
CS 7400 October 5-7, 2009
Dr. Wand Readings: EOPL3, Secs. 3.6–3.8

Lecture 4: Lexical Addressing

Key Concepts:

variable reference, declaration
scope
lexical scoping
lexical depth, lexical address
shadowing
contour diagram
local, non-local, global variables
scope, binding, and extent
static analysis
lexical address analysis
static environment
nameless environment

1

4.1 Scope, Binding, and Extent

Variables may appear in two different ways: asreferencesor asdeclarations.

A variable reference is a use of the variable. For example, in

(f x y)

all the variables,f, x, andy, appear as references. However, in

(lambda (x) ...)

or

(let ((x ...)) ...)

the occurrence ofx is a declaration: it introduces the variable as a name for some
value.

Corresponding to each declaration of a variablex is a region of the program in
which any use of the variablex refers to that declaration ofx. This is called the
scopeof the declaration. Scoping allows the same name to be reusedfor different
purposes in different parts of a program.

In Scheme, the scope of any declaration is determined by thelexical scope rule:

In (lambda (x1 ... xn) B) or (let ((x1 E1) ... (xn En)) B)

the scope ofx1, . . . ,xn is the bodyB.

This is astaticrule, meaning that one can compute the scopes without executing
the program.

2

To find which declaration corresponds to a given use of a variable, we search
outwardsfrom the use until we find a declaration of the variable.

(let ((x 3) Call thisx1
(y 4)) Call thisy1

(+ (let ((x Call thisx2
(+ y 5)))

(* x y)) Herex refers tox2
x)) Herex refers tox1

Lexical depthtells us how far up we have to travel. In(* x y),

x is bound at lexical depth 0
y is bound at lexical depth 1

Lexical scopes are nested: each scope lies entirely within another scope.

Scoping rules like this are calledlexical scopingrules, and the variables declared
in this way are calledlexical variables.

Under lexical scoping, we can create a hole in a scope by redeclaring a variable.
We say the inner declarationshadowsthe outer one. For instance, in the example
above, the innerx shadows the outer one in the multiplication(* x y).

3

We can illustrate lexical scoping with acontour diagram.

Contour diagram for our simple example:

(let ((x 3)

(y 4))

(+ (let ((x

(+ y 5)))

(* x y))

x))

 x))

(let ((x 3)
 (y 4))

 (+ (let ((x
 (+ y 5)))

 (* x y))

4

A more complicated example

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

Here there are three occurrences of the expression(+ x y z), on lines 5, 7, and
8

At line 5, we are within the scope of the declarations

(x z) at depth 0
(z) at depth 1
(x y) at depth 2

So at line 5,

x is bound at depth 0 and position 0, and refers tox2

y is bound at depth 2 and position 1, and refers toy1

z is bound at depth 0 and position 1, and refers toz2

5

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

At line 7, we are within the scope of the declarations

(x y) at depth 0
(x z) at depth 1
(z) at depth 2
(x y) at depth 3

So at line 7,

x is bound at depth 0 and position 0, and refers tox4

y is bound at depth 0 and position 1, and refers toy2

z is bound at depth 1 and position 1, and refers toz2

6

 (+ x y z))))) ; line 8

(lambda (x y) ; x1, y1

 (let ((z (+ x y))) ; z1

 (lambda (x z) ; x2, z2

 (let ((x (let ((x ; x3, x4

 (+ x y z)) ; line 5

 (y 11)) ; y2

 (+ x y z)))) ; line 7

At line 8, we are within the scope of the declarations

(x) at depth 0
(x z) at depth 1
(z) at depth 2
(x y) at depth 3

So at line 8,

x is bound at depth 0 and position 0, and refers tox3

y is bound at depth 3 and position 1, and refers toy1

z is bound at depth 1 and position 1, and refers toz2

The combination of lexical depth and position is called alexical address.

7

We can classify the variable uses in an expression by where they are bound:

• Local variables are those bound by the immediately enclosing binder (let,
letrec, or lambda).

• Non-localvariables are those bound somewhere else in the expression.

• Freeor globalvariables are those that are not bound in the expression.

For example, in the last line of

(let ((x 5) (y 7))

(let ((a 6) (b 7))

(lambda (u v)

(...))))

u andv are local,a, b, x, andy are non-local, and any other variables are free
(global).

8

The binding of a variable is the value associated with it. Bindings are created
by extend-env, so you can look at the specification to see how the binding is
created. Formal parameters are bound when the procedure is applied:

A variable declared by aproc is bound when the procedure is applied.

