CS 7400 October 5-7, 2009
Dr. Wand Readings: EOPL3, Secs. 3.6-3.8

Lecture4: Lexical Addressing

Key Concepts:

variable reference, declaration
scope

lexical scoping

lexical depth, lexical address
shadowing

contour diagram

local, non-local, global variables
scope, binding, and extent
static analysis

lexical address analysis

static environment

nameless environment

4.1 Scope, Binding, and Extent

Variables may appear in two different ways:raterence®r asdeclarations
A variable reference is a use of the variable. For example, in

(f xy)

all the variablesf, x, andy, appear as references. However, in
(lambda (x) ...)

or

(let ((x ...)) ...)

the occurrence aof is a declaration: it introduces the variable as a name foresom
value.

Corresponding to each declaration of a variablis a region of the program in
which any use of the variabterefers to that declaration of This is called the
scopeof the declaration. Scoping allows the same name to be rdasddferent
purposes in different parts of a program.

In Scheme, the scope of any declaration is determined blgxineal scope rule

In (lambda (1 ... z,) B)or@Qet ((x1 Ey) ... (x, E,)) B)
the scope ofy, ..., z, is the bodyB.

This is astaticrule, meaning that one can compute the scopes without ergcut
the program.

To find which declaration corresponds to a given use of a bkrjave search
outwardsfrom the use until we find a declaration of the variable.

(let ((x 3) Call thisx1
(y 4)) Call thisy1
(+ (let ((x Call thisx2
(+ vy 5)))
(* x y)) Herex refers tox2
x)) Herex refers tox1

Lexical depthtells us how far up we have to travel. (8 x y),

x is bound at lexical depth O
y is bound at lexical depth 1

Lexical scopes are nested: each scope lies entirely witlothar scope.

Scoping rules like this are calléexical scopingules, and the variables declared
in this way are calletexical variables

Under lexical scoping, we can create a hole in a scope by latieg a variable.
We say the inner declarati@hadowghe outer one. For instance, in the example
above, the innex shadows the outer one in the multiplication x y).

We can illustrate lexical scoping withantour diagram
Contour diagram for our simple example:

(let ((x 3)
(y 4))
(+ (let ((x
(+ vy 5)))
(*x x y))

x))
| et X 3
R E

(+ (|ét ((x

(+y 5))
(.
X

A more complicated example

(I ambda (>|< y) ;o ox1, yl
(Tet ((z (+x¥))) |z
(1 anbda (X 2)) L X2, 22
Elet ((x (let ((x A ;o X3, x4
(+ xvy z2)) ; line 5
(y 11)) ;Y2
))) line 7
\(+xy2)) j)));line8

Here there are three occurrences of the expressior y z), onlines 5, 7, and
8

At line 5, we are within the scope of the declarations

(x z) atdepthO
(z) at depth 1
(x y) atdepth?2

So at line 5,

x is bound at depth 0 and position 0, and referso
y is bound at depth 2 and position 1, and refersto
z s bound at depth 0 and position 1, and referzfo

(1 anbda ()l(y)
(let ((z (+xY)))

(1 anbda (x 2)
(let ((x (let ((x
(+ Xy 2))
(y 11))
>>>

 Fxy 2))))|)

~

At line 7, we are within the scope of the declarations
(x y) atdepthO
(x z) atdepth1l
(z) at depth 2
(x y) atdepth3

So at line 7,

x Is bound at depth 0 and position 0, and refersto
y is bound at depth 0 and position 1, and referg/fo
z s bound at depth 1 and position 1, and referzfo

; x1, yl

z1

CoX2, 22

X3, x4

line 5

;Y2

line 7

line 8

(1 anbda ()l(y) ;o ox1, yl

(1et ((z (+xy))) 1 22
Elanbda ()|< Z)) ; X2, 22
Elet ((x (let ((x A ; X3, x4
(+ xvy 2)) ; line 5

(y 11)) ;Y2
))) - line 7
\(+xyz)) /)));Iine8

At line 8, we are within the scope of the declarations
(%) at depth O
(x z) atdepth1l
(z) at depth 2
(x y) atdepth3

So at line 8,
x is bound at depth 0 and position 0, and refers®
y is bound at depth 3 and position 1, and refersto
z s bound at depth 1 and position 1, and referzfo

The combination of lexical depth and position is calldéxcal address

We can classify the variable uses in an expression by wheyeaile bound:

e Localvariables are those bound by the immediately enclosingebii@t,
letrec, Or lambda).

e Non-localvariables are those bound somewhere else in the expression.

e Freeor globalvariables are those that are not bound in the expression.
For example, in the last line of

(let ((x B) (y 7))
(let ((a 6) (b 7))
(lambda (u v)
...

u andv are local,a, b, x, andy are non-local, and any other variables are free
(global).

