chunks more complicated, this process is simplified due to what is known
as page runs.

At the next smaller level are page runs. A run is a set of consecutive pages
within a chunk. Runs are one of the concepts that massively separates Hoard
from JEmalloc. Runs are carved into chunks via the buddy algorithm. This
means that a chunk is halved into two “buddy” runs, and then each buddy is
halved again and again, until the run is the appropriate size. When a “buddy”
is freed (and the conditions are right) it can meld back together with its buddy
into a larger piece again. Turning our attention back to chunks for a second,
note that the metadata at the beginning of the chunk is to keep track of these
runs. The smallest a run could be is just a few pages. Every run also has a
bitmap to keep track of the free regions within the run.

In order to make sense of the run, one has to understand what size classes are
in the context of JEmalloc. Size classes are just the allowable units of memory
partitioned by the allocator. There are dozens of size classes, and each can be
categorized as small, large, or huge. When memory of size m is malloc-ed by the
program, JEmalloc will ignore the value m and instead pretend the user wrote
m′, where m′ m rounded up to the nearest size class. A size class categorized as
small is anything smaller than a page. A size class categorized as large is one

8



that is a few pages large. Finally, a size class categorized as huge is going to be
memory on the order of the chunk size.

A basic principle for JEmalloc is that each run can only contain one class size,
but a chunk (containing multiple runs) can contain multiple class sizes. Every
chunk has its own local red-black tree for the runs in the chunk. These red-black
trees are somewhat complicated, and one of the things that supermalloc will do
is replace them with simpler data structures (but more on that later). Then
every run has a red-black tree to keep track of the free regions in the run.

Putting the Pieces Together
I will now describe how all of these pieces (arenas, chunks, runs, class sizes, and
metadata) fit together. When a thread calls malloc(m), the allocator assigns a
thread an arena if it has not done so already. Then, the allocator rounds the
object of size m up to the nearest size class m′. If the object is assigned a huge
size class, then the allocator hands off this allocation to the operating system.
The allocator manages this allocation using a red-black tree, a designated data
structure just for huge allocations. Recall that all memory is handled in chunk
sizes, so ultimately the huge object will be assigned chunks. In particular, it is
assigned contiguous chunks. If the object instead falls into the large or small
size class, then the object is assigned to one chunk. Each chunk has metadata
about the runs and the size class of each run. If there is a “current” run with
the object’s size class, and this object can fit in the run, then the object goes in
the first available region in this run. If there are multiple “current” runs with
the object’s size class, the object will go into the fullest of the runs. If there is a
“current” run with the object’s size class, but the object can’t fit in the run, then
another run is used (although the paper does not specify its behavior). If a run
is emptied, and its “buddy” is also emptied, these can be globbed together to
form a bigger run. If a chunk is emptied, it will be returned to the global arena.
Some loose ends not described in the paper include: what happens if there are
multiple chunks that JEmalloc can choose to allocate to. For example, if there
is no “current” run in any chunk what happens? If there is a “current” run in
every chunk, which do you choose?

Further Analysis
It’s clearer to see that when threads are assigned to arenas in a round robin
fashion, instead of by hashing as in Hoard, that the arenas are assigned the
same number of threads, things are just spread out more equally. Also hashing
is difficult. It’s also noted that one could dynamically rebalance but this seems
like there would be a lot of overhead to manage this.

The two important features of JEmalloc that differ from Hoard are as follows.
First, the allocator tries to always use the “current” run if it can, which is good
both as a method to try to reduce external fragmentation (it gives other runs
some time to empty out) and also as a method to create good locality (items that

9



are allocated at nearby points in time are hopefully given nearby allocations).
Second, the allocator has many arenas in order to avoid lock contention, and
allocates threads to these arenas in a very low-overhead fashion (using round
robin instead of hashing).

Note that the original version of JEmalloc used the binary buddy system to
perform allocations for smaller objects. This means that memory is split into
a binary tree, and whenever an object is allocated memory, it is given a full
(power-of-two-size) subtree. The buddy system has the advantage that it can be
implemented using very only 1 bit of metadata per leaf of the tree. Basically, the
important thing is that if two sibling subtrees ever both become free, then they
get merged into being a single larger free subtree. These types of merges ensure
that as frees occur, the freed memory eventually gets chunked back together into
(roughly) the largest chunks that it can be in. The binary buddy system worked
well for small object because the objects were typically power-of-two sized.

The binary buddy system appears to have been removed in later versions (at
least if I am understanding the supermalloc paper correctly), and replaced with
a red-black tree that keeps track of where the freed memory is. Previously, the
red-black tree was used for huge allocations, but now I believe it is used for all
allocations.

