
module bank account assembly
Copyright (c) 2017, Gene Cooperman. May be freely distributed

and modified as long as this copyright notice remains.

Joint bank account by husband and wife; Only assembly statements (not C)

are assumed atomic. This version will assert an error when total 6= 120,

even though initially, account = 100, and

cash[“husband”] = cash[“wife”] = 10.

Note that if you remove the labels

w0b, w0c, w1b, d0b, d0c, d1b, then there will be no assertion error.

extends Naturals, Sequences, TLC Sequences required for “procedure” stmt

constant N N is number of iterations. Assign to it in model overview.

--algorithm bank{
variables account = 100, cash = [i ∈ {“husband”, “wife”} 7→ 10],

iterations = [i ∈ {“husband”, “wife”} 7→ N] ;
Note that we need to define iterations[“husband”] and iterations[“wife”].

We do not want a single global variable, iterations, that is

shared between “husband” and “wife”.

In model, replace defaultInitValue by value for iterations

The procedures withdraw and deposit have been translated here

to pseudo-assembly language

Note that “register1” and “register2” were declared as local variables

inside the processes for husband and wife.

procedure withdraw(amount1)
variable register1, register2 ;

{
withdraw start : register1 := amount1 ; lw register1, (amount1)

w0b : register2 := account − register1 ; lw register2, (account) ; sub register2, register2, register1

w0c : account := register2 ; sw register2, (account)

w1: register2 := cash[self] + register1 ; lw register2, (cash[self]) ; add register2, register2, register1

w1b : cash[self] := register2 ; sw register2, (cash[self])

w2: return ;
}

procedure deposit(amount1)
variable register1, register2 ;

{
deposit start : register1 := amount1 ; lw register1, (amount1)

d0b : register2 := account + register1 ; lw register2, (account)

add register2, register2, register1

d0c : account := register2 ; sw register2, (account)

1

d1: register2 := cash[self]− register1 ;
lw register2, (cash[self])

sub register2, register2, register1

d1b : cash[self] := register2 ; sw register2, (cash[self])

d2: return ;
}

process (spouse ∈ {“husband”, “wife”})
variable total ;

{ start : while (iterations[self] > 0) {
We hard-wire the max amount below, but this could have been a constant .

s1: with (amount ∈ 1 . . 2)
call withdraw(amount) ;

s2: with (amount ∈ 1 . . 2)
call deposit(amount) ;

s3: iterations[self] := iterations[self]− 1 ;
total := account + cash[“husband”] + cash[“wife”] ;

} ;
assert iterations[self] = 0 ;

the end : if (iterations[“husband”] = 0 ∧ iterations[“wife”] = 0) {
total := account + cash[“husband”] + cash[“wife”] ;
print total ;
assert total = 120 ;

}
} end process block

} \ * end algorithm

2