The binding of a variable is the value associated with it. Bindings aesated
by extend-env, SO you can look at the specification to see how the binding is
created. Formal parameters are bound when the procedpplisca

A variable declared by proc is bound when the procedure is applied.

(apply-procedure (procedure = e p) v)
= (value-of e [z=v]p)

A let-variable is bound to the value of its right-hand side.

(value-of (let-exp = e1 e2) p) =
(let ((v (value-of e1 p)))
(value-of ey [xz=v]p)))

A variable declared by aetrec is bound using its right-hand side as well.

(value-of (letrec-exp P X e1 €2) p)
= (value-of ey (extend-env-recursively p X e; p))

Theextentof a binding is théime intervalduring which the binding is maintained.

In our little language (as in Scheme), all bindings hsemi-infiniteextent, mean-

ing that once a variable gets bound, that binding must betaiagd indefinitely

(at least potentially). This is because the binding mightidelen inside a closure
that is returned.

In languages with semi-infinite extent, the garbage callecbllects bindings
when they are no longer reachable. This is only determinablein-time, so
we say that this is dynamicproperty.

If we didn’t allow proc’s to appear as the body (or value) ofiat, then the
let-bindings would expire at the end of the evaluation of 1he body. This is
calleddynamicextent, and it is astatic property. Because the extent is a static
property, you can predict exactly when a binding can be dikzh (“Dynamic”
sometimes means “during the evaluation of an expressiath’sametimes means
“not calculable in advance.” Sorry— | didn’t make this up.)

10

4.2 Lexical Address Analysis

We've seen how we can use interpreters to model the run-tehawuor of pro-
grams. We now introduce a new theme to the course: how to es&athe tech-
nology toanalyzeor predictthe behavior of programs without running them.

We will do three kinds of predictions:

1. First, we will do alexical address analysisThis analysis will predict, at
analysis time, where in the environment each identifier pelfound at run
time. We will see that the analyzer looks like an interpregxcept that
instead of passing around an environment, we pass arowtatia envi-
ronment which associates with each identifier whatever we knowvicstiy
about it.

As a result of the lexical address analysis, we will be abli&donslate our
programs into a variable-free form, in which every variatgfference is re-
placed by an address in the environment, and we can repladeterpreter
by one that uses these addresses instead of identifiers.

2. In Lecture 6 we will daype analysis Most languages divide up their ex-
pressed values inttypes The type of a value determines what operations
are appropriate on that value. We will analyze our prograrensure that
no operation is ever performed on inappropriate data.

This analysis will enable us to reject programs that are géaous,” that is,
those programs thanightperform an inappropriate operation.

3. Then in lecture 7, we will use the same kind of analysis tal#sh ab-
straction boundaries in programs and reject those progtlaatviolate the
abstraction boundaries.

11

4.2.1 Eliminating Variable Names

Execution of the scoping algorithm may then be viewed aspuoutward from
a variable reference to its matching declaration

We could, therefore, get rid of variable names entirely, mpdlace variables with
their lexical depths.

For example, we could replace the Scheme expression

(lambda (x)
((lambda (a)
(x a))
x))

by something like:

(nameless-lambda
((nameless-lambda
(#1 #0))
#0))

Eachnameless-lambda declares a new anonymous variable, and each variable
reference is replaced by its lexical depth; this numberuweligidentifies the dec-
laration to which it refers. These numbers are caieital addressesr deBruijn
indices

12

This way of recording the information is useful because #&xéchl addresgre-
dictsjust where in the environment any particular variable walfound.

Consider the expression

let x = €1
in let y = €9
in -(x,y)

in our language. In the difference expression, the lexiealls ofy andx are O
and 1, respectively.

Now assume that the values@fande,, in the appropriate environments, are
anduvsy. Then the value of this expression is

(value-of
<<Klet x = ¢
in let y = e9
in -(x,y)>>
p)

(value-of
<<Klet y = €9
in -(x,y)>>
[x=v11p)

(value-of
<<= (x,y)>>
Ly=v2] [x=v11p)

so that when the difference expression is evaluateat depth 0 and is at depth
1, just as predicted by their lexical depths.

13

If we use a data-structure representation of environmiasve did for LET, then
the environment will look like

———* saved—env

Y

so that the values of andy will be found by taking either 1 cdr or O cdrs in the
environment, regardless of the valugsaandws.

