
Virtualization and Implications for Kernel Design
Matthew Prashker

April 2023

I. INTRODUCTION

Virtualization in computer systems, at a high level, refers
to emulating some physical resource in software and exposing
interfaces to this emulated resource. This notion is very
familiar from the domain of ordinary operating systems
- indeed, the operating system itself can be viewed as
virtualizing memory and the cpu, among other resources, so
that processes running on top of it have a clean interface
to these resources and the illusion that they have exclusive
access to these resources. In the design of operating systems,
it is natural to ask why the virtualization must be at the
level of processes running on an underlying kernel. This
survey will explore another level of the stack to provide
virtualization at, namely between the hardware and the kernel
itself - the piece of software responsible for providing this
level of virtualization is referred to as a hypervisor.

Strong motivation to introduce hypervisors comes from
the modern cloud environment. A basic unit of abstraction
provided by modern cloud services is a virtual machine -
an entirely software based construct designed to emulate a
physical machine. If many of these virtual machine instances
are to be run on a single physical server, there must exist
mechanisms to intelligently multiplex them. For instance,
much like how an operating system provides some level of
performance isolation between processes, in order to create
a robust cloud infrastructure, it needs to be the case that
the performance of an application is not affected by the
performance of another application running on the same
hardware. Other services provided by a hypervisor directly
translate to a more robust cloud environment.

Having introduced this extra layer of abstraction, this
survey will then examine how the design of kernels running
on top of a hypervisor may differ from the design of kernels
meant to run directly on the hardware. Another motivation
for introducing an extra layer of abstraction between the
operating system and the hardware is to reduce complexity.
Indeed, the hypervisor can be made much more lightweight
than a typical kernel, and this complexity can be pushed up
to the level of the guest operating system. This survey will be
organized as follows. In section II we will examine techniques
and performance results of real hypervisor systems spanning
different design choices. In section III we will examine how

II. APPROACHES TO VIRTUALIZATION

This section will explore approaches to virtualize hardware
in order to multiplex between many different guest operating
systems, which are in turn multiplexing between running many
different processes, all on a single machine. There are two
high-level approaches to designing a hypervisors (the software
responsible for the multiplexing), referred to as type 1 and
type 2 hypervisors - the difference depending on whether
the hypervisor itself runs on a host OS on top of the hardware.

We will explore three implementations of hypervisors,
the Xen hypervisor of type 1 in sub-section II-A, and
VMWare’s Workstation and ESX Server, of type 2 and
1, respectively, in section II-B. Regardless of the type of
hypervisor, there are some common desiderata that motivate
the design decisions of hypervisors, and we explicitly list
them here for reference.

Hypervisor Desiderata A - Performance Isolation - A
crucial service hypervisors must provide is to isolate the
performace between different virtual machine’s it is running
- that is, the performance of one VM should not be affected
by the resources being consumed by another VM. Although a
typical operating system does provide some level of isolation
between applications, it is often leaky - i.e. the memory
usage or number of io ops made by one application can affect
the performance of other applications. A common way this
manifests itself it through so called cache pressure - if two
running processes are touching different parts of memory,
then after every context switch, the process will start with a
cold cache.

Hypervisor Desiderata B - Safety Isolation - The memory of
one virtual machine should be completely isolated from the
memory of another virtual machine. This is very similar to
the role a typical OS plays in providing each process with its
own virtual address space. Furthermore, one virtual machine
should not be able to use any system resources on a behalf of
another. This latter property can only be achieved by having
the hypervisor isolate control of resources, such as the disk
and device drivers, from all guest OS’s.

Hypervisor Desiderata C - Near Native Performance
- The extra level of indirection provided by hypervisors
should not increase the latency of applications running on
them compared to the same application running on a standard
OS. Similarly, applications should not need to consume more

1



resources simply because they are running on a hypervisor.

A. Xen and Type 1 Hypervisors

The Xen system, presented in [1], was one of the
first systems to multiplex guest OSs. It is an example of
a type 1 hypervisor, which runs directly on the hardware
without a hosted OS. Xen takes the process level virtualization
of a typical operating system and adds an extra layer of
abstraction by multiplexing the operating system itself.
Usually, in order for application to interface with resources
from the underlying hardware, they trap into the operating
system by making system calls. Analogously, guest operating
systems interface with the underlying hardware by trapping
into the hypervisor by making so-called hypercalls. Instead
of having the hypervisor expose an interface identical to the
underlying hardware to the guest operating systems, Xen
takes an approach called paravirtualization. Here, the idea
is that the source code of the guest operating system may
have to be changed slightly in order to interface with the
hypervisor, but this allows the hypervisor to more seamlessly
interface with multiple guest OSes. The rest of this section
will be divided into two parts - in II-A1 we will look at
the techniques Xen (and other type 1 hypervisors) use to
multiplex resources among guest OSs, and in II-A2 we will
examine the performance results of Xen compared to native
OS performance.