Drawbacks: “Evans found that, al- though individual groups of equal-sized
regions might ben- efit from fullest fit, chunks as a whole did not drain as well
because a single “fullest” page could keep a chunk mapped indefinitely”

Supermalloc
The last allocator of focus is Supermalloc, introduced by Kuszmaul in 2015.
Supermalloc is designed to be an allocator for x86 hardware transactional memory
on a 64-bit machine. The biggest principle about 64-bit machines that drives the
design of supermalloc is that, while physical memory is precious, virtual memory
is abundant. This insight drives supermalloc to use virtual memory lavishly
while relying on the fact that not all of virtual memory will be committed to
physical memory at all times. This paper aims to give an overview of the design
principles of the algorithm, but one can read the paper more to understand the
full scope and all corner cases.

Data Structures and Algorithms
Like the other mallocs, Supermalloc allocates chunks of fixed size, and all memory
requests to the system are processed in multiples of the chunk size. However,
unlike mallocs like JEmalloc, Supermalloc will dedicate a chunk to only one size
of objects. Multiple objects of (the same) smaller size will fit into one chunk,
while larger objects will use multiple contiguous chunks. The allocator defers
allocations of very large (huge) size to the operating system using mmap. Similar
to JEmalloc and Hoard, supermalloc has size classes, but these are called small,

10



medium, large, and huge. For every object size, there is a corresponding bin
number which makes lookups into tables a lot easier.

Every chunk has metadata stored at the very beginning. This metadata includes
a heap, which sorts pages by how in-use they are at any moment, and a bitmap,
which, for each object frame, stores a 1 or 0 for whether that frame is storing an
object or not. To select which page to use for a given allocation in a given size
class, supermalloc uses a fullest-fit algorithm within each size class, assigning
objects to the fullest page. Thus, supermalloc needs to keep track of how full
each page is. There are also larger data structures to organize the chunks. There
is a large chunk table, where the entries are the bin numbers, and the value of
each entry is the head of a linked list storing chunks with free space that can
store objects with that bin number. While JEmalloc uses a tree to keep track of
the free spots within chunks, supermalloc just uses an array of bits to keep track
of the free spots within each page. A key observation here is that the bit array
for a given page can be traversed super quickly because one can look at 64 bits
at a time. So the overhead of having a red black tree is (arguably) not necessary.

Within the non-huge size classes, supermalloc does fine-grained size classes. One
of the tricks it does in some size classes is to round objects to have sizes that are
a prime number of cache lines. This avoids associativity conflicts in the cache.
There is a problem where, perhaps these medium-sized objects are not multiples
of the page size. In this case, supermalloc introduces folios, which are a group
of pages together. These folios act as a unit. This is done to reduce internal
fragmentation in this setting and to make uncomitting easier. Finally, there
are large objects. Large objects can range from four pages to half the size of a
chunk.

One interesting optimization that supermalloc makes is that it allocates memory
in very large chunks (2MB) from the OS, and then gradually brings the memory
from that chunk into use. The insight is that, even after the OS has allocated a
2MB virtual chunk of memory, the individual pages don’t actually get created
in the page table until they get touched, so the 2MB chunk allocations do not
actually create bad external fragmentation. One final note to make is that
Supermalloc is optimized to have small critical sections so that transactions will
be able to most likely succeed without concurrency issues causing them to abort.

Comparison of Experiments
All of the allocators evaluate both time and space efficiency. Hoard designs
microbenchmarks that are intended to induce active and passive false sharing.
This allows it to demonstrate how well it avoids false sharing issues. Everyone
claims to be faster and better than the prior work.

Although JEmalloc does not compare itself to Hoard, supermalloc compares
itself to both of them. Supermalloc can in some cases be 2-4 times faster than
Hoarde and JEmalloc. On the other hand, neither Hoard nor JEmalloc seems to

11



be strictly better than the other.

One drawback of supermalloc is that it does not try to solve false sharing and it
does not replicate Hoard’s microbenchmarks intended to evaluate false sharing.
This would be an interesting direction for future work.

Conclusion
One question to be investigated is, what are some different problems the allocators
try to solve? The next is, what are the strengths and weaknesses of each
allocator? In this paper, I also investigate the similarities and differences in the
data structures. Here is a sneak peak of some of those differences: Hoard and
JEmalloc both use multiple arenas for allocation; Hoard never returns memory
back to OS but JEmalloc does; All use O/S memory for large allocations; Hoard
cares about false sharing for small objects. JEmalloc and supermalloc, not so
much. Their stance is that, if a user really cares about this then it is their
responsibility to make sure that they implement and allocate responsibly. “This
decision stands in contrast to allocators, such as Hoard, that try to use temporal
locality to induce spatial locality”; Supermalloc uses hardware transactional
memory instead of locks.; Jemalloc uses red-black trees all over the place, but
supermalloc argues that you can often just replace those with some well-designed
bit maps.

12


	Introduction
	Preliminaries
	Dynamic Memory Allocation
	Allocator Objectives
	Core Problems Allocators Face

	Hoard
	The Algorithm
	Analysis

	JEmalloc
	A Brief Overview
	Data Structures and Algorithms
	Putting the Pieces Together
	Further Analysis

	Supermalloc
	Data Structures and Algorithms

	Comparison of Experiments
	Conclusion