14

Same thing works for procedure bodies. Consider

let a =5
in proc (x) -(x,a)

In the body of the procedure,is at lexical depth 0 and is at lexical depth 1.
The value of this expression is

(value-of
<<let a =5
in proc (x) -(x,a)>>
p)

(value-of
<proc (x) -(x,a)>>
(extend-env a 5 p))

(procedure x <<-(x,a)>> [a=5]p)
The body of this procedure can only be evaluatedfyly-procedure, say

(apply-procedure
(procedure x <<-(x,a)>> [a=5]p)

7)
(value-of
<<L-(x,a)>>

[x=7][a=5]p)

So again every variable is found in the environment at theepfaedicted by its
lexical depth. If we had multiple arguments, then we’'d hav&dep track of the
position, too, but that’s also static.

15

4.2.2 Implementing L exical Addressing

We now implement the lexical-address analysis we sketchegea We write

a proceduretranslation-of-program that takes a program and removes all
the identifiers from the declarations, and replaces evetghig reference by its
lexical depth.

For example, the program

let x = 37

in proc (y)
let z = -(y,x)
in -(x,y)

is translated to

#(struct:a-program
#(struct:nameless-let-exp
#(struct:lit-exp 37)
#(struct:nameless-proc-exp
#(struct:nameless-let-exp
#(struct:diff-exp
#(struct:nameless-var-exp 0)
#(struct:nameless-var-exp 1))
#(struct:diff-exp
#(struct:nameless-var-exp 2)
#(struct:nameless-var-exp 1))))))

Will then write a new version ofalue-of-program that will find the value of
such a nameless program, without putting identifiers in tivirenment.

Implementation is ainterps/lecture04/lexaddr-lang

16

4.2.3 The Trandator

We are writing a translator, so we need to know the sourceulzgeg and the
target language. The target language will have thingsihieless-var-exp
andnameless-let-exp that were not in the source language, and it will lose
the things in the source language that these constructscesgikevar-exp and
let-exp.

Add to the SLLGEN grammar:

(expression ("%lexref" number) nameless-var-exp)
(expression
("%let" expression "in" expression)
nameless-let-exp)
(expression
("%lexproc" expression)
nameless-proc-exp)

We use names starting withfor these new constructs because that is normally
the comment character in our language.

Our translator will reject any program that has one of themg nameless con-
structs fameless-var-exp, nameless-let-exp, Ornameless-proc-exp), and
our interpreter will reject any program that has one of tller@meful constructs
(var-exp, let-exp, Of proc-exp) that are supposed to be replaced.

17

To calculate the lexical address of any variable referemeeneed to know the
scopes in which it is enclosed. This is@antextargument.

Sotranslation-of-expression will take two arguments: an expression and a
static environmentThe static environment will be a list of identifiers, regresng
the scopes within which the current expression lies. Thealbr declared in the
innermost scope will be the first element of the list.

For example, when we translate the last line of the exampealihe static en-
vironment should be

(z y x)
So looking up an identifier in the static environment meardirfig its position in

the static environment, which gives a lexical address: ilapkip x will give 2,
looking upy will give 1, and looking upz will give O.

Entering a new scope will mean adding a new element to thie siatironment.
We introduce a proceduketend-senv to do this.

[Puzzle: how would this change if we had multiple argumemtsnaltiple decla-
rations?]

18

Since the static environment is just a list of identifiergsd procedures are easy
to implement:

senv = (list-of symbol)
lexaddr = N

empty-senv : () -> senv
(define empty-senv
(lambda ()
>0))

extend-senv : sym * senv -> senv
(define extend-senv
(lambda (x senv)
(cons x senv)))

apply-senv : senv * sym -> lexaddr
(define apply-senv
(lambda (senv x)
(cond
((null? senv)
(eopl:error ’translation-of
"unbound variable in code: “s" x))
((eqv? x (car senv))
0)
(else
(+ 1 (apply-senv (cdr senv) x))))))

19

For the translator, we have two procedurassnslation-of, which handles ex-
pressions, anéiranslation-of-program, which handles programs.

We are trying to translate an expressiwhich is sitting inside the declarations
represented byenv. To do this, we recursively copy the tree, except that

1. Everyvar-exp is replaced by aameless-var-exp with the right lexical
address, which we compute by calliapply-senv.

2. Everyproc-exp isreplaced by aameless-proc-exp, with the body trans-
lated with respect to the new scope, represented by the statironment

(extend-senv z senv).