1) Techniques: One of the most important design decisions
of a hypervisor from the point of view of performance is
how the hypervisor communicates with each guest OS. Xen
facilitates this communication through an asynchronous IO
ring The ring itself is a piece of shared memory between
each guest OS and Xen, and both the OS and Xen maintain
two pointers, a producer and consumer pointer, into the ring.
Data itself is not kept in the ring, but rather handles to the
data, similar to unix file descriptors, are kept in the ring.
The guest OS then enqueues tasks, such as reading from a
file or sending a packet over the network, into the queue,
and Xen dequeues tasks and executes them. We note that
this approach is very similar to io-uring, a recent addition to
the linux kernel which allows for asynchronous, in particular
non-blocking, IO requests from user space applications to the
kernel.

A naive approach to virtualize memory would be to
allow the hypervisor to allocate pages to each running OS,
and the OS can manage the pages between different processes
as if it was the only OS running on the machine. However,
this does not provide satisfactory isolation between the
different OSes and therefore violates desiderata B. Instead,
the hypervisor (or VMM) maintains its own page table for the
different OSes, mapping virtual page numbers from the point
of view of each OS to the page numbers allocated to that VM
from the point of view of the hypervisor - this hypervisor
level page table is often referred to as a shadow page table.
Like an ordinary page table in a traditional operating systems,

each page table entry is associated with some privileges. This
extra level of indirection of course leads to extra overhead
- every time the page table of a process running on some
domain on a hypervisor needs to change its page tables, it
not only needs to consult the OS, but it also needs to consult
the underlying hypervisor. This tradeoff between Near Native
Performance (desiderata C) and Safety Isolation (desiderata
B) is ubiquitous in the design of hypervisors. In order to get
closer to near native performance, some hardware vendors
have added support to their chips for exactly this purpose -
i.e. Intel has Extended Page Tables which allow translation
between host virtual address and guest virtual address.

We will explore how the hypervisor is able to virtualize
I/O. Note that one advantage of this approach is that the
underlying disk hardware may be upgraded, without changing
any of the application code. Indeed, the hypervisor can simply
dynamically translate io requests made by the application
code into requests for the new hardware. Simarly, for
networking code, the hypervisor can now play the role of a
virtual switch by rerouting packets to the appropriate virtual
machine running on top of it.

2) Performance: A shocking result of [1] is that adding
this extra layer of software indirection between the kernel and
the hardware does not too dramatically decrease performance
of user space applications. This is suprising in light of
the extra indirection required for an application to execute
a system call. To do so, the user level application must
first trap into the kernel, but before the kernel can execute
privileged instructions, it must inform the hypervisor, which
has permission to call the privleged OS trap handler. When the
trap handler is finished it must again consult the hypervisor
before returning to the user-mode level. The tradeoff is
ultimately one between performance of the overall system
and security in the form of isolation between different guest
OS’s running the on the hypervisor. Furthermore, VMWare
workstation, to be explored in II-B, had 74 percent of the
throughput, reflecting the even greater level of indirection
present in type 2 hypervisors.

To benchmark the overhead, [1] added modifications to
the Linux Kernel to create XenLinux so that it was capable
of running on top of the Xen hypervisor. They then ran an
instance of PostgreSQL and conducted an OLTP benchmark,
which required many synchronous disk IO operations. The
database running on the XenLinux os had 95 percent of
the throughput, as measured in transactions per second, as
the database running on linux on bare metal. It would be
interesting to see a comparison on a benchmark using an
OLAP workload - XenLinux might even perform closer to
linux on bare metal as the reads and writes would be more
sequential so their may be less context switching between
user - kernel - hypervisor modes.