(apply-procedure (procedure x e ρ) v)

= (value-of e [x=v]ρ)

A let-variable is bound to the value of its right-hand side.

(value-of (let-exp x e1 e2) ρ) =

(let ((v (value-of e1 ρ)))

(value-of e2 [x=v]ρ)))

A variable declared by aletrec is bound using its right-hand side as well.

(value-of (letrec-exp p x e1 e2) ρ)

= (value-of e2 (extend-env-recursively p x e1 ρ))

9

Theextentof a binding is thetime intervalduring which the binding is maintained.

In our little language (as in Scheme), all bindings havesemi-infiniteextent, mean-
ing that once a variable gets bound, that binding must be maintained indefinitely
(at least potentially). This is because the binding might behidden inside a closure
that is returned.

In languages with semi-infinite extent, the garbage collector collects bindings
when they are no longer reachable. This is only determinableat run-time, so
we say that this is adynamicproperty.

If we didn’t allow proc’s to appear as the body (or value) of alet, then the
let-bindings would expire at the end of the evaluation of thelet body. This is
calleddynamicextent, and it is astatic property. Because the extent is a static
property, you can predict exactly when a binding can be discarded. (“Dynamic”
sometimes means “during the evaluation of an expression” and sometimes means
“not calculable in advance.” Sorry– I didn’t make this up.)

10

4.2 Lexical Address Analysis

We’ve seen how we can use interpreters to model the run-time behavior of pro-
grams. We now introduce a new theme to the course: how to use the same tech-
nology toanalyzeor predict the behavior of programs without running them.

We will do three kinds of predictions:

1. First, we will do alexical address analysis. This analysis will predict, at
analysis time, where in the environment each identifier willbe found at run
time. We will see that the analyzer looks like an interpreter, except that
instead of passing around an environment, we pass around astatic envi-
ronment, which associates with each identifier whatever we know statically
about it.

As a result of the lexical address analysis, we will be able totranslate our
programs into a variable-free form, in which every variablereference is re-
placed by an address in the environment, and we can replace our interpreter
by one that uses these addresses instead of identifiers.

2. In Lecture 6 we will dotype analysis. Most languages divide up their ex-
pressed values intotypes. The type of a value determines what operations
are appropriate on that value. We will analyze our programs to ensure that
no operation is ever performed on inappropriate data.

This analysis will enable us to reject programs that are “dangerous,” that is,
those programs thatmightperform an inappropriate operation.

3. Then in lecture 7, we will use the same kind of analysis to establish ab-
straction boundaries in programs and reject those programsthat violate the
abstraction boundaries.

11

4.2.1 Eliminating Variable Names

Execution of the scoping algorithm may then be viewed as a journey outward from
a variable reference to its matching declaration

We could, therefore, get rid of variable names entirely, andreplace variables with
their lexical depths.

For example, we could replace the Scheme expression

(lambda (x)

((lambda (a)

(x a))

x))

by something like:

(nameless-lambda

((nameless-lambda

(#1 #0))

#0))

Eachnameless-lambda declares a new anonymous variable, and each variable
reference is replaced by its lexical depth; this number uniquely identifies the dec-
laration to which it refers. These numbers are calledlexical addressesor deBruijn
indices.

12

This way of recording the information is useful because the lexical addresspre-
dicts just where in the environment any particular variable will be found.

Consider the expression

let x = e1

in let y = e2

in -(x,y)

in our language. In the difference expression, the lexical depths ofy andx are 0
and 1, respectively.

Now assume that the values ofe1 ande2, in the appropriate environments, arev1

andv2. Then the value of this expression is

(value-of

<<let x = e1

in let y = e2

in -(x,y)>>

ρ)

=

(value-of

<<let y = e2

in -(x,y)>>

[x=v1]ρ)

=

(value-of

<<-(x,y)>>

[y=v2][x=v1]ρ)

so that when the difference expression is evaluated,y is at depth 0 andx is at depth
1, just as predicted by their lexical depths.

13

If we use a data-structure representation of environments like we did for LET, then
the environment will look like

x v1

saved−env

v2y

so that the values ofx andy will be found by taking either 1 cdr or 0 cdrs in the
environment, regardless of the valuesv1 andv2.

14

Same thing works for procedure bodies. Consider

let a = 5

in proc (x) -(x,a)

In the body of the procedure,x is at lexical depth 0 anda is at lexical depth 1.