3. Everylet-exp is replaced by aameless-let-exp.
The two subexpressions are each translated in an appepdape.

20

translation-of : expression * static-environment
-> nameless-expression
(define translation-of
(lambda (exp senv)
(cases expression exp

(var-exp (var)
(nameless-var-exp
(apply-senv senv var)))

(proc-exp (var body)
(nameless-proc-exp
(translation-of body
(extend-senv var senv))))

(let-exp (var rhs body)
(nameless-let-exp
(translation-of rhs senv)
(translation-of body
(extend-senv var senv))))

(const-exp (num) (const-exp num))
(diff-exp (expl exp2)
(diff-exp
(translation-of expl senv)
(translation-of exp2 senv)))
other cases of source language are similar
(else (eopl:error ’translation-of

"Tllegal source expression ~s" exp))

)))

21

The procedureranslation-of-program Simply runstranslation-of in a
suitable initial static environment.

translation-of-program : program -> nameless-program
(define translation-of-program
(lambda (pgm)
(cases program pgnm
(a-program (e)
(a-program
(translation-of e (init-senv)))))))

init-senv : () -> static-environment
(define init-senv
(lambda ()
(extend-senv ’i
(extend-senv ’v
(extend-senv ’x
(empty-senv))))))

22

4.2.4 The namelessinterpreter

Our interpreter takes advantage of the predictions of tkiedéaddress analyzer
to avoid explicitly searching for variables at run time.

Since there are no more identifiers in our programs, we wandlde to put iden-
tifiers in our environments, but since we know exactly wherbk in each en-
vironment, we don’t need them!

Our top-level procedure will beun:

(define run
(lambda (string)
(value-of-program
(translation-of-program
(scan&parse string)))))

23

Instead of having full-fledged environments, we will havenegess environments,
with the following interface:

nameless-environment? :val -> bool

empty-nameless-env : () -> nameless-env

empty-nameless-env? : nameless-env -> bool
extend-nameless-env . expval * nameless-env -> nameless-env
apply-nameless-env ‘ nameless-env * lexaddr -> expval

We can implement a nameless environment as a list of exjptesdees, so that
apply-nameless-env is sSimply a call tolist-ref.

For example, at the last line of our example

let x = 37

in proc (y)
let z = -(y,x)
in -(x,y)

the nameless environment will look like

Y

Y

| | L | T saved—env

' ' '

value of z valueof y wvalue of x

24

nameless-environment? : scheme-value -> bool
(define nameless-environment? (list-of expval?))

empty-nameless-env : () -> nameless-env
(define empty-nameless-env
(lambda ()
7))

empty-nameless-env? : nameless-env -> bool
(define empty-nameless-env? null?)

extend-nameless-env : expval * nameless-env -> nameless-env
(define extend-nameless-env cons)

apply-nameless-env : nameless-env * lexaddr -> expval
(define apply-nameless-env
(lambda (nameless-env n)
(list-ref nameless-env n)))

25

Having changed the environment interface, we need to lo@l éhe code that
depends on that interface. There are only two things in dierpneter that use
environments: procedures angllue-of.

The revised specification for procedures is just the old oitie tve variable name
removed.

(apply-procedure (procedure e p) v)
= (value-of e (extend-nameless-env v p))

We can implement this by defining

procedure : nameless-expression * nameless-env -> proc
(define-datatype proc proc?
(procedure
(body expression?)
(nameless-env nameless-environment?)))

apply-procedure : proc * expval -> expval
(define apply-procedure
(lambda (procl v)
(cases proc procl
(procedure (e saved-nameless-env)

(value-of e
(extend-nameless—-env v saved-nameless-env))))))

26

value-of will be like before, except

e we omit the cases forar-exp, let-exp, andproc-exp

e replace them with new cases tofmeless-var-exp, nameless-let-exp,
andnameless-proc-exp

A nameless-var-exp gets looked up in the environment.

A nameless-let-exp evaluates its right-hand side, and then evalutes its body
es in an environment extended by the value of the right-hand.sithis is just
what an ordinaryiet does, but without the identifiers.

A nameless-proc-exp produces aameless-proc, Which is then applied by
apply-procedure.

27

value-of : nameless-expression * nameless-environment
-> expval
(define value-of
(lambda (exp nameless-env)
(cases expression exp

(const-exp (num) ...as before.).
(diff-exp (el e2) ...as before.).
(zero?-exp (el) ...as before.).

(if-exp (el e2 e3) ...as before.).
(call-exp (el e2) ...as before.).

(nameless-var-exp (n)
(apply-nameless-env nameless-env n))

(nameless-let-exp (el e2)
(let ((val (value-of el nameless-env)))
(value-of e2
(extend-nameless-env val nameless-env))))

(nameless-proc-exp (e)
(proc-val
(procedure e nameless-env)))

(else

(eopl:error ’value-of
"Illegal expression in translated code: “s" exp))

)))

28

Last, here’s the newalue-of-program:

(define value-of-program
(lambda (pgm)
(cases program pgm
(a-program (e)
(value-of-expression e (init-nameless-env))))))

And we're done.

29