A second class of experiments conducted in [1] aimed

2



to determine the overhead of running multiple VMs on a
single hypervisor versus running many processes on a single
OS. The benchmark used, SPEC WEB99, involved running a
web-server which responds to multiple HTTP requests as well
as writing logs of these requests to disk. Thus the benchmark
tests both network performance and file system performance,
as well as how efficiently the system can schedule tasks,
giving a better overall signal of performance as opposed
to repeatedly stressing just one aspect of the system. The
experiment was conducted with 1, 2, 4, 8, and 16 instances of
the web server. The suprising result was that as the number
of web-servers increased, the performance of the servers on
the Xen VMs, as measured in requests served per second,
approached the performance of the servers running on bare
Linux. We note that each web server on the hypervisor was
run in its own Xen VM instance, while the web servers on
bare Linux were run as concurrent processes.

B. VMWare Workstation and ESX Server

This section will examine two hypervisors, both created by
VMWare, of type 2 and 1, to examine some of the trade offs
and performance characteristics of the two approaches. Both
of these hypervisors were designed to specifically emulate
the x86 instruction set.

1) Workstation and Type 2 Hypervisors: Recall that a type
2 hypervisor runs on top of an actual OS, referred to as the
host OS, and multiplexes other OS’s on top of its, referred
to as guest OS’s. One motivation for VMWare to create the
type 2 hypervisor Workstation in [5] was that emulating the
complete x86 instruction set in software, the architecture
VMWare was targeting, would introduce new substantial
complexity to the entire hardware-software stack. Indeed,
x86 is a CISC architecture and is notoriously complex.
Furthermore, it is not possible to directly emulate the entire
instruction set from a less privileged. One potential advantage
of a type 2 hypervisor, from the point of view of application
development, is that application code can run unmodified, as
the hypervisor can pass through system calls made by the
application to the underlying kernel. However, because the
hypervisor is itself running on an OS, there are more layers
of abstraction in the entire stack than would be present on a
type 1 hypervisor, which will make achieving desiderata C
more challenging.

The architecture of VMWare workstation described in
[5], referred to as a hosted architecture, revolves around
three modules called the VMDriver, the VMApp, and the
VMM . The VMDriver is loaded into the host OS and
is responsible for handling certain privileged instructions
delegated to it by the VMM - it can be thought of as a
special type of device driver. When the VMM needs to
execute a privileged instruction such as performing IO or
receives a hardware interrupt, it performs a world switch to
the host world and gives control back to the host OS, which
actually performs the requested IO. It is important to note that

although the VMM runs in kernel mode, it does not run in
the context of the host OS, and is the module responsible for
actually performing the multiplexing of resources a hypervisor
provides - in particular, there is one VMM instance for each
VM.

One benefit of the hosted architecture approach is that
it allows the overall hypervisor to be much more hardware
independent than a type 1 hypervisor because it is able
to directly leverage the host OS to perform any hardware
dependent instructions. However, this comes at the expense
of the VMM having less control over the hardware resources
because it is being treated just as another user level application
from the point of view of the host OS.

To analyze the performance of Workstation, [5] examined the
latency of sending network packets through a VM running on
it. To better appreciate the performance statistics, we will walk
through the stack of how a guest OS on a VM sends a packet
through a virtual network card (NIC). To emulate a virtual
NIC, there is a special device driver inside the host OS called
the VMNet driver. When the guest OS wants to send a packet,
the VMM will delegate this instruction to the VMDriver,
which will in turn delegate this instruction to the VMApp
running in the context of the host OS. The VMApp will
then make the appropriate system call to the VMNet driver
which then passes the packet to the physical NIC. These extra
layers of indirection will of course add extra overhead to
the throughput of sending packets. Notably, there is an extra
memory copy from the VMM world to the Host World, and
performing a world switch from the VMM into the host OS is
more expensive than a typical trap of a process into the kernel.

The experiment [5] performed involved sustained transmission
of TCP packets. The experiment was set up so that the same
bytes were used in each packet payload, which avoids paging
and disk I/O related performance impacts. On a typical
networking stack of a single OS running directly on the
hardware, this would be an I/O bound task. However, because
of the amount of overhead involved in switching between
VMM and host world, this task actually wound up being CPU
bound. On average, sending a single packet to approximately
31µs. Of that time, 77 percent of it was spent inside of the
VMM, and approximately 9µs was spent context switching
back and forth between the Host and VMM worlds (some of
this latter chunk was spent in the host world, and other in
the VMM). Of the time spent in the VMM, a vast majority
(17.5µs) was spend inside the VMDriver. This overhead is
quite serious, as passing through the VMM must be done on
top of using the network stack of the host operating system,
which would be the bulk of the work without an intervening
hypervisor. The paper [5] does unfortunately not give direct
comparisons with the latency of sending packets in this
latter setup. Although the hosted architecture approach to
hypervisors has a number of advantages, such as hardware
independence (running a VM on a new machine can take

3



advantage of device drivers, for example, in the host OS),
these results show that it is quite far from achieving the near
native performance of Desiderata C.