The value of this expression is

(value-of

<<let a = 5

in proc (x) -(x,a)>>

ρ)

=

(value-of

<<proc (x) -(x,a)>>

(extend-env a 5 ρ))

=

(procedure x <<-(x,a)>> [a=5]ρ)

The body of this procedure can only be evaluated byapply-procedure, say

(apply-procedure

(procedure x <<-(x,a)>> [a=5]ρ)

7)

=

(value-of

<<-(x,a)>>

[x=7][a=5]ρ)

So again every variable is found in the environment at the place predicted by its
lexical depth. If we had multiple arguments, then we’d have to keep track of the
position, too, but that’s also static.

15

4.2.2 Implementing Lexical Addressing

We now implement the lexical-address analysis we sketched above. We write
a proceduretranslation-of-program that takes a program and removes all
the identifiers from the declarations, and replaces every variable reference by its
lexical depth.

For example, the program

let x = 37

in proc (y)

let z = -(y,x)

in -(x,y)

is translated to

#(struct:a-program

#(struct:nameless-let-exp

#(struct:lit-exp 37)

#(struct:nameless-proc-exp

#(struct:nameless-let-exp

#(struct:diff-exp

#(struct:nameless-var-exp 0)

#(struct:nameless-var-exp 1))

#(struct:diff-exp

#(struct:nameless-var-exp 2)

#(struct:nameless-var-exp 1))))))

Will then write a new version ofvalue-of-program that will find the value of
such a nameless program, without putting identifiers in the environment.

Implementation is atinterps/lecture04/lexaddr-lang

16

4.2.3 The Translator

We are writing a translator, so we need to know the source language and the
target language. The target language will have things likenameless-var-exp

andnameless-let-exp that were not in the source language, and it will lose
the things in the source language that these constructs replace, likevar-exp and
let-exp.

Add to the SLLGEN grammar:

(expression ("%lexref" number) nameless-var-exp)

(expression

("%let" expression "in" expression)

nameless-let-exp)

(expression

("%lexproc" expression)

nameless-proc-exp)

We use names starting with% for these new constructs because that is normally
the comment character in our language.

Our translator will reject any program that has one of these new nameless con-
structs (nameless-var-exp, nameless-let-exp, ornameless-proc-exp), and
our interpreter will reject any program that has one of the old nameful constructs
(var-exp, let-exp, or proc-exp) that are supposed to be replaced.

17

To calculate the lexical address of any variable reference,we need to know the
scopes in which it is enclosed. This is acontextargument.

Sotranslation-of-expression will take two arguments: an expression and a
static environment. The static environment will be a list of identifiers, representing
the scopes within which the current expression lies. The variable declared in the
innermost scope will be the first element of the list.

For example, when we translate the last line of the example above, the static en-
vironment should be

(z y x)

So looking up an identifier in the static environment means finding its position in
the static environment, which gives a lexical address: looking upx will give 2,
looking upy will give 1, and looking upz will give 0.

Entering a new scope will mean adding a new element to the static environment.
We introduce a procedureextend-senv to do this.

[Puzzle: how would this change if we had multiple arguments or multiple decla-
rations?]

18

Since the static environment is just a list of identifiers, these procedures are easy
to implement:

senv = (list-of symbol)

lexaddr = N

empty-senv : () -> senv

(define empty-senv

(lambda ()

’()))

extend-senv : sym * senv -> senv

(define extend-senv

(lambda (x senv)

(cons x senv)))

apply-senv : senv * sym -> lexaddr

(define apply-senv

(lambda (senv x)

(cond

((null? senv)

(eopl:error ’translation-of

"unbound variable in code: ~s" x))

((eqv? x (car senv))

0)

(else

(+ 1 (apply-senv (cdr senv) x))))))

19

For the translator, we have two procedures,translation-of, which handles ex-
pressions, andtranslation-of-program, which handles programs.

We are trying to translate an expressione which is sitting inside the declarations
represented bysenv. To do this, we recursively copy the tree, except that

1. Everyvar-exp is replaced by anameless-var-exp with the right lexical
address, which we compute by callingapply-senv.

2. Everyproc-exp is replaced by anameless-proc-exp, with the body trans-
lated with respect to the new scope, represented by the static environment
(extend-senv x senv).

3. Everylet-exp is replaced by anameless-let-exp.

The two subexpressions are each translated in an appropriate scope.