C. ESX Server and Type 1 Hypervisors

After the introduction of VMWare workstation, WMWare
later released their ESX server, which aims to emulate an
x86 cpu directly - i.e. acts as a type 1 hypervisor. Unlike
the hosted architecture of Workstation, there was no longer
any host operating system that the VMM could rely on to
execute certain privileged instructions - part of what made
this possible was increasing hardware support from vendors
for virtualization. As noted in [6], new hardware capabilities
also allowed for improved performance - a large reason why
ESX server VM’s can approach near native speeds is that the
VMM module takes advantage of dynamic binary translation,
which requires the VMM module to configure the hardware
in certain custom ways, such as adding support for shadow
page tables. The basic architecture of the ESX consists of
several VMMs, each running on top of the ESX hypervisor,
which itself is running directly on the hardware. The VMM,
which aims to provide an emulated x86 environment, uses
much of the same code as the VMM in workstation, with the
hypervisor now playing the role of the host OS.

The novel techniques introduced in [7] involve how to
efficiently share memory between VMs. The techniques used
to virtualize other system aspects such as I/O are very similar
to Xen - because the hypervisor itself manages the physical
device drivers, there is no need to perform world switches
in this hypervisor, which caused most of the overhead in the
virtualization of I/O by workstation. Thus, in the rest of II-C,
we will examine the techniques ESX server uses to manage
memory and how this affects overall performance.

1) Techniques and Performance: The basic data structures
used by ESX server to virtualize memory, similar to Xen,
is maintaining for each VM a mapping from physical page
numbers to machine page numbers. Recall that physical
page numbers are the page numbers the VM believes are
physical but are in fact virtual, while the machine page
numbers refer to real physical pages on the machine. For
optimization purposes, the ESX server also maintains its own
shadow page tables which contain virtual to machine address
translations. This improves performance because the TLB
will now contain mapping from virtual addresses to machine
addresses instead of physical addresses, which avoids the
need for an extra translation from physical to machine address
on TLB hits.

What is novel about how ESX server virtualizes memory is its
method for memory reclamation. The basic design is that the
ESX server will maintain a balloon module within the guest
OS in each VM , which will act similar to a device driver
within that OS. The ESX server maintains an open channel

with this balloon, allowing for efficient and synchronous
communication. The balloon driver communicates each
physical page number directly to the ESX server, which then
translates this physical page number into a machine page
number, and updates its own data structures. This design
allows for much more informed page-replacement policies.
Indeed, the guest OS itself is most informed about what
pages to swap out from its from virtual disk, as opposed to
having the hypervisor itself decide what pages to reclaim
what memory is sparse.

ESX server also introduces a novel page-sharing technique
between different VMs by efficiently recognizing globally
identical pages. It does this by maintaining hashes of the
contents of a page to identify duplicates, and employing
copy-on-write semantics for shared pages. Unlike other
common techniques such as transparent page sharing, this
technique requires no modifications to the guest OS and is
entirely implemented in the hypervisor. A common scenario
where this technique can be used to save physical memory is
that all VMs can now share a single all zero-byte page.

To measure the performance of ballooning, [7] ran a
file server benchmark on a single linux VM running on an
ESX hypervisor. The benchmarks were run with the VM
configured to have main memory of various sizes S, and
with a VM with a large fixed memory size (256)Gb scaled
down by ballooning to S. The results were the ballooned
VMs had slightly higher throughput than the corresponding
non-ballooned VM, despite having a large main-memory
size. To measure the performance of the memory sharing
technique, [7] ran many linux VMS on an ESX hypervisor,
and varied the number of VMs. A SPEC95 (floating point
calculations) benchmark was run. As the number of VMs
went from 1 to 10, approximately 67 percent of the VM
memory was shared.