20

translation-of : expression * static-environment

-> nameless-expression

(define translation-of

(lambda (exp senv)

(cases expression exp

(var-exp (var)

(nameless-var-exp

(apply-senv senv var)))

(proc-exp (var body)

(nameless-proc-exp

(translation-of body

(extend-senv var senv))))

(let-exp (var rhs body)

(nameless-let-exp

(translation-of rhs senv)

(translation-of body

(extend-senv var senv))))

(const-exp (num) (const-exp num))

(diff-exp (exp1 exp2)

(diff-exp

(translation-of exp1 senv)

(translation-of exp2 senv)))

... other cases of source language are similar

(else (eopl:error ’translation-of

"Illegal source expression ~s" exp))

)))

21

The proceduretranslation-of-program simply runstranslation-of in a
suitable initial static environment.

translation-of-program : program -> nameless-program

(define translation-of-program

(lambda (pgm)

(cases program pgm

(a-program (e)

(a-program

(translation-of e (init-senv)))))))

init-senv : () -> static-environment

(define init-senv

(lambda ()

(extend-senv ’i

(extend-senv ’v

(extend-senv ’x

(empty-senv))))))

22

4.2.4 The nameless interpreter

Our interpreter takes advantage of the predictions of the lexical-address analyzer
to avoid explicitly searching for variables at run time.

Since there are no more identifiers in our programs, we won’t be able to put iden-
tifiers in our environments, but since we know exactly where to look in each en-
vironment, we don’t need them!

Our top-level procedure will berun:

(define run

(lambda (string)

(value-of-program

(translation-of-program

(scan&parse string)))))

23

Instead of having full-fledged environments, we will have nameless environments,
with the following interface:

nameless-environment? : val -> bool

empty-nameless-env : () -> nameless-env

empty-nameless-env? : nameless-env -> bool

extend-nameless-env : expval * nameless-env -> nameless-env

apply-nameless-env : nameless-env * lexaddr -> expval

We can implement a nameless environment as a list of expressed values, so that
apply-nameless-env is simply a call tolist-ref.

For example, at the last line of our example

let x = 37

in proc (y)

let z = -(y,x)

in -(x,y)

the nameless environment will look like

value of z value of y value of x

saved−env

24

nameless-environment? : scheme-value -> bool

(define nameless-environment? (list-of expval?))

empty-nameless-env : () -> nameless-env

(define empty-nameless-env

(lambda ()

’()))

empty-nameless-env? : nameless-env -> bool

(define empty-nameless-env? null?)

extend-nameless-env : expval * nameless-env -> nameless-env

(define extend-nameless-env cons)

apply-nameless-env : nameless-env * lexaddr -> expval

(define apply-nameless-env

(lambda (nameless-env n)

(list-ref nameless-env n)))

25

Having changed the environment interface, we need to look atall the code that
depends on that interface. There are only two things in our interpreter that use
environments: procedures andvalue-of.

The revised specification for procedures is just the old one with the variable name
removed.

(apply-procedure (procedure e ρ) v)

= (value-of e (extend-nameless-env v ρ))

We can implement this by defining

procedure : nameless-expression * nameless-env -> proc

(define-datatype proc proc?

(procedure

(body expression?)

(nameless-env nameless-environment?)))

apply-procedure : proc * expval -> expval

(define apply-procedure

(lambda (proc1 v)

(cases proc proc1

(procedure (e saved-nameless-env)

(value-of e

(extend-nameless-env v saved-nameless-env))))))

26

value-of will be like before, except

• we omit the cases forvar-exp, let-exp, andproc-exp

• replace them with new cases fornameless-var-exp, nameless-let-exp,
andnameless-proc-exp

A nameless-var-exp gets looked up in the environment.

A nameless-let-exp evaluates its right-hand sidee1, and then evalutes its body
e2 in an environment extended by the value of the right-hand side. This is just
what an ordinarylet does, but without the identifiers.

A nameless-proc-exp produces anameless-proc, which is then applied by
apply-procedure.

27

value-of : nameless-expression * nameless-environment

-> expval

(define value-of

(lambda (exp nameless-env)

(cases expression exp

(const-exp (num) ...as before...)
(diff-exp (e1 e2) ...as before...)
(zero?-exp (e1) ...as before...)
(if-exp (e1 e2 e3) ...as before...)
(call-exp (e1 e2) ...as before...)

(nameless-var-exp (n)

(apply-nameless-env nameless-env n))

(nameless-let-exp (e1 e2)

(let ((val (value-of e1 nameless-env)))

(value-of e2

(extend-nameless-env val nameless-env))))

(nameless-proc-exp (e)

(proc-val

(procedure e nameless-env)))

(else

(eopl:error ’value-of

"Illegal expression in translated code: ~s" exp))

)))

28

Last, here’s the newvalue-of-program:

(define value-of-program

(lambda (pgm)

(cases program pgm

(a-program (e)

(value-of-expression e (init-nameless-env))))))

And we’re done.

29