III. KERNEL ARCHITECTURES

A great consequence of adding a hypervisor as an extra
layer of abstraction between the hardware and the kernel is a
re imagining of the design and role of a typical kernel. Indeed,
as noted in [3], the virtualization of the hardware creates the
illusion that the hardware scales dynamically, for instance by
adding more virtual cpus and memory, or by creating new
instances of virtual machines on top of a hypervisor. This
illusion of infinitely scalable compute and memory resources
lends itself to a more modular design of operating systems.
Indeed, before the introduction of hypervisors, trying to create
modular and application specific kernels ran into the issue of
having to support a wide range of hardware, which led to the
dominance of monolithic kernels. Hypervisors fix this chal-
lenge by providing a clean abstraction for modular operating
systems to be built against. This section will explore some of
these newly unlocked kernel designs, and their implications for

4



computing in an illusory, unconstrained-resource environment,
such as the cloud.

A. Exokernels

1) Design and Motivation: In a similar spirit to the idea
of a hypervisor, the paper [2] introduced the idea of an
exokernel - a kernel design which provides a thinner layer
of abstraction on top of the hardware for applications to run
than is normally provided by a monolithic kernel. This allows
applications to implement their own functionality to manage
resources in a more specialized manner. Applications often
do this by employing modular library operating systems
- custom software which implements various aspects of a
typical OS, such as page-table strategies and networking
protocols. The idea is that applications will link against only
those library operating systems which they need, and the
exokernel will provide a minimal amount of abstraction of
hardware resources that these libraries can run against. This
is in contrast to the situation for monolithic kernels, where
applications typically link against a large library like libc, and
implementations of various OS functionalities are forced upon
them. Furthermore, such a redesign gives the opportunity for
various performance advantages, because various pieces of
kernel functionality can now run in user space.

As motivation for the soundness of this design, consider the
ubiquitous principle in computer system design - the end-to-
end principle - which purports that application logic should be
pushed as close as possible to the application layer itself. This
principle is commonly applied to computer networking, for
example, where lower levels of the networking stack should
not need to understand application level logic. The exokernel
follows this principle, in that the core operating system itself
should not be responsible for knowing about application
level logic. Instead, the exokernel should just provide secure
bindings to hardware resources, and applications can choose
custom library operating systems to use on a specialized basis.

A representative example of how an application may
benefit from such a thinner layer of abstraction comes from
Database Management Systems (DBMS). Such systems often
have a buffer pool of pages for the database, similar to a linux
page cache. However, the database has more information
about what pages to keep in cache, say those relevant for a
given query that is touching a certain database table, than the
OS does. Similarly, the DBMS will be able to make better
informed decisions about what pages to prefetch into memory.
Thus, although it is relatively straightforward for a DBMS
to use a native OS system call like mmap to manage the
transfer of pages from disk to memory and back, the eviction
policy will be far from optimal. Indeed, the performance
harm of using the OS provided mmap mechanism in DBMS’s
is explored in detail in [4].

The rest of this section will examine the implementations
and performance results of the systems Aegis and ExOs, an

exokernel and a library operating system, respectively, built
in [2].

2) Performance: The Aegis exokernel targets the MIPS
instruction set, and was designed to run the ExOs library
operating systems, which user level applications link against.
The authors of [2] compare the performance of various kernel
operations against the monolithic, Unix-based, operating
system Ultrix.

Part of the reason Aegis exhibits superior performance is that,
as with all exokernels, various kernel functionalities such as
managing virtual memory and interprocess communication
are implemented at the user level. For example, the time for
two processes to communicate with each other though a pipe
on ExOs was around 30µs, while for Ultrix it took around
an order of magnitude slower at 300µs.

A potential performance bottleneck for exokernels involves
how they handle hardware exceptions. Typically exception
handlers run in kernel mode, while in exokernels, exception
handling is done in user space, so the exokernel must
propagate the exception up into user space, which may
degrade performance. However, the results from Aegis
suggest that this may not lead to too much overhead. Indeed,
the experiments in [2] show that Aegis takes on average 2µs
to dispatch exceptions to user space, which may or may not
be a bottleneck depending on the overall latency requirements
of a task.

Lastly, an experiment was done to test the performance
of the virtual memory implementations in both systems -
programs multiplying 150 × 150 matrices was run on both
Aegis and Ultrix. Because both systems were running on
the same cpu, this experiment tests the latency of accessing
memory in a semi-sequential pattern. The difference in the
time taken was negligible, taking around 5µs depending on
the exact cpu, suggesting that there is not too much overhead
in application level virtual memory management.

B. Unikernels

1) Motivation: Each Virtual Machine is usually specialized
to run one type of application - i.e. a Database Management
System of a Web Server. Similar to Exokernels, Unikernels
aim to replace the services provided by the operating system
with library operating which application then statically link
against. Note that this has the potential to greatly reduce
the size of the binaries of applications - i.e. any program
currently running in a unix like environment must link against
the entire libc library. However, as opposed to exokernels,
UniKernels are specialized to run a single application type. In
the unikernel approach, applications would only link against
the library operating systems which they actually use. This
is especially important in cloud environments, where saving
resources such as memory usage directly resulting in cost
savings.

5



Configuration of applications now become programmable.
Each running application, i.e. a database or a web-server,
is now treated as a library, and can be configured
programmatically. This has a number of advantages.
Instead of configuring text files and writing shells scripts, the
configuration can take advantage of properties of properties of
the underlying language and compiler, such as type safety and
static analysis, which reduces the potential for configuration
bugs and can also possibly enable dynamic configuration
changes to the application at runtime, which would not be
available in a typical configuration workflow involving editing
text files and shell scripts before the application starts running.

2) Implementation and Performance: The idea in [3]
is to bundle together application code and a runtime at
compile time, and to deploy this bundled virtual machine
image directly on a hypervisor. The authors of [3] built the
Mirage runtime in OCaml, a statically typed language, and
used a Xen-like hypervisor to deploy their unikernel VMs.
In particular, there is no notion of a userspace in a Mirage
unikernel, which can lead to performance improvements such
as reducing the amount of copying for IO.

To examine the network performance of the Mirage
runtime, the authors of [3] built a DNS server unikernel. The
Mirage unikernel outperformed by a factor of around 2 other
DNS servers running on Linux. Aside from raw performance,
the experiments suggests certain ways in which the unikernel
approach may prove to be superior in a cloud envionrment
to typical VMs running on a hypervisor or the exokernel
approach. Firstly, the size of the final deployed unikernel
binaries were much smaller than the size of the corresponding
VM images. For example, the DNS unikernel was 183kb in
size, compared to the 462Mb DNS server running on a Linux
VM - reduing binary size translates to monetary savings on
the cloud and allows for quicker deployments. Secondly, as
an interesting consequence of bundling together the runtime
with the application code, booting a unikernel VM is very
fast compared to booting an OS image. In particular, it is
fast enough to boot and respond to network traffic in real
time, which adds an extra level of granularity at which VM
resources can be deployed and stripped down in a cloud
environment.

IV. CONCLUSION

Virtualization is playing an importantly important role in
modern computing as computation and storage continues to be
outsourced to cloud providers. The techniques and systems an-
alyzed in this survey demonstrate that it is possible to depoloy
safe and performant systems in these virtualized compute en-
vironments. This opens up new possibilities for more modular
kernel designs, as opposed to standard monolithic kernels. The
Unikernel approach in particular is a promising method to
deploy bundled, performant, and light weight applications to

the cloud, especially in resource constrained environments, and
should prove to be a powerful technique in the future.

REFERENCES

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In ACM SIGOPS Operating Systems Review, volume 37,
pages 164–177, 2003.

[2] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel:
An operating system architecture for application-level resource manage-
ment. In Proceedings of the 15th ACM Symposium on Operating System
Principles, pages 251–266, 1995.

[3] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Steven Hand, Jon Crowcroft, Thomas Gazagnaire, and
Steven Smith. Unikernels: Library operating systems for the cloud.
SIGARCH Computer Architecture News, 41(1):461–472, 2013.

[4] Crott Andrew Pavlo Andrew, Leis Victor. Are you sure you want to use
MMAP in your database management system? IEEE Data Eng. Bull.,
37(4):3–7, 2014.

[5] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Vir-
tualizing I/O devices on VMware workstation’s hosted virtual machine
monitor. In 2001 USENIX Annual Technical Conference (USENIX ATC
01), Boston, MA, June 2001. USENIX Association.

[6] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems
Design and Implementation. Prentice Hall, 3rd edition edition, 2006.

[7] Carl A. Waldspurger. Memory resource management in vmware esx
server. In Proceedings of the 5th Symposium on Operating Systems Design
and Implementation, pages 181–194, 2002.

6


	Introduction
	Approaches to Virtualization
	Xen and Type 1 Hypervisors
	Techniques
	Performance

	VMWare Workstation and ESX Server
	Workstation and Type 2 Hypervisors

	ESX Server and Type 1 Hypervisors
	Techniques and Performance


	Kernel Architectures
	Exokernels
	Design and Motivation
	Performance

	Unikernels
	Motivation
	Implementation and Performance


	Conclusion
	References

